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Abstract: The multivariate linear mixed model (MLMM) is a frequently used tool

for a joint analysis of more than one series of longitudinal data. Motivated by a

concern of sensitivity to potential outliers or data with longer-than-normal tails and

possible serial correlation, we develop a robust generalization of the MLMM that

is constructed by using the multivariate t distribution and a parsimonious AR(p)

dependence structure for the within-subject errors. A score test for the inspection

of autocorrelation among within-subject errors is derived. A hybrid ECME-scoring

procedure is developed for computing the maximum likelihood estimates with stan-

dard errors as a by-product. The methodology is illustrated through an application

to a set of AIDS data and several simulation studies.
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1. Introduction

The linear mixed model (LMM), originally proposed by Laird and Ware
(1982), has been broadly studied and widely used for the analysis of single-
outcome longitudinal data. The popularity of such a model arises from its ability
to account for between- and within-subjects correlations, together with ready im-
plementation through commonly available software, e.g., SAS (SAS (2001)), pro-
cedure MIXED, and R (R Development Core Team (2008)), library NLME. Compre-
hensive reviews that cover methodological and computational aspects of the LMM
are contained in books by Fitzmaurice, Laird, and Ware (2004) and Hedeker and
Gibbons (2006), among others. Diggle et al. (2002) studied the GEE methods
for fitting marginal linear models to clustered longitudinal data.

In many biomedical studies and clinical trials, it is quite common that re-
peated measures are collected on two or more response variables and are often
referred to as multivariate longitudinal data. There has been growing interest in
pursuing a multivariate generalization of LMM for dealing with such data. Shah,
Laird, and Schoenfeld (1997) extended the LMM to the multivariate linear mixed
model (MLMM), to allow the analysis of multiple longitudinal outcomes, and de-
veloped an EM algorithm (Dempster, Laird, and Rubin (1977)) to estimate the
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model parameters. Schafer and Yucel (2002) described several improved EM-type
and Markov chain Monte Carlo (MCMC) procedures for multiple imputation of
missing values in MLMM. Fieuws and Verbeke (2004) applied a joint modelling
strategy to investigate questions about the “association of the evolutions” and
the “evolution of the association”. Roy (2006) discussed how to estimate the cor-
relation coefficient between two response variables with repeated measurements.
More recently, Wang and Fan (2010) provided some additional tools, including
estimation, testing, and prediction, for the MLMM with autoregressive (AR)
errors.

In the framework of LMMs and MLMMs, the random effects and the within-
subject errors are routinely assumed normal for mathematical convenience. How-
ever, such an assumption is not always realistic because of the presence of atyp-
ical observations. To remedy this weakness, such authors as Zellner (1976) and
Lange, Little, and Taylor (1989) considered the use of the multivariate t dis-
tribution (Hogan and Laird (1997)) that contains a harmonizing parameter ν

(called the degrees of freedom), for robust estimation of linear regression mod-
els. The value of ν, which controls the thickness of the tails of the distribution,
is directly related to the degree of robustness of inference, and smaller ν yields
higher robustness. Recently, Pinheiro, Liu, and Wu (2001) proposed a t linear
mixed model (tLMM) and demonstrated its robustness against outliers through
an application to orthodontic data and extensive simulations. Further work in
this direction is Lin and Lee (2006, 2007), and Song, Zhang, and Qu (2007).

Our main objective is to extend the existing tLMM to a multivariate version,
called the multivariate t linear mixed model (MtLMM) for properly modeling
multi-response longitudinal data with thick tails. To our knowledge, the proposed
model, including the MLMM as a limiting/special case (ν → ∞), has never been
considered in the literature. In addition, a stationary AR process of order p for
the within-subject errors is considered to account for the extra autocorrelation
not caused by random effects. It is worthwhile mentioning that the pure AR
structure can be easily extended to a much richer autoregressive moving average
(ARMA) family, but a high-order AR model is usually enough due to the fact
that longitudinal data are often short time series. Besides, the white noise process
is included as a special case of AR models when the AR parameters approach
zero.

The rest of this paper is organized as follows. In Section 2, we describe a
set of bivariate repeated measures from the AIDS Clinical Trials Group (ACTG)
175 study in which some outliers appear to be present. In Section 3, we de-
fine notation, formulate the model, and derive a score test statistic to assess
the existence of within-subject autocorrelation. In Section 4, ML estimation is
carried out by using a hybrid maximization scheme, which combines the sta-
bility of the Expectation Conditional Maximization Either (ECME) algorithm
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(Liu and Rubin (1994)) with the rapid convergence feature of the Fisher scoring
procedure. Standard errors are obtained by inverting the expected information
matrix. The model selection procedure for assessing the fits of candidate models
is also addressed. In Section 5, we illustrate these techniques with the clinical
study preliminarily analyzed in Section 2, and demonstrate the robust property
of MtLMM under various levels of perturbation to the data. Concluding re-
marks are in Section 6. Proofs of the theoretical results, along with a small
simulation study, are deferred to the supplementary document available on-line
at http://www.stat.sinica.edu.tw/statistica.

2. A Motivating Example: the ACTG 175 Data

To motivate the proposed model, consider a preliminary analysis of the
ACTG 175 data originally reported by Hammer et al. (1996). This clinical trial
study involved a total of 2467 HIV-1-infected participants who were recruited
from 43 AIDS Clinical Trials Units and 9 National Hemophilia Foundation sites
in the United States and Puerto Rico. The recruitment period was from Decem-
ber 1991 to October 1992, and the recruited patients were measured repeatedly
until the end of the follow-up period, November 1994. On each patient visit, two
important immunologic measurements, namely CD4 and CD8 cell counts (per
cubic millimeter), were collected at 2, 4, and 8 weeks, and then per protocol
about every 12 weeks thereafter. Patients were randomly assigned to one of the
four treatments: zidovudine alone, zidovudine plus didanosine, zidovudine plus
zalcitabine, and didanosine alone. The primary objective of this clinical study
was to understand the amount of derivative tracking in the measurements of im-
munologic markers; and to compare monotherapy with these four treatments in
HIV-1-infected patients on the basis of time to progression to AIDS or death.
Many analyses have been done on the natural history of CD4 repeated measures
as well as the time-to-event data by using the model-based or semiparametric
likelihood-based approaches (see Hogan and Laird (1997); Song, Davidian, and
Tsiatis (2002), for example).

For illustration, a total of N = 30 patients were randomly selected, and
missingness was not considered in this. As pointed out by Song, Davidian, and
Tsiatis (2002), only nine events occurred before week 12 and the observed profiles
were followed by a decline after week 12, so we considered the post-week-12 data
henceforth. We focused on samples measured from 20 to 128 weeks. Hence,
the measurement times were commonly across patients for the selected data
set. To achieve constant variance of CD4 and CD8 cell counts, we take the
base 10 logarithm of all repeated measures and write yi1 = log10(CD4)i and
yi2 = log10(CD8)i for patient i, respectively.

http://www.stat.sinica.edu.tw/statistica
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Figure 1. Trajectories of log10(CD4) and log10(CD8) for 30 randomly se-
lected patients along with their mean profiles based on different treatment
groups (thick dashed line for the entire group; solid lines for zidovudine
alone; and dot-dashed lines for the other three medicines).

Figure 1 depicts the trajectories of patients’ 10 scheduled visits along with
their mean profiles. It can be observed that the trend of population mean profiles
decline linearly over time. Moreover, we found that patients differ in their initial
levels and time trends. Besides, the mean profiles of zidovudine alone are different
from the other three therapies. Thus, the treatment and time-varying covariates
should be considered in evaluating the effects of depletion of CD4 and CD8 cell
counts.

Assuming a linear trend for the population average, and subject-specific
intercepts and slopes for the random effects, yi1 and yi2 are fitted separately by
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the LMMs

yij = [110 : treati110 : ti : treatiti]βj + [110 : ti]bij + eij , i = 1, . . . , 30, j = 1, 2.

(2.1)
Here 110 = (1, . . . , 1)T; treati is a treatment indicator (1 = zidovudine alone;
0 = the other three therapies); ti = (ti1, . . . , ti10)T with tit = (weekit − 8)/12;
βj = (βj0, βj1, βj2, βj3)T is the regression-coefficient vector in fixed effects on yij ,
in which βj0 and βj2 denote the intercepts and slopes, respectively, for the other
three therapies; βj1 and βj3 denote the difference in intercepts and slopes between
zidovudine alone and the other three therapies; bij = (bij0, bij1)T and eij are the
normally distributed random effects and within-subject errors, respectively, on
yij .

Figure 2 depicts scatter plots of estimated empirical Bayes estimates (Laird
and Ware (1982)) for the random slopes and standardized residuals together
with their normal quantile-quantile (Q-Q) plots. From this figure, we have three
comments.

(i) The sample correlation coefficient for the estimates of two random slopes,
bi11 and bi21, is 0.61, revealing that patients with a larger decline in CD4 also
have a larger decline in CD8, and vice versa.

(ii) The sample correlation coefficient for residuals, ei1 and ei2, is 0.64, implying
that CD4 and CD8 should be analyzed jointly.

(iii)The Q-Q plots for the estimates of random slopes and residuals exhibit heavy-
tailed behavior, suggesting that the normality assumption for random effects
and within-subject errors might be inappropriate.

Accordingly, we look to establish a robust generalization of MLMM by consider-
ing a multivariate t distribution, denoted by ta(µ,Ω, ν), with density

f(y; µ,Ω, ν) =
Γ
(
(ν+a)/2

)
|Ω|−1/2

Γ(ν/2)(πν)a/2

(
1+

(y−µ)TΩ−1(y−µ)
ν

)−(ν+a)/2
,y ∈ Ra.

A detailed account of mathematical properties and estimation methods for this
distribution can be found in Kotz and Nadarajah (2004) and Nadarajah and
Kotz (2005, 2008). In Section 5, we return to these data.

3. Notation and Setting

3.1. Model formulation

Let Yi = [yi1 : · · · : yir] be an ni×r response matrix containing r observable
vectors yij = (yij1, . . . , yijni)

T of length ni, the jth response variable from subject
i over occasions t = 1, . . . , ni (i = 1, . . . , N ; j = 1, . . . , r). Let Ei = [ei1 : · · · : eir]
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Figure 2. Scatter plots (left panel) and Q-Q plots (right panel) of (a) es-
timates of random slopes and (b) residuals for log10(CD4) and log10(CD8),
respectively, based on LMMs with random intercepts, random slopes and
uncorrelated errors.

be an ni × r error-component matrix, where the jth column eij is the within-
subject error corresponding to yij . Let Xij , which is obtained as functions of the
basic covariates, be an ni × q1 design matrix for fixed effects, and let Zij be an
ni× q2 design matrix for random effects. To analyze the unbalanced longitudinal
data, different numbers of measurements and/or unequal sets of occasions of each
subject, we write Xi = diag{Xi1, . . . ,Xir} and Zi = diag{Zi1, . . . ,Zir}, both
known full-rank block-diagonal matrices. We set out to model the relationship
between repeated measures and covariates, as well as investigate the association
of evolutions among all outcomes and the evolutions of each outcome.



MULTIVARIATE t LINEAR MIXED MODELS 1863

We utilize the vec(·) operator that vectorizes a matrix by stacking its columns
vertically, to obtain yi = vec(Yi) = (yT

i1, . . . ,y
T
ir)

T and ei = vec(Ei) = (eT
i1, . . .,

eT
ir)

T. Note that, without balanced data, there is indeed no advantage in mod-
eling Yi directly. We take the MtLMM for the response vector yi to be of the
form

yi = Xiβ + Zibi + ei with
[
bi

ei

]
∼ t(q2+ni)r

([
0
0

]
,

[
D 0
0 Ri

]
, νi

)
, (3.1)

where β = (βT
1 , . . . , βT

r )T is the regression parameter, with each q1-vector βj

used to describe the fixed effects of the jth outcome, and bi = (bT
i1, . . . ,b

T
ir)

T

is a q2r-vector of random effects. We assume that D = [Djj′ ] is a q2r × q2r

symmetric positive-definite matrix, where Djj′ is a q2 × q2 partition matrix, and
in particular for j = j′, Djj is a unstructured covariance matrix in the random
effects for the jth outcome only, and Ri is an nir × nir structured covariance
matrix in error components. We take νi = ν, for all i, and further assume that
the joint distributions of (bT

i , eT
i )T for distinct subjects are independent.

For the within-subject error ei, if we do not make any special assumption
about the covariance matrix for each row and column of Ei, then the unknown
parameters in Ri are too numerous to be accurately estimated. Accordingly, it is
convenient to impose a parsimonious structure on Ri. Here, the row vectors of Ei,
the errors at different measurement times, are assumed to be serially correlated
and to have distribution tr(0,Σ, ν), where Σ = [σjj′ ] describes the unstructured
covariance among r outcomes. If the r outcomes come from different study
environments, then it might be appropriate to suppose Σ to be diagonal; this is
not common, however. Each column of Ei has distribution tni(0, σjjCi, ν), where
Ci captures a time-dependence structure over ni occasions on each outcome. The
AR(p) dependence structure Ci = Ci(φ) = [ρ|t−t′|(φ)], t, t′ = 1, . . . , ni, is used
to address autocorrelation over time, where

ρs(φ) = ρs = φ1ρs−1 + · · · + φpρs−p, ρ0 = 1, (s = 0, . . . , ni − 1),

see Box, Jenkins, and Reinsel (1994). For the pure AR model, the admissible val-
ues of φ are restricted in a p-dimensional hypercube Cp; to ensure the stationarity
of the AR model, the roots of 1 − φ1B − φ2B2 − · · · − φpBp = 0 must lie outside
the unit circle, where B is a backward shift operator such that Bvρs = ρs−v,
v = 0, . . . , p.

Under this consideration, the covariance structure of ei is Σ ⊗ Ci, and the
response yi ∼ tnir(Xiβ,Λi, ν), where Λi = Λi(D,Σ, φ) = ZiDZT

i + Σ ⊗ Ci are
implicit functions depending on φ and distinct elements of D and Σ. If ν > 1,
then Xiβ is the mean of yi, and if ν > 2, then ν(ν − 2)−1Λi is its variance-
covariance matrix. Note that the tLMM of Lin and Lee (2006), specified by
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yij ∼ tni(Xijβj ,ZijDjjZT
ij + σjjCi, ν), can be viewed as a univariate case of our

model. Let
∆i = ∆i(β,D,Σ, φ) = εT

i Λ−1
i εi (3.2)

denote the Mahalanobis distance between yi and Xiβ, where εi = yi −Xiβ. Let
θ = (βT, αT)T be the vector of unknown parameters, where α = (ωT, ν)T with
ω = (vech(D)T, vech(Σ)T,φT)T. Then the log-likelihood function of θ can be
formed by summing over the logarithms of multivariate t densities at each yi,
written as ` =

∑N
i=1 `i, where

`i = log Γ
(ν + nir

2

)
− log Γ(

ν

2
)− nir

2
log(πν)− 1

2
log |Λi|−

ν + nir

2
log

(
1+

∆i

ν

)
.

The first theorem is useful for obtaining the Fisher information matrix. The score
vector sθ, the information matrix Jθθ, and the proof of Theorem 1 are sketched
in the supplementary material.

Theorem 1. Under (3.1), we have ∆i ∼ nirF(nir, ν) and ν/(ν+∆i) ∼ Beta(ν/2,
nir/2). Then

(i) E
[
(ν + ∆i)−1

]
= (ν + nir)−1;

(ii) E
[
(ν + ∆i)−2

]
=

[
ν(ν + nir)(ν + nir + 2)

]−1(ν + 2);

(iii)E
[
(ν + ∆i)−1εiε

T
i

]
= (ν + nir)−1Λi;

(iv) E
[
(ν + ∆i)−2εiε

T
i

]
=

[
(ν + nir)(ν + nir + 2)

]−1Λi.

3.2. The score test for autocorrelation

One might be interested in whether autocorrelation exists among the within-
subject errors of each outcome. A direct check for possible autocorrelation con-
centrates on the simplest case in which Ci = Ci(φ1) has an AR(1) dependence
of the form (1−φ2

1)
−1[φ|t−t′|

1 ], |φ1| < 1. We provide a score test procedure to test
the null hypothesis H0 : φ1 = 0 against the alternative hypothesis H1 : φ1 6= 0.
The reason for administering the score test is that it only requires an evaluation
of the ML estimates under the null model and, like the likelihood ratio test (LRT)
and Wald’s test, it is also Chernoff-consistent (Shao (2003)).

Rewrite θ = (βT, ηT, φ1)T, where η = (vech(D)T, vech(Σ)T, ν)T represents
a vector that includes the distinct parameters of all covariance components and
the degrees of freedom. The block-partitioned matrix Jαα is a submatrix of
(S2.1) rearranged according to the columns and rows of the respective parameters
(ηT, φ1), written as

Jαα =
[

Jηη Jηφ1

JT
ηφ1

Jφ1φ1

]
.
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Let θ̂0 = (β̂
T

0 , η̂T
0 , 0)T be the ML estimates of θ under the null model, where

η̂0 = (vech(D̂0)T, vech(Σ̂0)T, ν̂0)T. Then the score test statistic is

λs =
[ ∂`

∂θ

]T

θ̂0

[
Jθθ

]−1

θ̂0

[ ∂`

∂θ

]
θ̂0

=
[∂`/∂φ1]2θ̂0

[Jφ1φ1·η]θ̂0

, (3.3)

in which the denominator of the right hand side can be calculated as J0
φ1φ1

−
J0T

ηφ1
J0−1

ηη J0
ηφ1

, where J0
φ1φ1

, J0
ηφ1

, and J0
ηη are Jφ1φ1 , Jηφ1 , and Jηη evaluated at

θ = θ̂0. To evaluate the numerator of the right hand side of (3.3), we first let
ê0

i = yi − Xiβ̂0 − Zib̂0
i and b̂0

i = D̂0ZT
i Λ̂

−1
i0 (yi − Xiβ̂0) denote the estimated

“residuals” and “random effects” for subject i under the null model. We further
define ûi = (Σ̂

−1
0 ⊗ Ini)ê

0
i , ∆̂i0 = (yi − Xiβ̂0)TΛ̂

−1
i0 (yi − Xiβ̂0) and Ċi(0) =

Li+LT
i with Λ̂i0 = ZiD̂0ZT

i +(Σ̂0⊗Ini), Ini an identity matrix of order ni, and Li

an ni×ni matrix with the entries of 1 on the first super-diagonal and 0 otherwise.
Since [∂`/∂θ]θ̂0

has all zero entries except for the first partial derivative of ` with
respect to φ1, we get[ ∂`

∂φ1

]
θ̂0

=
1
2

N∑
i=1

{ (ν̂0 + nir)
(ν̂0 + ∆̂i0)

ûT
i (Σ̂0 ⊗ Ċi(0))ûi − tr

(
Λ̂

−1
i0 (Σ̂0 ⊗ Ċi(0))

)}
.

To study the asymptotic properties of the score test as well as the ML esti-
mates θ̂ = (β̂

T
, α̂T)T, obtained by the proposed algorithm described in the next

section, we make the following assumptions:

(i) Model (3.1) is correct, and the ni’s are bounded above.
(ii) The parameter spaces for β, ω, and ν are compact sets of Rq1r, Rg, and R+,

and the true value of θ is in the interior of the parameter space of θ.
(iii)As N → ∞, N−1Jββ → Iββ, N−1Jαα → Iαα, and for any q1r-vector a 6= 0,

maxi

{
aTXT

i Xia
}

aT
(∑N

i=1 XT
i Xi

)
a
→ 0.

Theorem 2. Under Assumptions (i)−(iii),
(i) θ̂

p→ θ,
√

N(β̂−β) d→ N(0, I−1
ββ), and

√
N(α̂−α) d→ N(0, I−1

αα), as N → ∞.

(ii) If H0 is true, then the score test statistic λs converges in distribution to a
chi-square with one degree of freedom.

Theorem 2 follows directly from the Weak Law of Large Numbers, the Cen-
tral Limit Theorem, and Slutsky’s Theorem. A value of λs that rejects the null
model does not imply the alternative model is enough, but suggests that auto-
correlation may be present in the eij ’s. Then, a higher-order AR model might
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be more suitable. Moreover, if the autoregressive parameter φ1 is close to zero
instead, the within-subject errors of each outcome could be uncorrelated.

4. Computational Aspects

4.1. Maximum likelihood estimation

To estimate the unknown parameters at (3.1), we first indicate how to carry
out ML estimation via EM-type algorithms. The EM algorithm originally pro-
posed by Dempster, Laird, and Rubin (1977) has several appealing features in-
cluding monotone convergence, with each iteration increasing the likelihood, and
simplicity of implementation. However, ML estimation at (3.1) is complicated
enough that the EM algorithm is computationally difficult at the M-step. Be-
sides, the degrees of freedom ν, as well as the AR parameters φ in the multivariate
t version of linear mixed models, are difficult to estimate. To go further, we ap-
ply an extension of the EM algorithm, called the ECME (Liu and Rubin (1994))
algorithm, which shares the appealing features of both EM and Expectation
Conditional Maximization (ECM, Meng and Rubin (1993)) and has typically a
faster convergence rate than either EM or ECM measured in iterations or com-
puter time. The ECME algorithm proceeds to estimate parameters by replacing
the M-steps of EM with either CM-steps that maximize a sequence of constrained
Q functions, as in ECM, or CML-steps that maximize the correspondingly con-
strained actual likelihood function.

Note that the model at (3.1) can utilize random τi’s in a three-level normal-
normal-gamma hierarchical specification as

yi|(bi, τi) ∼ Nnir

(
Xiβ + Zibi, τ

−1
i Ri

)
,

bi|τi ∼ Nq2r(0, τ−1
i D), τi ∼ Gamma(

ν

2
,
ν

2
). (4.1)

Recall from (3.1) that bi|τi and ei|τi are implicitly assumed to be independent.
If the conditional distribution of yi given τi is taken to be Nnir(Xiβ,Λi/τi), the
unconditional distribution of yi is tnir(Xiβ,Λi, ν).

Treating the unobservable random effects bi and latent variables τi as “miss-
ing” data, we have the complete data {(yi,bi, τi), i = 1, . . . , N}. The complete-
data log-likelihood function for all subjects, omitting constant terms, is

`c(θ) =
N∑

i=1

`[i]
c (θ) =

N∑
i=1

1
2

{
log |R−1

i | + log |D−1| − τi

[
eT

i R−1
i ei + bT

i D−1bi

]
+ν log(

ν

2
) − 2 log Γ(

ν

2
) + ν

(
log τi − τi

)}
.
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To ensure the admissibility of φ and stabilize the estimating procedure, we follow
Barndorff-Nielsen and Schou (1973) to reparameterize φ as

φ(p)
p = πp,

(4.2)
φ(p)

v = φ(p−1)
v − πpφ

(p−1)
p−v = πv − πv+1φ

(v)
1 − πv+2φ

(v+1)
2 − · · · − πpφ

(p−1)
p−v ,

where φ
(p)
v is the vth AR parameter under AR(p) model, and πv = φ

(v)
v is the par-

tial autocorrelation at lag v, for v = 1, . . . , p−1. The reparameterization (4.2) is
a one-to-one transformation that maps the AR parameters φ = (φ1, . . . , φp) ∈ Cp

onto the partial autocorrelations π = (π1, . . . , πp) ∈ [−1, 1]p such that Ci(φ) =
Ci(π).

Let θ̂
(h)

= (β̂
(h)

, D̂(h), Σ̂
(h)

, φ̂
(h)

, ν̂(h)) be the parameter estimates in the hth
iteration. The E-step for subject i is

Qi(θ|θ̂
(h)

) = E(`[i]
c (θ)|yi, θ̂

(h)
) =

∫ ∫
`[i]
c (θ)f(bi, τi|yi, θ̂

(h)
)dbidτi, (4.3)

integrating out bi and τi in the complete-data log-likelihood function. The next
result allows the evaluation of this conditional expectation.

Theorem 3. Under the three-level hierarchical form of (4.1), the conditional
distribution of (yT

i ,bT
i )T given the latent variable τi is

[
yi

bi

] ∣∣∣∣∣τi ∼ N(ni+q2)r

([
Xiβ

0

]
, τ−1

i

[
Λi ZiD

DZT
i D

] )
.

(i) The conditional distribution of bi given yi and τi is multivariate normal
with mean vector E(bi|yi, τi) = DZT

i Λ−1
i (yi−Xiβ) and variance-covariance

matrix cov(bi|yi, τi) = τ−1
i

(
D−1 + ZT

i R−1
i Zi

)−1.

(ii) The conditional distribution of τi given yi is a gamma distribution with shape
parameter (ν + nir)/2 and inverse scale parameter (ν + ∆i)/2.

The proof of Theorem 3 is outlined in the supplementary material.
Now, (4.3) can be obtained as

Qi(θ|θ̂
(h)

) =
1
2

{
log |R−1

i | + log |D−1| − tr
(
D−1B̂(h)

i

)
− tr

(
R−1

i Ψ̂
(h)
i (β)

)
+ν

(
log(

ν

2
) + κ̂

(h)
i − τ̂

(h)
i

)}
− log Γ(

ν

2
),
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where

τ̂
(h)
i = E(τi|yi, θ̂

(h)
) = (ν̂(h) + nir)/(ν̂(h) + ∆̂(h)

i ),

κ̂
(h)
i = E(log τi|yi, θ̂

(h)
) = DG

( ν̂(h) + nir

2

)
− log

( ν̂(h) + ∆̂(h)
i

2

)
,

B̂(h)
i = E(τibibT

i |yi, θ̂
(h)

) = τ̂
(h)
i b̂(h)

i b̂(h)T

i + V̂(h)
bi

,

Ψ̂
(h)
i (β) = E(τieieT

i |yi, θ̂
(h)

)

= τ̂
(h)
i

(
yi − Xiβ − Zib̂

(h)
i

)(
yi − Xiβ − Zib̂

(h)
i

)T + ZiV̂
(h)
bi

ZT
i ,

with Λ̂
(h)
i = ZiD̂(h)ZT

i +R̂(h)
i , R̂(h)

i = Σ̂
(h)⊗Ci(φ̂

(h)
), ∆̂(h)

i = (yi−Xiβ̂
(h)

)TΛ̂
(h)−1

i

(yi − Xiβ̂
(h)

), b̂(h)
i = E(bi|yi, θ̂

(h)
) = D̂(h)ZT

i Λ̂
(h)−1

i (yi − Xiβ̂
(h)

), and

V̂(h)
bi

= τ̂
(h)
i cov(bi|yi, θ̂

(h)
) =

(
D̂(h)−1

+ ZT
i R̂(h)−1

i Zi

)−1
.

The Q-function (Dempster, Laird, and Rubin (1977)) is given by Q(θ|θ̂(h)
) =∑N

i=1 Qi(θ|θ̂
(h)

). To obtain analytic expressions for the CM-steps, we let ê(h)
ij =

yij − Xiβj − Zib̂
(h)
ij and ê(h)

il = yil − Xiβl − Zib̂
(h)
il , where b̂(h)

ij is a q2 × 1

subvector consisting of the ((j − 1)q2 + 1)th to (jq2)th entries of b̂(h)
i . It follows

that Ψ̂
(h)
i (β) =

[
ψ̂

(h)

ijl (β)
]
, where ψ̂

(h)

ijl (β) = E(τieijeT
il |yi, θ̂

(h)
) = τ̂

(h)
i ê(h)

ij ê(h)T
il +

ZiV̂
(h)
bijl

ZT
i is a square matrix of order ni with V̂(h)

bijl
a q2×q2 submatrix consisting

of the ((j−1)q2 +1)th to (jq2)th rows and columns of V̂(h)
bi

, for j, l = 1, . . . , r. In
summary, the CM-steps for ECM and ECME algorithms can proceed as follows.

CM-step 1 for ECM and ECME. Fix φ = φ̂
(h)

and ν = ν̂(h), and update β̂
(h)

,
D̂(h), and Σ̂

(h)
by maximizing Q(θ|θ̂(h)

) to get

β̂
(h+1)

=
( N∑

i=1

τ̂
(h)
i XT

i R̂(h)−1

i Xi

)−1
N∑

i=1

τ̂
(h)
i XT

i R̂(h)−1

i

(
yi − Zib̂

(h)
i

)
,

D̂(h+1) = N−1
N∑

i=1

B̂(h)
i ;

σ̂
(h+1)
jl =


( N∑

i=1

ni

)−1
N∑

i=1

tr
(
C−1

i (φ̂
(h)

)ψ̂
(h)

ijl (β̂
(h)

)
)

for j = l,

(
2

N∑
i=1

ni

)−1
N∑

i=1

tr
(
C−1

i (φ̂
(h)

)(ψ̂
(h)

ijl (β̂
(h)

) + ψ̂
(h)

ilj (β̂
(h)

))
)

for j 6= l,

the estimates of the distinct elements in Σ.
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CM-step 2 for ECM. Fix β = β̂
(h+1)

, D = D̂(h+1), and Σ = Σ̂
(h+1)

. Calculate
(π̂(h+1), ν̂(h+1)) by maximizing the constrained Q function

(π̂(h+1), ν̂(h+1)) = arg max
(π,ν)

{ N∑
i=1

(
r log |C−1

i (π)| − tr
(
(Σ̂

−1(h+1)

⊗ C−1
i (π))

×Ψ̂
(h+1/2)
i

)
+ ν log(

ν

2
) − 2 log Γ(

ν

2
) + ν

(
κ̂

(h)
i − τ̂

(h)
i

))}
,

where Ψ̂
(h+1/2)
i = Ψ̂

(h)
i (β̂

(h+1)
).

CM-step 2 for ECME. Given current estimates, calculate (π̂(h+1), ν̂(h+1)) by
maximizing the constrained log-likelihood function

(π̂(h+1), ν̂(h+1)) = arg max
(π,ν)

{ N∑
i=1

(
log Γ

(ν + nir

2

)
− log Γ

(ν

2

)
− nir

2
log(ν)

−1
2

log
∣∣Λ̂(h+1)

i (π)
∣∣ − ν + nir

2
log

(
1 +

∆̂(h+1)
i (π)

ν

))}
.

In CM-step 2, we use the nlminb routine in R to do a (p + 1)-dimensional search
of (π̂(h+1)T , ν̂(h+1)) subject to box constraints: π ∈ [−1, 1]p, ν ∈ (0,∞). Then

update φ̂
(h)

by inverting π̂(h+1) back to φ̂
(h+1)

according to (4.2).

In some situations, the EM-type algorithms may be too slow to be of any
practical use. To speed up the convergence, a hybrid ECME-scoring procedure
that starts running a moderate number of ECME iterations, followed by the
scoring method, is recommended. To perform the scoring procedure, first update
β̂

(h)
by the generalized least squares step

β̂
(h+1)

=
( N∑

i=1

τ̂
(h)
i XT

i Λ̂
(h)−1

i Xi

)−1
N∑

i=1

τ̂
(h)
i XT

i Λ̂
(h)−1

i yi. (4.4)

Given the current estimates β̂
(h+1)

and α̂(h), one iteration of the scoring proce-
dure for updating α̂(h) gives

α̂(h+1) = α̂(h) + Ĵ(h)−1

αα ŝ(h+1/2)
α , (4.5)

where ŝ(h+1/2)
α and Ĵ(h)

αα are sα = (sT
ω, sν)T and Jαα evaluated at β̂

(h+1)
and

α̂(h).
As recommended in Chi and Reinsel (1989), when the increment Ĵ(h)−1

αα ŝ(h+1/2)
α

is too large, (4.5) can be modified as α̂(h+1) = α̂(h) + %̂(h)Ĵ(h)−1

αα ŝ(h+1/2)
α , where

%̂(h) is such that minus twice the log-likelihood at the (h + 1)th iteration is less
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than the one at the hth iteration, say −2ˆ̀(h+1) ≤ −2ˆ̀(h). Given the initial value
θ̂

(0)
, the ML estimates β̂ and α̂ can be obtained by iterating the ECME steps

and then (4.4) and (4.5) until an increase in the log-likelihood is less than a
pre-specified tolerance. Upon convergence, the asymptotic variance-covariance
matrix of estimates can be approximated by cov(β̂) = Ĵ−1

ββ and cov(α̂) = Ĵ−1
αα,

respectively. In general, the iteration-based procedure converges to local or global
modes. A convenient way to circumvent such a limitation is to try a variety of
initial values that are representatives of the parameter space, and compare their
relative log-likelihood values when employing the algorithm.

4.2. Model choice

A variety of information theoretic criteria exist to properly determine the
best choice among competing models. To best identify a model supported by
the data, we adopt the Akaike information criterion (AIC; Akaike (1973)) and
the Bayesian information criterion (BIC; Schwarz (1978)). For a model with
parameters θ, they are defined as

AIC = 2m − 2`max and BIC = m log N − 2`max,

where `max is the maximized log-likelihood and m is the number of free parame-
ters in the model. There is no consensus regarding which criterion is better, and
combined use of AIC and BIC could be of help in screening reasonable candidate
models.

A formal test concerning the appropriateness of using the normal model
H0 : ν−1 = 0 versus t model H1 : ν−1 > 0 is nontrivial since the null hypothesis
is on the boundary of the parameter space. For testing parameters under non-
standard settings, Self and Liang (1987) have shown the limiting distribution of
the LRT statistic follows a mixture of chi-square distributions. Referring to Case
5 of Self and Liang (1987), the LRT statistic under H0 : ν−1 = 0 is an equally
weighted mixture of χ2

0 and χ2
1 distributions, where χ2

0 denotes a degenerate
distribution with all of its mass at zero. In this case, the critical values are 2.71
and 5.41 at the 5% and 1% significance levels, respectively.

5. Analytical Results

In this section, we describe how the proposed MtLMM can be used to im-
prove the fitting performance on the set of ACTG 175 data pre-analyzed in Sec-
tion 2. Several graphical diagnostic tools for investigating the underlying model
assumption and detection of outliers, together with the robustness of MtLMM,
are presented.
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Table 1. Summary of model selection criteria.

Criterion Model
RI RIS

UNC AR(1) AR(2) AR(3) UNC AR(1) AR(2) AR(3)

`max
N 383.396 470.794 478.266 480.003 470.338 496.333 498.052 499.177

T 413.474 484.981 491.353 493.215 494.857 511.999 512.431 513.407

AIC
N -738.792 -911.589 -924.532 -926.006 -898.675 -948.666 -950.104 -950.354

T -796.949 -937.962 -948.705 -950.430 -945.714 -977.998 -976.861 -976.814

BIC
N -719.175 -890.571 -902.113 -902.185 -869.250 -917.839 -917.877 -916.725

T -775.930 -915.543 -924.885 -925.208 -914.886 -945.769 -943.233 -941.785

N: MLMM; T: MtLMM

Table 2. ML estimation for the fitted MtLMM with RIS and AR(1).

Fixed effects β10 β11 β12 β13 β20 β21 β22 β23

Est 2.5629 -0.1017 -0.0119 -0.0321 2.8800 0.0975 -0.0076 -0.0114

Sd 0.0304 0.0526 0.0055 0.0096 0.0387 0.0670 0.0041 0.0071

Random effects d11 d21 d22 d31 d32 d33 d41 d42 d43 d44

Est 0.0107 0.0015 0.0004 -0.0001 -0.0003 0.0195 0.0003 0.0001 0.0000 0.0002

Sd 0.0049 0.0006 0.0002 0.0044 0.0008 0.0079 0.0005 0.0001 0.0006 0.0001

Within-subject errors σ11 σ21 σ22 φ1 ν

Est 0.0071 0.0055 0.0091 0.3838 7.3395

Sd 0.0010 0.0009 0.0013 0.0671 2.4010

dls, for l, s = 1, . . . , q2r are the distinct elements of D.

5.1. Model fitting

We apply our methods to the ACTG 175 data. In the MtLMM setting, the
design matrix for the fixed effects is

Xi = I2 ⊗
[
110 : treati110 : ti : treatiti

]
,

where I2 is a 2× 2 identity matrix, and 110, treati, and ti are defined in Section
2. We compare results obtained by the random intercept (RI) model and the
random intercept plus slope (RIS) model. Specifically, the design matrix for RI
and RIS are Zi = I2 ⊗ 110 and Zi = I2 ⊗ [110 : ti], respectively.

To explore the presence of autocorrelation among within-subject errors, we
employ the score test procedure with the uncorrelated (UNC) covariance struc-
ture, say Ci = I10. The values of λs for RI and RIS scenarios are 158.40 and
40.36, respectively. The results, being highly significant, signify that the auto-
correlation cannot be completely explained by the inclusion of random slopes.
Consequently, three selected AR(p) (p = 1, 2, 3) structures for the within-subject
errors are considered in the later analysis. For the sake of model comparison, we
also fit the MLMM counterparts, which can be treated as the reduced MtLMMs
as ν tends to infinity.

Table 1 reports the values of the maximized log-likelihood `max together
with the associated AIC and BIC values. To fit the models via the ML method,
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we employed the hybrid ECME-scoring algorithm developed in Section 4 under
different starting values. The algorithm was terminated when an increase in the
log-likelihood was smaller than 10−6. When comparing fitted objects, the model
with the smallest AIC or BIC value was taken to be the best one. In light of these
two criteria, the results show that the t models are all superior to their normal
counterparts. The best choice is the MtLMM with RIS and a parsimonious AR(1)
structure (although AR(2) and AR(3) are somewhat comparable); the resulting
ML estimates of parameters along with their standard errors are listed in Table
2.

Consider the estimates of parameters in the table. For the fixed effects, the
significance of the intercepts (β10, β20) indicates that CD4 and CD8 are different
from zero at baseline, and the difference of the intercepts between the zidovudine
alone group and the other three therapies (β11, β21) being insignificant indicates
that the two groups have no statistically significant difference in CD4 and CD8
at baseline. Meanwhile, the negative slopes (β12, β22) reveal that both CD4 and
CD8 significantly fall across time, and the negative differences of time slopes
between the two groups (β13, β23) suggest there are significant increases in the
rates of progression to primary endpoint, say the occurrence of AIDS or death,
for the zidovudine alone group. Although only slight evidence of significance is
presented for the estimates of slopes in CD8, this is consistent with the result of
Hammer et al. (1996) in which treatments, except for the group of zidovudine
alone, offer advantages to slow the progression of AIDS symptoms.

For the estimates of σjl’s, they are apparently significant being far larger
than twice the associated standard errors. To investigate the existence of the
relationship between two response variables, the estimate of the correlation ρ21 =
σ21/

√
σ11σ22 for the “best” model is 0.684. As a result, there is strong evidence

that the CD4 and CD8 cell counts are positively related. Furthermore, the
estimate of the AR parameter φ1 is highly significant, supported also by the score
test statistic. It is noteworthy that the estimate of degrees of freedom is somewhat
small (ν̂ = 7.34), and the observed LRT statistic for testing MLMM-RIS-AR(1)
versus MtLMM-RIS-AR(1) is 31.33. Here the LRT statistic follows an equally
weighted mixture of χ2

0 and χ2
1 distributions. The resulting p-value 1.087× 10−8

guarantees the appropriateness of the use of multivariate t distribution.

5.2. Diagnostics

We consider diagnostics to assess the validity of the underlying distributional
assumptions on error terms. To examine the adequacy of the fitted models, a
formal measure for judging the distributional assumptions of residuals is to use
the Mahalanobis distance ∆̂i, which has an asymptotic χ2

df under MLMM and
a scale F distribution dfF(df, ν̂) under MtLMM, with df = 20. Here ∆̂i is ∆i
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Figure 3. Healy’s plot when (a) MLMM with RIS–AR(3) or (b) MtLMM
with RIS–AR(1) is fitted to the 30 selected AIDS patients.

Figure 4. Empirical conditional distributions of τi for the 30 selected AIDS
patients. The 2.5%, 25%, 50%, 75% and 97.5% quantiles of the “empirical”
samples are drawn on the boxplots.

in (3.2) with parameters replaced by their ML estimates. Then, the Healy-type
(1968) plots are constructed by plotting the cumulative probabilities of χ2

df and
dfF(df, ν) associated with the ordered values of ∆̂i against their nominal values
(i−0.5)/N for i = 1, . . . , N . One can examine whether the corresponding Healy’s
plot resembles a straight line through the origin having unit slope; a poor fitting
of the model is suggested if the scatter curve has a serious departure from the 45-
degree line. Figure 3 displays the Healy-type plots for the choices of MLMM and
MtLMM selected by the smallest AIC. The patterns are analogous to the choices
selected by the smallest BIC. A comparison of the two plots indicates the t model
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tracks the identity line more closely than does the normal counterpart, revealing
a substantial improvement provided by the use of multivariate t distribution.

Furthermore, it is of interest to detect outliers in the multi-outcome longi-
tudinal data. As pointed out by Wakefield et al. (1994), the performance of the
τi can be used as sensitive indicators for outlying observations against the prior
expectation of one. Thus, if the value of τi is substantially lower or higher than
one, then the ith patient might be regarded as an outlier in the population. By
Theorem 3 (ii), we draw the “empirical” samples of τi from the gamma distri-
bution with shape (ν̂ + df)/2 and inverse scale (ν̂ + ∆̂i)/2, where ν̂ and ∆̂i are
obtained from the best fitted MtLMM. Figure 4 indicates patients 4, 5, 14, 18, 19,
20, 23, 25 and 27 could be treated as potential outliers, since none of those 95%
confidence intervals cover one. We also mark these identity numbers in Figure 1.

5.3. Robustness

We now illustrate the effect of robustness of MtLMM with respect to MLMM
after some perturbed values are introduced to the original data. Such procedure
can be done by (i) adding a contaminated vector ξ = (ξ1, ξ2)T to one observation
vector, denoted by yi·t(ξ) = yi·t + ξ, where yi·t = (yi1t, yi2t)T; (ii) re-estimating
the parameters twice under the RIS-AR(1) assumption of MLMM and MtLMM;
(iii) computing the relative change in the estimates, i.e., θ̂(ξ)/θ̂ − 1. Here θ̂(ξ)
denotes the estimate for the contaminated data and θ̂ is the original estimate. In
this study, we vary each element of ξ between −2.5 to 2.5 units by increments of
0.25 unit and add it to the last time point (t = 128 week) of the first patient; this
patient has treati = 0 and responses crossing around the middle profile. Notice
that the identity number of patient 1 is marked in Figure 1.

We concentrate on the ML estimates of fixed effects β and autocorrelation
coefficient φ1, since the other estimates for D and Σ themselves have different
interpretations under different model assumptions. Instead, with the marginal
correlation (Fieuws and Verbeke (2004)) that depends on the estimates of D and
Σ is a function of time t, given by

rm(t) =
d31 + td41 + td32 + t2d42 + σ21√

d11 + 2td21 + t2d22 + σ11

√
d33 + 2td43 + t2d44 + σ22

,

can be used to explore the question how the evolution of CD4 cell counts is
associated with the evolution of CD8 cell counts. Thus, we are also interested in
observing the change of correlation rm(t) between both evolutions due to outliers.

Figure 5 exhibits the curves of the percentage changes for the estimates of β

and φ1, together with their estimated standard errors, for various contaminants
ξ. Figure 6 presents the originally estimated marginal correlation compared with
the marginal correlations implied by the contaminated data. As seen in these
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Figure 5. Percentage relative changes in the ML estimates under the
MtLMM and MLMM (RIS–AR(1)) with varying contamination ξ in a pair
of observations.

figures, the influence on parameter estimation of the single outlier is unbounded
in the case of the MLMM, whereas it is obviously bounded in the MtLMM.
More specifically, outliers in the MLMM effect changes of up to ±115% in the
estimates of model parameters and from −1% to 95% in their standard errors.
Such changes in normal fits can have an enormous impact on the correctness
of statistical inferences. While in the MtLMM, effects are limited to ±18% on
estimates and between −2% and 7% on their standard errors. In addition, with
the interference of outliers, the tendency of marginal correlation under MtLMM
is to maintain similar scale, while under MLMM it tends to be more volatile.
This suggests that MtLMM, which downweights the influence of outliers and
heavy-tailed noise, provides an appropriate way for achieving robust inference.



1876 WAN-LUN WANG AND TSAI-HUNG FAN

Figure 6. Comparison of marginal correlations derived from the fitted
MLMM and MtLMM for the original data (solid lines) and the data with
varying contamination ξ in a pair of observations (dot-dashed lines).

6. Conclusion

We have proposed a new robust approach to MLMM based on the mul-
tivariate t distribution, called the MtLMM. It offers a great deal of flexibility
in dealing with multi-outcome longitudinal data in the presence of outliers or
heavy-tailed noise. The proposed methodologies allow the practitioner to fit lon-
gitudinal data in a broad variety of situations. We have presented a three-level
hierarchical representation for MtLMM and an efficient hybrid ECME-scoring
algorithm for carrying out ML estimation. When the random effects are of high
dimension, the computational expense can be prohibitively large, and some par-
simonious restrictions for the covariance structure of random effects are needed.
With our approach, the computational burden associated with low-dimensional
random effects for each outcome, say q2 ≤ 3, is not heavy and reliable inferences
for parameter estimates are obtainable.

Numerical results reveal that the fitted MtLMMs substantially outperforms
the MLMM counterparts on the basis of likelihood-based model selection crite-
ria. The graphical outputs provide both easily understood inferential summaries
and informative diagnostic aids for checking model assumption and detecting
outliers. Simulation results show that the influence of any outlying observations
on the parameter estimates has a limited range for the MtLMM, while mislead-
ing estimates obtained from the MLMM can have a serious impact on statistical
inferences.

Recently, Vaida and Blanchard (2005) proposed the conditional AIC (cAIC)
and marginal AIC (mAIC) for model selection when the focus lies in the choice
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of random effects. They concluded that the use of cAIC and mAIC might lead
to different model specifications. Liang, Wu, and Zou (2008) relaxed Vaida and
Blanchard’s assumptions to provide a corrected version of cAIC that accounts for
the uncertainty of the unknown covariance matrix of the random effects. Greven
and Kneib (2008) commented that the calculation of the corrected cAIC carries
high computational cost in carrying out numerical approximations, and is pro-
hibitive in settings with large sample sizes and numbers of candidate models.
Nevertheless, the cAIC approaches and their modifications are potentially use-
ful for the choice of random effects in univariate LMMs. To our knowledge, no
such modification has been developed concerning the choice of the serial correla-
tion structure. Furthermore, extensions to a more general context, such as our
proposed MtLMMs (or MLMMs), are not straightforward, but is an interesting
topic.

Some possibilities for future research along these lines are as follows. The
methodology can be extended to consider more general parametric distributions,
such as the normal/independent distribution (Lange and Sinsheimer (1993)) dis-
cussed in Rosa, Padovani, and Gianola (2003); Rosa, Gianola, and Padovani
(2004), the skew-elliptical distribution (Sahu, Dey, and Branco (2003)) utilized
in Jara, Quintana and Mart́ın (2008), the skew normal and skew t distribu-
tions exploited in Lin and Lee (2008) and Ho and Lin (2010), and the skew
normal/independent distribution studied in Lachos, Ghosh, and Arellano-Vallec
(2010). It is of interest to compare, both theoretically and empirically, the ro-
bustness of statistical inference among these competing models. Sometimes, ML
estimation for the t-based model may be problematic because the likelihood func-
tion is ill-behaved when the degrees of freedom approaches zero or infinity. With
the fast development of computational techniques, it is a worthwhile task to de-
velop a fully Bayesian approach to inferring MtLMM via the Markov chain Monte
Carlo method.
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