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Abstract: This paper introduces a quasi-deviance function for model selection of

given spatial data. The proposed deviance function involves only the mean and

covariance of responses, and therefore avoids the difficulty of specifying a full-

likelihood function. We show that, under certain regularity conditions, the deviance

function with quasi-likelihood estimating equation has a limiting chi-squared distri-

bution. The asymptotic quadratic form of the deviance function provides a consis-

tent method for selecting the true model. We also conduct simulations to evaluate

the performance of the proposed method, and use the East Lansing Woods data to

illustrate the application.
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1. Introduction

In practice, model selection means selecting parameters in an attempt to
create a model of optimal complexity for the given data. For generalized linear
models with spatial observations, the task of model selection may not be easy
because the presence of correlation can render traditional methods inappropriate.
In this paper, we propose a deviance function for generalized linear models in
multi-dimensional space with a conjunction to quasi-likelihood (QL) functions.

Current model selection methods are mostly designed for independent data
or based on an assumption of full likelihoods (e.g., Shao (1993); Qian, Gabor, and
Gupta (1996); Shao (1996); Zhang and Huang (2008); Wasserman and Roeder
(2009)). However, for correlated data in a multi-dimensional space, the full
likelihood may be difficult to specify because associations among observations
can be intractable (McCullagh (1991)). Even with a correctly specified likelihood
function, computational intensity caused by complicated interactions can make
estimation procedures infeasible. A deviance function involving only the first two
moments of responses may therefore be appealing for model selection of given
correlated data.

When data are repeatedly measured, Pan (2001) may have been the first to
discuss model selection. Pan combined generalized estimating equations (GEEs)
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and independent quasi-likelihood to propose an Akaike information type of cri-
terion. Wang and Qu (2009) later developed a Bayesian information type of
criterion based on a quadratic inference function (Qu, Lindsay, and Li (2000))
in the GEE setting. In the quadratic inference function, the inverse of the work-
ing correlation matrix is decomposed into a linear combination of basis matrices.
However, for spatially correlated data, such decomposition may not be easy since
the distance function between observation sites could be any Lp norm function
rather than the L1 norm considered in longitudinal data.

To balance computational intensity and the accommodation of covari-
ance structure, we use an artificial log-likelihood to develop a selection cri-
terion for spatial models. Instead of considering an artificial ‘independent’ like-
lihood through integration (e.g., Qian, Gabor, and Gupta (1996); Pan (2001)),
we use a projected likelihood ratio to develop an inference function. Let Y =
{Y (s1), . . . , Y (sn)}T be observations drawn from a random field, where si ∈
Rd, d ≥ 2, denotes the location of the ith observation. Assume that L(ξ) and
L(β) are log-likelihood functions associated with parameter sets ξ and β, respec-
tively. For correlated data, Hanfelt and Liang (1995) proposed an approximate
likelihood ratio

D(ξ, β) = 0.5E{Q(ξ, Y )}T V −1(ξ)Q(ξ, Y )−0.5E{Q(β, Y )}T V −1(β)Q(β, Y ),

where V = cov(Y ) and Q(·, Y ) denotes an estimating equation. The approx-
imate likelihood D(ξ, β) is regarded as a projection of the log-likelihood ratio
into a vector space spanned by a linear combination of estimating equations.
Specifically, if we focus on an optimal estimating equation, referred to as a QL
estimating equation as discussed in Section 2.1, this projection function becomes

D(ξ, β) = 0.5{θ(ξ)−θ(β)}T
[
V −1(ξ){Y −θ(ξ)}+V −1(β){Y −θ(β)}

]
, (1.1)

where θ(·) represents the mean function of Y . Equation (1.1) was also proposed
by Li (1993) as a projected likelihood ratio on a linear function of observations.

The concept of the projected likelihood (1.1) can be traced back to the
work of McLeish and Small (1992). Li (1993) later showed that the inference
function can be regarded as a projected likelihood ratio which has first-order
equivalence to a QL function. Hanfelt and Liang (1995) then extended these
works to propose two approximate likelihood ratios as alternatives to the Wald
test. There are several properties, provided by Hanfelt and Liang, that to make
the projected likelihood attractive. For example, the function is anti-symmetric,
as is the log-likelihood. When the quasi-score function has multiple roots, the
deviance function can distinguish the correct solution from incorrect ones. Nev-
ertheless, the projected likelihood proposed by Hanfelt and Liang was based on
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a generalized estimating equation for longitudinal data. For a generalized lin-
ear model with covariates expressed by spatial coordinates, the corresponding
covariance structure is usually more complicated and increases the difficulty in
doing statistical inference.

In this paper, we combine the projected likelihood ratio function D(ξ, β) in
(1.1) with the QL estimate as a deviance function for spatial data. For conve-
nience, we refer to the proposed deviance as quasi-deviance (QDEV), a deviance
function with QL estimates. We note that the deviance (1.1) is linear with regard
to a given covariance structure. One benefit of using linear deviance is that it
allows us to study the behavior of D(ξ, β) locally at an alternative parameter
through the non-central moments. In the next section, we provide a central limit
theorem for spatial data with a continuous location index. We show that, under
some regularity conditions, the QDEV function in a multi-dimensional space has
a quadratic expression asymptotically similar to a maximum likelihood ratio test.
The similarity between the QDEV statistic and the maximum likelihood ratio
test is used to develop a model selection procedure. We show the proposed crite-
rion is consistent for model selection in Section 3, and conduct some simulation
studies in Section 4. The data analysis to illustrate the proposed method is given
in Sections 5. Discussion about future development is in Section 6.

2. Quasi-deviance Function

2.1. Quasi-likelihood estimates for spatial data

Assume that the marginal model connects the mean response θi = E{Y (si)}
and an explanatory vector xi through a generalized linear model g(θi) = xT

i β,
where β = (β1, . . . , βq)T ∈ Rq is a vector of parameters of interest. Let X =
(x1, . . . , xn)T be the design matrix and g(θ) = Xβ.

Assumption 1. (a) The first two orders of derivatives of g−1(xT
i β) with respect

to β are continuous in the parameter space. In addition, some constants c0 and
c1 exist such that |g−1(xT

i β)| ≤ c0 and |∂g−1(xT
i β)/∂βj | ≤ c1, for i = 1, . . . , n

and j = 1, . . . , q. (b) There exists a smooth variance function V (·) such that
var{Y (si)} = V {g−1(xT

i β)}.

We develop a central limit theorem for a random field with a continuous
location index. Take a “standardized” distance between si and sj to be

r(si, sj) =
‖si − sj‖p

min
i,j

‖si − sj‖p
,

where ‖ · ‖p is an Lp norm function. Note that the use of standardized distance
here is only for convenience of theoretical derivation. Let Bs,r denote the number
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of observations in a d-dimensional ball B(s, r) centered at s with radius r. Let
Ωn be a strictly increasing sequence of subsets in Rd, and let |Ωn| denote the
cardinality of Ωn. Assume that |Ωn| = O(nd).

Assumption 2. There exists a constant c0 > 0 such that Bs,r−Bs,r−1 ≤ c0r
d−1

for any s in the study region, r > 1.

To explain why Assumption 2 is reasonable, we note that the smallest dis-
tance between observations is standardized to be 1. So, with the number of obser-
vations in B(s, r) proportional to its volume crr

d, where cr is a constant, the num-
ber of observations in B(s, r) but not in B(s, r−1) is about rd− (r−1)d .= rd−1.

Assumption 3. We have max E{Y 2(s)} < ∞. The correlation model satisfies
α(r) = corr{Y (si), Y (sj)} = o(r−d), where r is the standardized distance be-
tween sites si and sj . Further, corr{Y (si1)Y (si2), Y (sj1)Y (sj2)} = o{(r∗)−d},
where r∗ = inf{r(s∗i , s∗j ) : s∗i = si1 or si2 , sj∗ = sj1 or sj2}, so the correlation be-
tween Y (si1)Y (si2) and Y (sj1)Y (sj2) depends on the shortest distance between
the location sets {si1 , si2} and {sj1 , sj2}.

Lemma 1. If the responses Y (s) satisfy Assumptions 2 and 3, then Zn/νn con-
verges in distribution to N(0, 1), where Zn =

∑
s∈Ωn

{Y (s) − θ(s)} and ν2
n =

var(Zn).

The proof of Lemma 1 is given in the Appendix. Note that in Lemma 1,
observations can be in any location of Rd. Compared with other central limit
theorems built for gridded data (e.g., Guyon (1995); Lin (2008)), Lemma 1 is
more flexible for statistical inference. Let θ̇(β) denote the n×q derivative matrix
of θ with respect to β, and θ̇T (β) be the transpose matrix of θ̇(β). Assumption
1 ensures that θ(β) and θ̇(β) are bounded. We take U(β) = θ̇T (β)V −1(β){Y −
θ(β)} as a quasi-score function. For correlated data in multi-dimensional space,
the QL estimating equation

U(β)|β=β̂ = θ̇T (β̂)V −1(β̂){Y − θ(β̂)} = 0 (2.1)

is useful for estimating unknown parameters; here β̂ is referred as the QL es-
timate. Let β0 denote the true parameter. Using an argument similar to Lin
(2008), we have the following result.

Lemma 2. Under Assumptions 1−3 and Lemma 1, the QL estimate is consistent
and

n1/2(β̂ − β0) → Nq{0, I−1(β0)}, (2.2)

in distribution, where I(β0) is the limit of n−1θ̇T (β0)V −1(β0)θ̇(β0) as n → ∞.
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Since the QL estimate has the asymptotical covariance matrix I−1(β0), we
refer to the QL estimating equation as an optimal estimating equation, after
Godambe (1991). We note that in (2.1), only the mean and covariances are
specified. The QL estimating equation thus provides a flexible tool for analyzing
multi-dimensional data.

2.2. Limit distribution of the quasi-deviance function

We study asymptotic properties of the QDEV function. Let ∇ξD(ξ, β0) and
∇2

ξD(ξ, β0) be the gradient vector and second-order derivative matrix of D(ξ,β0)
with respect to ξ, respectively. We can show that

Eβ0{∇ξD(ξ, β0)} = 0

and
Eβ0 [{∇ξD(ξ, β0)}{∇ξD(ξ, β0)}T ] = −Eβ0∇2

ξD(ξ, β0).

Therefore, the linear deviance behaves like a log-likelihood function locally at
the true parameter value β0. The following theorems establish a relationship
between the QDEV function and a likelihood ratio test.

Theorem 1. If β̂ is the QL estimate, under some regularity conditions, 2D(β̂,
β0) converges in distribution to χ2

q.

More generally, take ξ = (ψT ,βT )T and are interested in testing H : ψ = ψ0

versus K : ψ 6= ψ0. Let ξ̂ and β̃ be the corresponding QL estimates for ξ (under
the hypothesis K) and β (under the hypotheses H), respectively.

Theorem 2. Under the null hypothesis H : ψ = ψ0, we have

2D(ξ̂, β̃) = n(ψ̂ − ψ0)T I−1
ψ0ψ0

(ψ̂ − ψ0) + op(1), (2.3)

where ψ̂ is the QL estimate of ψ, and I−1
ψ0ψ0

is the inverse of the covariance matrix
of ψ̂; 2D(ξ̂, β̃) converges in distribution to a χ2

r distribution, where r = dim(ψ)
denotes the difference of dimensions between H and K.

Equation (2.3) implies that, under H, 2D(ξ̂, β̃) is asymptotically the same
as a Wald test statistic (Cox and Hinkley (1974, p.314)). Let ξk = (ψT

k , βT )T

be the true parameter under the alternative hypothesis K.

Theorem 3. Under the alternative hypothesis K : ψk = ψ0 + n−1/2δ, we have

2D(ξ̂, β̃) = n(ψ̂ − ψk)T I−1
ψkψk

(ψ̂ − ψk) + δT I−1
ψkψk

δ + op(1); (2.4)

2D(ξ̂, β̃) converges in distribution to a noncentral χ2
r distribution with non-

centrality parameter δT I−1
ψkψk

δ, where ψk is the true value of ψ and r = dim(ψ).
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It follows from (2.4) that the power of the QDEV statistic increases with
the sample size n and the absolute value of ψk − ψ0. Furthermore, if we set
ψ0 = 0, then the asymptotic quadratic form of (2.4) implies that using the
QDEV function for model selection would choose correct models with probability
approaching to 1. We discuss this issue in the next section.

3. Model Selection by Quasi-Deviance Functions

3.1. Projected likelihood ratio tests for variable selection

We describe how to use the QDEV criterion to select a subset of covariates
consisting of all non-zero regression coefficients. Let

M = {Mτ : g(θτ ) = Xτβτ}

be a collection of candidate models, where τ is a subset of {1, . . . , q} consisting
of the indices of the covariates that are included in the candidate model Mτ .
Also, βτ is a vector containing the components of β indexed by the integers in
τ , Xτ = (x1,τ , . . . , xn,τ )T contains the columns of X indexed by the integers in
τ , and θτ = (θτ,1, . . . , θτ,n)T is the assumed mean of Y under the model Mτ .

Let Mτ1 and Mτ2 be two models with the corresponding parameter sets βτ2

and βτ1 . Assume that the cardinalities of τ1 and τ2 are q1 ≤ q and q2 ≤ q,
respectively. For each model Mτj , we first obtain the QL estimates β̂τj from

U(β̂τj ) = θ̇T
τj

(β̂τj )V
−1

τj
(β̂τj ){Y − θτj (β̂τj )} = 0, j = 1, 2.

Since the quasi-score function U(β̂τj ) is nonlinear, we use the Newton-Raphson
iteration,

β̂(k+1)
τj

= β̂(k)
τj

+
[
θ̇T

τj
{β̂(k)

τj
}V −1

τj
{β̂(k)

τj
}θ̇τj{β̂(k)

τj
}
]−1

×θ̇T
τj
{β̂(k)

τj
}V −1

τj
{β̂(k)

τj
}

[
Y − θτj{β̂(k)

τj
}
]
,

to derive a numerical solution, where the index (k) denotes the kth iteration.
We now wish to test

Hs : Mτ1 and Mτ2 are not discriminated.

A comparison between the competing models are classified into the following
cases.

Case 1. Strictly non-nested models
We say two models Mτ1 and Mτ2 are strictly non-nested models if τ1∩τ2 = ∅.

To test the alternative hypotheses that Ks : Mτ2 is correct or K ′
s : Mτ1 is correct,

we use the following theorem.
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Theorem 4. Assume that responses satisfy the assumptions of Lemma 2. If

lim inf
n→∞

n−1θT (βτ1)V
−1(βτ1)θ(βτ1) > 0

and
lim inf
n→∞

n−1θT (βτ2)V
−1(βτ2)θ(βτ2) > 0,

then

(i) under Ks, D(β̂τ2 , β̂τ1) → ∞ almost surely,

(ii) under K ′
s, D(β̂τ2 , β̂τ1) → −∞ almost surely.

Proof. We first assume that Mτ2 is correct. Since Mτ1 and Mτ2 are disjoint, it
is obvious that βτ2 6= 0 and βτ1 = 0. Since the QL estimates β̂τ1 and β̂τ2 are
consistent and the deviance function is continuous, it follows from Slutsky’s The-
orem that D(β̂τ2 , β̂τ1) → D(βτ2 , βτ1) in probability. We decompose D(βτ2 , βτ1)
as D1 +D2, where D1 = {θ(βτ2)−θ(βτ1)}T {V −1(βτ2)+V −1(βτ1)}{Y −θ(βτ2)}
and D2 = {θ(βτ2)− θ(βτ1)}T V −1(βτ1){θ(βτ2)− θ(βτ1)}. Note that D1 is a lin-
ear combination of responses and, applying Lemma 1, that n−1/2D1 converges
to a normal distribution with mean zero. So, n−1D(βτ2 , βτ1) = n−1D1 + n−1D2

converges in probability to a positive value by the assumption of Theorem 4,
which implies result (i). Result (ii) can be shown in similar fashion.

Testing Hs is equivalent to testing whether the expected value of the log-
likelihood ratio is zero (Vuong (1989)). In this case, we can use an argument
similar to that of the proof of Theorem 4 and the work by Hanfelt and Liang
to show that D(β̂τ2 , β̂τ1) → 0 almost surely. For strictly non-nested models,
we would therefore accept Hs if the absolute value of 2D(β̂τ2 , β̂τ1) is less than
χ2

q0
(1 − α/2), where q0 is the absolute value of q2 − q1 and χ2

q0
(1 − α/2) denotes

the (1−α/2)th quantile of a chi-squared distribution with degrees of freedom q0.

Case 2. Nested models
Two models are called nested models if τ1 ⊂ τ2. In this case, we consider

the alternative hypothesis to be KN : Mτ2 is more significant than Mτ1 .

Theorem 5. Assume that the conditions of Theorem 4 are satisfied.

(i) Under Hs, 2D(β̂τ2 , β̂τ1) → χ2
q0

in distribution, where q0 = q2 − q1.

(ii) Under KN , 2D(β̂τ2 , β̂τ1) → ∞ almost surely.

Theorem 5 is an immediate consequence of Theorems 2 and 3. By Theorem
5, we choose Mτ2 if

2D(β̂τ2 , β̂τ1) > χ2
q0

(1 − α). (3.1)
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3.2. Asymptotic properties of the selection procedure

Let β0 = (β0,1, . . . , β0,q)T be the true parameters, and τ∗ = {j : β0,j 6= 0}.
We refer to Mτ∗ as the true model. According to the values of β0, each candidate
model Mτ can be assigned to one of the following categories (Shao (1993)):

C1. At least one nonzero component β0,j is not in βτ or, equivalently, τ∗∩τ c 6= ∅,
where τ c represents the complement set of τ .

C2. βτ contains all nonzero components of β0 or, equivalently, τ∗ ⊂ τ .

A model in C1 is clearly an incorrect model. When Mτ is in C2, Shao (1996)
called Mτ a correct model since xT

i,τ∗βτ∗ = xT
i,τβτ .

Theorem 6. Assume that the set of candidate models has an intersection with
C2. A model selection procedure based on a stepwise procedure assures that, with
probability tending to 1, the selected model is in C2.

Proof. To see why Theorem 6 stands, let Mτ1 be a candidate model in C1. For
the given τ1, we define ω = τ c

1 ∩ τ∗ and τ2 = ξ ∪ τ1. We note that τ∗ ⊂ τ2, and
hence Mτ2 belongs to C2. Also, by the definition of C1, we know that ω 6= ∅, and
therefore τ1 ⊂ τ2. Note that the true values of βω are non-zeros since ω ⊂ τ∗.
It follows from the above discussion that 2D(β̂τ2 , β̂τ1) → ∞ as n tends to be
infinity. So, for any model Mτ1 ∈ C1, another candidate model Mτ2 ∈ C2 exists
such that

P{2D(β̂τ2 , β̂τ1) > χ2
q0

(1 − α)} → 1 as n → ∞,

no matter what value of α is pre-specified. The probability that a selected model
is not a correct model therefore approaches zero as n → ∞.

There may be, as indicated by Shao (1993), more than one correct model.
To derive consistency of the proposed selection method, we further assume that
the candidate models consist of a sequence of nested models that includes the
true model.

Theorem 7. Let Mτ1 ⊂ · · · ⊂ Mτm be a sequence of models that contains the
true model Mτ∗. If we let α → 0 in criterion (3.1), then the probability of
selecting the true model tends to 1 as n → ∞. That is,

P{Mτ∗ ≡ Mτ̂} → 1 as n → ∞, (3.2)

where τ̂ is the index set for the parameters of the selected model.

Proof. To show (3.2) is equivalent to showing that P{τ∗ = τ̂} approaches 1 as
n → ∞. From Theorem 6 and the definition of C2, we know that P{τ∗ ⊂ τ̂} →
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1 as n → ∞. It thus remains to show that P{τ̂ ⊂ τ∗} → 1 as n → ∞. Note that
the event {τ̂ ∩ (τ∗)c 6= ∅} means that we reject the hypothesis H : β0,k = 0 for
some k ∈ {1, . . . , q} when, in fact, β0,k = 0. Therefore, P{τ̂ ∩ (τ∗)c 6= ∅} can be
regarded as a Type I error rate, which is controlled within α by criterion (3.1).
That is, P{τ̂ ∩ (τ∗)c 6= ∅} ≤ α. If we let α → 0, then P{τ̂ ∩ (τ∗)c 6= ∅} → 0,
and therefore P{τ̂ ⊂ τ∗} → 1 as n → ∞. We thus have the consistency property
forthe selection procedure.

4. Simulations

We conducted simulations to evaluate performance of the proposed deviance
function. In the simulations, spatial errors were generated from a multivariate
normal distribution indexed by an m × m lattice. Specifically, we took ε =
(ε1, . . . , εn)T , where n = m2, from a stationary Gaussian process with mean 0,
variance 1, and correlation ρi,j = ρ‖si−sj‖2 . We set ρ = 0.3, 0.5, or 0.7. We also
simulated covariates xi = (xi,1, xi,2, xi,3)T , i = 1, . . . , n, independently from a
standard normal distribution. For given ε and xi, responses were simulated as
follows.

We first generated count responses based on a hierarchical generalized lin-
ear model. Given εi, the response Yi was independently Poisson with mean
E{Yi; εi} = exp(β∗

0 +β1xi,1 +β2xi,2 +β3xi,3 + εi). The model then had (Heagerty
and Lumley (2000))

θi = E(Yi) = exp{β0 + β1xi,1 + β2xi,2 + β3xi,3}, (4.1)

var(Yi) = θi + θ2
i {exp(1) − 1} and cov(Yi, Yj) = θiθj{exp(ρij) − 1}, (4.2)

where β0 = 0.5+β∗
0 and ρij = corr(εi, εj). We fixed β0 at 0.5, and set (β1, β2, β3)

= (1, 1, 0) to evaluate the size of the proposed method. We also set (β1, β2, β3)
to be (1,0.5,0.1) and (0.2,0.2,0.2) to evaluate the power. For each simulation
setting of the Poisson model, we generated 10× 10 and 15× 15 lattices with 500
replicates.

Before employing the QDEV function, one first needs to estimate the corre-
lation function ρi,j . In spatial statistics, the empirical variogram

γ̂(h) =
1

|N(h)|
∑

(si,sj)∈N(h)

{Y (si) − Y (sj)}2,

where N(h) denotes all the pairs (si, sj) with distance h, is commonly used
to measure spatial correlation. For a given model, we thus used an iterative
procedure proposed by Lin (2008) to obtain a correlation estimate ρ̂i,j from the
variogram and QL estimates β̂ for the parameters. These estimates ρ̂i,j and β̂

were then plugged into (4.1) and (4.2) to get a ‘working’ mean function and
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‘working’ covariance matrix. We call the QDEV function from the working mean
and covariance matrix a working QDEV function. The QDEV function under
the exact covariance matrix was also computed for a comparison. We found
that, in simulations, the values of working and exact QDEV functions were very
close. Therefore, we only present the simulation results from the working QDEV
function in the following.

To use the working QDEV function for model selection, we take a forward
selection procedure. Specifically, we first estimate all the parameters by a QL
estimating equation under a full model. By (2.2), we can obtain an asymptotic
z-value for each estimated parameter. Then, starting from a model with only
the intercept being included, we sequentially add variables to the model, one
at a time, from the one with the largest significant z-value to the one with the
least significant z-value, based on (3.1). We refer to this method as method
QDEV. Then, to study the sensitivity of α to the consistency of method QDEV,
we consider α = 0.01 and α = 0.05 in (3.1). In the following tables, method
QDEV1 and method QDEV2 are used to denote method QDEV with α = 0.01
and α = 0.05, respectively.

For the simulation study of model (4.1), we also considered other informa-
tion criteria. Since a maximum likelihood estimate for the generalized linear
mixed model (4.1) is usually infeasible (Breslow and Clayton (1993)), we used a
penalized quasi-likelihood (PQL)

N∑
i=1

exp{yi log(θi) − θi} − 0.5ε′V −1ε

as a likelihood function to construct the Akaike information criterion (AIC) and
Bayesian information criterion (BIC). We refer to these two methods as method
PQLA and method PQLB, respectively. We also computed AIC and BIC based on
a generalized linear model under the independence assumption, termed method
AICi and method BICi, respectively.

Tables 1−3 show the simulation results for model (4.1) under mild, mod-
erate, and strong correlation, respectively. In the tables, we use symbol x1 to
denote the selected model consisting of only one covariate. Overall, the perfor-
mance of method QDEV was very good, with most estimated probabilities of
selecting the true models above 0.90. The only exception occurred on 10 × 10
lattices with (β0, β1, β2, β3) = (0.5, 1, 1, 0). In this case, the estimated probabil-
ity of selecting a parsimonious correct model by method QDEV was around 0.75
to 0.8 (but the estimated probabilities of selecting correct models were above
0.95). Nevertheless, the estimated probability of selecting the true model at
(β0, β1, β2, β3) = (0.5, 1, 1, 0) increased from 0.75 on a 10× 10 lattices to 0.90 on
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Table 1. The estimated probabilities of selection methods for Poisson models
under ρ = 0.3 with 500 replicates. Methods QDEV1 and QDEV2 are based
on the working QDEV function with α = 0.01 and 0.05, respectively. Dark-
ened values denote the estimated probabilities of selecting the true models.

Models

10 × 10 lattice 15 × 15 lattice

(β0, β1, β2, β3) Methods x1 x1, x2 x1, x3 x1, x2, x3 x1 x1, x2 x1, x3 x1, x2, x3

(0.5,1,1,0) QDEV1 0.000 0.806 0.024 0.170 0.000 0.922 0.014 0.064

QDEV2 0.002 0.752 0.032 0.214 0.004 0.906 0.016 0.074

AICi 0.000 0.232 0.018 0.750 0.000 0.224 0.012 0.764

BICi 0.000 0.402 0.014 0.584 0.000 0.334 0.008 0.658

PQLA 0.194 0.482 0.172 0.152 0.024 0.614 0.014 0.348

PQLB 0.048 0.622 0.034 0.296 0.034 0.732 0.016 0.218

(0.5,1,0.5,0.1) QDEV1 0.018 0.058 0.010 0.914 0.010 0.050 0.016 0.924

QDEV2 0.014 0.052 0.008 0.926 0.006 0.038 0.010 0.946

AICi 0.000 0.262 0.004 0.734 0.002 0.174 0.004 0.820

BICi 0.006 0.392 0.000 0.602 0.000 0.334 0.004 0.662

PQLA 0.154 0.398 0.118 0.330 0.132 0.460 0.084 0.324

PQLB 0.182 0.478 0.092 0.248 0.164 0.510 0.076 0.250

(0.5,0.2,0.2,0.2) QDEV1 0.032 0.040 0.020 0.908 0.008 0.024 0.026 0.942

QDEV2 0.026 0.034 0.018 0.922 0.004 0.022 0.016 0.958

AICi 0.042 0.166 0.148 0.644 0.006 0.064 0.076 0.854

BICi 0.100 0.198 0.228 0.474 0.018 0.124 0.106 0.752

PQLA 0.308 0.228 0.200 0.264 0.138 0.258 0.246 0.358

PQLB 0.480 0.196 0.172 0.152 0.216 0.244 0.242 0.298

15 × 15 lattices, no matter by method QDEV1 (α = 0.01) or method QDEV2

(α = 0.05). This simulation result may provide evidence for ‘consistency’ of
method QDEV in finite samples.

The performance of the other methods, on the other hand, was relatively
poor. By using an approximate Z-test to compare the proportions of selecting
true models, we found that method QDEV was significantly better than the other
methods in the simulation. Another interesting point to observe is that the power
of method AICi was quite good in a comparison with methods BICi, PQLA, and
PQLB. Although the estimated size of method AICi was not good, this method
still had high probability of selecting correct models. We also found that the
power of methods PQLA and PQLB was quite bad. Since the PQL method
is designed for longitudinal data, mis-specification of covariance structures in
methods PQLA and PQLB may cause estimation bias for spatial data.

We also simulated continuous responses on 15 × 15 lattices from the linear
regression model

Yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi. (4.3)
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Table 2. The estimated probabilities of selection methods for Poisson models
under ρ = 0.5 with 500 replicates. Methods QDEV1 and QDEV2 are based
on the working QDEV function with α = 0.01 and 0.05, respectively. Dark-
ened values denote the estimated probabilities of selecting the true models.

Models

10 × 10 lattice 15 × 15 lattice

(β0, β1, β2, β3) Methods x1 x1, x2 x1, x3 x1, x2, x3 x1 x1, x2 x1, x3 x1, x2, x3

(0.5,1,1,0) QDEV1 0.000 0.822 0.026 0.152 0.000 0.928 0.014 0.058

QDEV2 0.002 0.776 0.034 0.188 0.004 0.910 0.012 0.074

AICi 0.002 0.294 0.014 0.690 0.000 0.272 0.008 0.720

BICi 0.002 0.394 0.010 0.594 0.002 0.342 0.004 0.652

PQLA 0.198 0.456 0.216 0.130 0.016 0.614 0.014 0.356

PQLB 0.042 0.684 0.032 0.242 0.032 0.708 0.024 0.236

(0.5,1,0.5,0.1) QDEV1 0.012 0.062 0.016 0.910 0.012 0.042 0.014 0.932

QDEV2 0.010 0.052 0.012 0.926 0.004 0.034 0.006 0.956

AICi 0.008 0.270 0.006 0.716 0.000 0.224 0.000 0.776

BICi 0.004 0.396 0.004 0.596 0.000 0.328 0.002 0.670

PQLA 0.166 0.424 0.082 0.328 0.100 0.460 0.080 0.360

PQLB 0.198 0.494 0.082 0.226 0.122 0.544 0.092 0.242

(0.5,0.2,0.2,0.2) QDEV1 0.038 0.046 0.022 0.894 0.032 0.024 0.026 0.918

QDEV2 0.036 0.040 0.022 0.902 0.018 0.022 0.024 0.936

AICi 0.048 0.156 0.144 0.652 0.008 0.058 0.062 0.872

BICi 0.086 0.234 0.220 0.460 0.018 0.128 0.108 0.746

PQLA 0.304 0.212 0.242 0.242 0.116 0.240 0.240 0.404

PQLB 0.444 0.220 0.204 0.132 0.188 0.262 0.244 0.306

For (4.3), the AIC was computed based on a full-likelihood function. We used
method QDEV2 (α = 0.05) with a forward selection procedure similar to that
in the simulation study of (4.1). Table 4 shows the simulation result. In Table
4, we find that method QDEV is slightly better than AIC. Particularly, the per-
formance of method QDEV seems to improve as the correlation increases. This
suggests that the proposed method works well for both discrete and continuous
data.

5. Data Analysis

The proposed method is applied to the Lansing Wood data (Diggle (1983))
to examine whether the hickory has mutualism or repulsion with some of the
other tree species. The original data set consists of 2,143 trees, among which
are 702 hickories, 513 maples, 448 white oaks, 345 red oaks, and 135 black oaks,
with a marked location for each tree in a 19.6 acre square plot. We follow
Fingleton (1986) to divide the study region into 24 × 24 quadrats. For quadrat
i, i = 1, . . . , 576, we label the location by si = (ri, ci), where ri and ci denote the
corresponding row and column numbers of quadrat i, respectively. The image
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Table 3. The estimated probabilities of selection methods for Poisson models
under ρ = 0.7 with 500 replicates. Methods QDEV1 and QDEV2 are based
on the working QDEV function with α = 0.01 and 0.05, respectively. Dark-
ened values denote the estimated probabilities of selecting the true models.

Models

10 × 10 lattice 15 × 15 lattice

(β0, β1, β2, β3) Methods x1 x1, x2 x1, x3 x1, x2, x3 x1 x1, x2 x1, x3 x1, x2, x3

(0.5,1,1,0) QDEV1 0.000 0.858 0.004 0.138 0.000 0.926 0.022 0.052

QDEV2 0.004 0.804 0.008 0.184 0.002 0.912 0.018 0.068

AICi 0.004 0.300 0.010 0.686 0.000 0.214 0.008 0.778

BICi 0.000 0.384 0.012 0.604 0.000 0.386 0.012 0.602

PQLA 0.168 0.522 0.180 0.130 0.022 0.632 0.026 0.320

PQLB 0.046 0.700 0.030 0.224 0.028 0.726 0.012 0.234

(0.5,1,0.5,0.1) QDEV1 0.032 0.030 0.010 0.914 0.014 0.028 0.016 0.942

QDEV2 0.020 0.018 0.010 0.942 0.004 0.022 0.006 0.968

AICi 0.002 0.354 0.006 0.638 0.000 0.234 0.000 0.766

BICi 0.004 0.448 0.006 0.542 0.000 0.362 0.002 0.638

PQLA 0.120 0.440 0.092 0.348 0.122 0.476 0.050 0.352

PQLB 0.198 0.522 0.064 0.216 0.140 0.550 0.068 0.242

(0.5,0.2,0.2,0.2) QDEV1 0.036 0.034 0.026 0.904 0.016 0.048 0.024 0.912

QDEV2 0.028 0.032 0.022 0.928 0.012 0.032 0.010 0.946

AICi 0.060 0.148 0.140 0.652 0.010 0.064 0.070 0.856

BICi 0.142 0.200 0.200 0.458 0.022 0.100 0.074 0.804

PQLA 0.374 0.208 0.204 0.214 0.146 0.250 0.244 0.360

PQLB 0.522 0.168 0.180 0.130 0.182 0.252 0.254 0.312

Table 4. The estimated probabilities of selection methods in a linear model.
Method QDEV2 is computed by a working QDEV with α = 0.05, and
method AIC is computed under a maximum likelihood estimate. The true
model is marked by ∗ with simulation results based on 500 replicates on a
15 × 15 lattice.

ρ = 0.3 ρ = 0.5 ρ = 0.7

(β0, β1, β2, β3) Models QDEV2 AIC QDEV2 AIC QDEV2 AIC

(0.5,1,1,0) x1 0.004 0.018 0.008 0.012 0.000 0.008
∗x1, x2 0.834 0.670 0.850 0.724 0.904 0.768

x1, x3 0.004 0.026 0.018 0.014 0.008 0.014

x1, x2, x3 0.158 0.286 0.124 0.250 0.088 0.210

(0.5,1,0.5,0.1) x1 0.000 0.008 0.000 0.000 0.000 0.000

x1, x2 0.084 0.098 0.036 0.080 0.004 0.064

x1, x3 0.010 0.022 0.008 0.012 0.000 0.006
∗x1, x2, x3 0.906 0.872 0.956 0.908 0.996 0.930

(0.5,0.2,0.2,0.2) x1 0.004 0.004 0.000 0.004 0.000 0.008

x1, x2 0.018 0.018 0.014 0.026 0.002 0.030

x1, x3 0.018 0.020 0.012 0.024 0.006 0.022
∗x1, x2, x3 0.960 0.958 0.974 0.946 0.992 0.940
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Figure 1. (a) Image plot for the hickories. (b) The fitted exponential cor-
relation model 0.23 exp(−‖s1 − s2‖2/5.6) for the hickories. The degree of
darkness represents the number of trees, with scale from 0 (white) to 8
(black).

Figure 2. Image plots for (a) the maples, (b) the white oaks, (c) the red oaks,
and (d) the black oaks in the Lansing Woods data. The degree of darkness
represents the number of trees, with scale from 0 (white) to 9 (black).

plots for the numbers of trees from a re-scaled data set in Software R are shown
in Figure 1(a) and Figure 2.

To model the observations, let Yi denote the number of hickories at site si.
We assume that Yi follows a Poisson generalized linear mixed model with the
mean function

θi = E{Yj : xi,1, xi,2, xi,3, xi,4} = exp(β0 +β1xi,1 +β2xi,2 +β3xi,3 +β4xi,4) (5.1)
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Table 5. Analysis of deviance (Dev) for the Lansing Wood data. The es-
timates with standard deviations in parentheses listed in the table are 10
times the true values.

Models Estimate Reduction Dev (df) p-value

β0 β1 β2 β3 β4

M0 3.63 0 0 0 0 M1 → M0 37.4 (2) 0.00

(1.60) – – – –

M1 5.60 -1.60 -1.69 0 0 M2 → M1 0.87 (1) 0.35

(1.44) (0.36) (0.39) – – M3 → M1 3.25 (1) 0.07

M2 5.90 -1.65 -1.73 -0.38 0 M4 → M2 3.27 (1) 0.07

(1.48) (0.37) (0.40) (0.38) –

M3 5.90 -1.60 -1.72 0 -1.01 M4 → M3 0.87 (1) 0.35

(1.45) (0.37) (0.40) – (0.66)

M4 6.44 -1.67 -1.73 -0.38 -1.01 M4 → M1 4.20 (2) 0.12

(1.45) (0.37) (0.40) (0.38) (0.65)

and the covariance structure given by (4.2), where xi,1, xi,2, xi,3, and xi,4 denote
the numbers of maples, white oaks, red oaks and black oaks at site si, respectively.
In the following analysis, the intercept is always in the model.

To find a parsimonious correct model for the numbers of hickories, we use
a selection procedure based on the working QDEV function with criterion (3.1).
(Details about the working QDEV function can be found in Section 4.) The selec-
tion procedure is stepwise with α = 0.05 in each add-in or drop-out step. Under
the full model (5.1), an iterative procedure gives an estimate for the correlation
by corr(Yi, Yj) = 0.23 exp{−‖si − sj‖2/5.6}. The estimated correlation function
is shown in Figure 1(b). Note that the estimated correlation model satisfies the
assumptions of asymptotic normality shown in Section 2.

We show some selection results in Table 5. There, M0 denotes the model
consisting of only the intercept, and xj = (x1,j , . . . , x576,j)T , j = 1, . . . , 4. We use
M1, M2, M3, and M4 to denote the models consisting of {x1,x2}, {x1, x2, x3},
{x1, x2, x4} and {x1, x2, x3, x4}, respectively. Table 5 shows the QL estimates
with the corresponding standard deviations for model Mj , j = 0, . . . , 4. We
observe that, no matter which model is specified, both β̂1 and β̂2 have significant
χ2-values around 7.11 and 7.33, respectively, compared to the χ2

1 table.
We also computed the deviance reduction for some pairs of nested models

listed in Table 5. A comparison of deviances between models M3 and M1 sug-
gests that adding covariate x3 to {x1,x2} could slightly increase the significance
of the model. Since the estimates of β1, β2, and β4 in model M3 are negative,
we conclude that, based on the results shown in Table 5, the numbers of maples
and white oaks significantly defer the growth of hickories, and that the black oak
also causes some slight repulsion to the hickories.
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Finally, it is also interesting to note that

Dev(M4,M1)
.= Dev(M4,M3) + Dev(M3,M1),

and Dev(M4,M1)
.= Dev(M4, M2) + Dev(M2,M1).

These results suggest that the additivity of the QDEV functions could hold when
the parameter values are small, see the discussion.

6. Discussion

We have proposed a generalized deviance function with a combination of
the QL estimating equation as model selection criterion for spatially correlated
data. Under certain mixing conditions, the proposed QDEV function has an
asymptotic chi-squared distribution and the related model selection could be
consistent. We also conducted simulations to compare the proposed method with
other criteria. Simulations showed that, in most cases, the proposed method had
higher probabilities of selecting the true models than did the other criteria.

In the GEE setting, many people use AIC to compare different correla-
tion structures (Pan and Connett (2002); Cui and Qian (2007)). We also use
the working QDEV function with correlation estimated from the variogram as
the selection criterion. Nevertheless, when responses satisfy the assumptions
of Lemma 1, in a small simulation study, we found that using exponential or
spherical correlation models in the working QDEV function would not make a
significant difference in the selection result. So, the proposed method may be
unsuitable for choosing a covariance structure.

To study additivity of the deviance function, Li (1993) claimed that, when
the models are not very different, this property may approximately hold. We
have seen in our data analysis that the asymptotic additivity may be valid in
some situations. To discuss the additivity property in detail, we assume that
τ1 ⊂ τ2 ⊂ τ are some index subsets of the parameters. Then, equation (2.4)
implies that 2D(β̂τ , β̂τ1)

.= 2D(β̂τ , β̂τ2) + 2D(β̂τ2 , β̂τ1), if I−1
βτ1βτ1

.= I−1
βτ2βτ2

.
However, theoretical details for an exact condition of asymptotic additivity may
be complicated since the error rate may need to be computed.

In Section 3, we presented the asymptotic behavior of the QDEV function
under strictly non-nested and nested models. However, for overlapping models,
the proposed method may not be easy to apply. One possible approach to gener-
alizing the proposed method to overlapping models would come from the variance
test in Vuong (1989). Besides, our model selection in this paper is mainly built on
a stepwise procedure, but when the number of covariates is large, this approach
may cause computational burden. A more efficient method would be to develop
an AIC-type method for spatial data, as Pan (2001) had done for longitudinal
data. This needs lots of theoretical work.
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Appendix

Proof of Lemma 1. Since α(r) = o(r−d), we can find some ε > 0 such that
α(r) = O(r−d−ε). We then note that∑

s∈Ωn

cov{Y0, Y (s)} ≤ c1

∞∑
r=1

rdr−1−d−ε < ∞

for some c1 > 0. Therefore, var(Sn) = O(|Ωn|). For convenience, we assume
that O(|Ωn|) = O(nd). Let k be a number satisfying 0.5 > k > d/2(d + ε), and
mn = O(nk). Then, for n → ∞,

α(mn)|Ωn|1/2 → 0, and m−d
n |Ωn|1/2 → ∞. (A.1)

For a given s ∈ Ωn, we partition Zn as Zs,n + Z∗
s,n by mn, where Zs,n =∑

‖s−s′‖≤mn
Y (s′). Without loss of generality, we assume that E{Y (s)} = 0.

Then,

var(Zn) = E

{ ∑
s∈Ωn

Y (s)Zs,n

}
+ E

{ ∑
s∈Ωn

Y (s)Z∗
s,n

}
.

Let φ2
n = var(

∑
s∈Ωn

Zs,n), Z̄n = Zn/φn and Z̄s,n = Zs,n/φn. Since

E

{ ∑
s∈Ωn

Y (s)Z∗
s,n

}
=

∑
s∈Ωn

∑
‖s−s′‖>mn

cov{Y (s), Y (s′)} ≤ c2n
d

∞∑
r=mm

rdr−d−ε,

(A.2)
which is o(nd) for some c2 > 0, we have φ2

n = var(Zn){1+o(1)} = |Ωn|{1+o(1)}.
So, to show the asymptotic normality of Zn/νn is equivalent to showing that of
Z̄n.

The central limit theorem follows from proving Stein’s condition

lim
n→∞

E
{

(iλ − Z̄n)eiλZ̄n

}
= 0. (A.3)

Since E{Y 2(s)} < ∞ and cov(Y0, Zn) < ∞, it suffices to show (A.3) for bounded
random variables (Guyon (1995)). We follow the procedure of Bolthausen (1982)
to decompose (iλ − Z̄n)eiλZ̄n to

iλeiλZ̄n

{
1 − φ−2

n

∑
s∈Ωn

Y (s)Zs,n

}
− φ−1

n eiλZ̄n
∑

s∈Ωn

Y (s)(1 − iλZ̄s,n − e−iλZ̄s,n)

−φ−1
n

∑
s∈Ωn

Y (s)eiλ(Z̄n−Z̄s,n). (A.4)
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Let D1, D2, and D3 be the first, second, and third items of (A.4). We note that

E(D2
1) = λ2φ−4

n

∑∑
{s∈Ωn,‖s−s′‖≤mn}

∑∑
{l∈Ωn,‖l−l′‖≤mn}

cov{Y (s)Y (s′), Y (l)Y (l′)}.

It then follows from Assumptions 2 and 3 that some c3 > 0 exists such that

E(D2
1) ≤ c3λ

2 φ−4
n |Ωn|m2d

n

∞∑
r∗=1

(r∗)dα(r∗) = λ2O(|Ωn|−1m2d
n ),

which is o(1) by (A.1). For the asymptotic behavior of D2, recall that Y (s) is
assumed to be a bounded random variable. We can thus find some constants c4

and c5 such that

Z̄s,n ≤ c4 (1 + · · · + md−1
n )|Ωn|−1/2 ≤ c5|Ωn|−1/2md

n → 0, (A.5)

as n → ∞. So, by Taylor’s expansion, |1− iλZ̄s,n−e−iλZ̄s,n | ≤ c6λ
2Z̄2

s,n for some
c6 > 0. Then

E|D2| ≤ c6λ
2|Ωn|1/2 max

s∈Ωn

E(Z̄s,n)2.

Using an argument similar to (A.2) and (A.5) with the above inequality gives
E|D2| ≤ c7|Ωn|1/2m−d−1

n for some c7 > 0. It thus follows from (A.1) that
E|D2| → 0 as n → ∞. Finally, we can use an argument, similar to the proof of
Theorem 1 of Lin (2008), to show that E(D3) → 0 as n → ∞. Equation (A.3)
then follows from the above results.

Proof of Theorem 1. Since ∇ψ D(ψ, β0)|ψ=β0 = θ̇T (β0)V −1(β0){Y − θ(β0)}
and β̂ − β0 = Op(n−1/2), we have

∇ψ D(ψ, β0)|ψ=β0 = θ̇T (β̂)V −1(β̂){Y − θ(β̂)} + θ̇T (β̂)V −1(β̂){θ(β̂) − θ(β0)}
+Op(1), (A.6)

which is almost surely equal to θ̇T (β̂)V −1(β̂){θ(β̂) − θ(β0)} + Op(1) by (2.1).
A first-order Taylor expansion on θ(β̂) − θ(β0) gives

∇ψ D(ψ,β0)|ψ=β0 = θ̇T (β̂)V −1(β̂)θ̇(β̂)(β̂ − β0) + Op(1). (A.7)

Also, ∇2
ψ D(ψ, β0)|ψ=β0 = −θ̇T (β0)V −1(β0)θ̇(β0) + Op(n1/2). Since

D(β̂,β0) = D(β0, β0) +
{
∇ψ D(ψ, β0)|ψ=β0

}T (β̂ − β0)

+0.5(β̂ − β0)T
{
∇2

ψ D(ψ, β0)|ψ=β0

}T (β̂ − β0) + o(‖β̂ − β0‖2), (A.8)
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combining (A.6)−(A.8) gives

D(β̂, β0) = (β̂ − β0)T {θ̇T (β̂)V −1(β̂)θ̇(β̂) − 0.5 θ̇T (β0)V −1(β0)θ̇(β0)}(β̂ − β0)

+Op(n−1/2).

Since θ̇T (β̂)V −1(β̂)θ̇(β̂) = θ̇T (β0)V −1(β0)θ̇(β0)+Op(n1/2), the above equation
is

D(β̂, β0) = 0.5 (β̂ − β0)T {θ̇T (β0)V −1(β0)θ̇(β0)}(β̂ − β0) + Op(n−1/2),

which gives the desired result.

Proof of Theorem 2. Assume that ξ̂ = (ψ̂T , β̂T )T and ξH = (ψT
0 , βT )T .

Without loss of generality, take ψ0 = 0. We extend β̃ to be (ψT
0 , β̃T )T . The

deviance 2D(ξ̂, β̃) can be then decomposed as

{θ(ξ̂) − θ(ξH) + θ(ξH) − θ(β̃)}T
[
V −1(ξ̂){Y − θ(ξ̂)} + V −1(β̃){Y − θ(β̃)}

]
.

(A.9)
Under the null hypothesis H, using techniques similar to the proofs of The-
orems 1−3 of Lin (2008) for U(ξ̂) and U(β̃) gives consistency of ξ̂ and β̃.
Also, n1/2(ξ̂ − ξH) and n1/2(β̃ − ξH) converge in distribution to some multi-
variate normal distributions. Since θ̇(β̃)V −1(β̃){Y − θ(β̃)} = 0, we can show
that {θ(ξH) − θ(β̃)}T V −1(β̃){Y − θ(β̃)} = Op(n−1/2). Similarly, {θ(ξH) −
θ(ξ̂)}T V −1(ξ̂){Y − θ(ξ̂)} = Op(n−1/2). Expression (A.9) can be simplified to

{θ(ξ̂) − θ(ξH)}T V −1(β̃){Y − θ(β̃)} + {θ(ξH) − θ(β̃)}T V −1(ξ̂){Y − θ(ξ̂)}

+Op(n−1/2).

Let

G

(
ψ

β

)
= V −1

(
ψ

β

){
Y − θ

(
ψ

β

)}

and ∆βG

(
ψ0

β

)
be the derivative array of G

(
ψ0

β

)
with respect to β. An asymp-
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totic expression for 2D(ξ̂, β̃) with order Op(n−1/2) is
(

ψ̂ − ψ0

β̂ − β

)T

θ̇T

(
ψ0

β

)
+ op(n−1/2)


·

[
G

(
ψ0

β

)
+

{
∆βG

(
ψ0

β

)}T

·
(

0
β̃ − β

)
+ op(n−1/2)

]

−

{(
0

β̃ − β

)T

θ̇T

(
ψ0

β

)
+ op(n−1/2)

}

·

[
G

(
ψ0

β

)
+

{
∆βG

(
ψ0

β

)}T

·

(
ψ̂ − ψ0

β̂ − β

)
+ op(n−1/2)

]
. (A.10)

After tedious algebra on (A.10), we obtain

2D(ξ̂, β̃) =

(
ψ̂ − ψ0

β̂ − β̃

)T

θ̇T

(
ψ0

β

)
V −1

(
ψ0

β

)
θ̇

(
ψ0

β

)(
ψ̂ − ψ0

β̂ − β

)
+ op(1).

(A.11)
Let

I(ψ0, β) = lim
n→∞

1
n

θ̇T

(
ψ0

β

)
V −1

(
ψ0

β

)
θ̇

(
ψ0

β

)
.

We note that, under H, I(ψ0, β) is the asymptotic covariance matrix of ξ̂ from
(2.2). Decompose the information matrix I(ψ0,β) as

I(ψ0, β) =
(

Iψ0ψ0 Iψ0β

Iβψ0 Iββ

)
,

according to the partition of (ψ0, β). Since

n1/2

(
ψ̂ − ψ0

β̂ − β

)
→ N

{
0,

(
Iψ0ψ0 Iψ0β

Iβψ0 Iββ

)−1
}

in distribution,

we can obtain an asymptotic relationship

β̃ = β̂ + I−1
ββ Iβψ0(ψ̂ − ψ0), (A.12)

with order Op(n−1/2), for the restricted QL estimate β̃ from the property of
multivariate normal densities (Cox and Hinkley (1974, p.308)). Plugging (A.12)
into (A.11) gives

2D(ξ̂, β̃) = n(ψ̂ − ψ0)T (Iψ0ψ0 − Iψ0βI−1
ββ Iβψ0)(ψ̂ − ψ0) + op(1).
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The desired result then follows from the equation I−1
ψ0ψ0

= Iψ0ψ0 − Iψ0βI−1
ββ Iβψ0 .

Proof of Theorem 3. To show Theorem 3, we first note that n1/2(ξ̂ − ξH)
converges to a non-central normal distribution. With a modification of (A.10),
we obtain a formula similar to (A.11) under the alternative hypothesis K:

2D(ξ̂, β̃) =

(
ψ̂ − ψk

β̂ − β̃

)T

θ̇T

(
ψk

β

)
V −1

(
ψk

β

)
θ̇

(
ψk

β

)(
ψ̂ − ψk

β̂ − β

)

+
(

ψk − ψ0

β̂ − β̃

)T

θ̇T

(
ψk

β

)
V −1

(
ψk

β

)
θ̇

(
ψk

β

)(
ψk − ψ0

β̂ − β

)
+op(1).(A.13)

Since

n1/2

(
ψ̂ − ψk

β̂ − β

)
→ N

{
0,

(
Iψkψk

Iψkβ

Iβψk
Iββ

)−1
}

in distribution,

we obtain an asymptotic relationship similar to (A.12)

β̃ = β̂ + I−1
ββ Iβψk

(ψ̂ − ψk) + Op(n−1/2). (A.14)

Plugging (A.14) into (A.13), with simplification, then leads to the desired result.
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