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Abstract: We consider nonparametric regression in the context of functional data,

that is, when a random sample of functions is observed on a fine grid. We obtain

a functional asymptotic normality result that can provide simultaneous confidence

bands (SCB) for various estimation and inference tasks. Applications to a SCB

procedure for the regression function and to a goodness-of-fit test for curvilinear

regression models are proposed. The first one has improved accuracy over other

available methods, while the second can detect local departures from a parametric

shape, as opposed to the usual goodness-of-fit tests which only track global depar-

tures. A numerical study of the SCB procedures and an illustration with a speech

data set are provided.
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1. Introduction

In function estimation problems, simultaneous confidence bands (SCB) pro-
vide a unified set of graphical and analytical tools to harness such tasks as data
exploration, model specification or validation, assessment of variability in esti-
mation, prediction, and inference.

In the usual setting where the target function is observed only once at a fi-
nite number of points with independent measurement errors, the construction of
SCB has been extensively studied. For instance, in the context of nonparametric
regression on which we focus in this paper, Eubank and Speckman (1993) and
Wang and Yang (2009) have used strong invariance principles to build SCB for
fixed and random designs. Johansen and Johnstone (1990) and Sun and Loader
(1994) have applied the celebrated “tube formulas”, which turn the calculation
of simultaneous coverage probabilities into the simpler geometric computation of
tubes’ volumes, to simultaneous prediction bands and significance tests for pro-
jection pursuit regression, and to bias-corrected confidence regions with linear
multivariate estimators, respectively. Other SCB procedures rely on bootstrap-
ping (e.g., Neumann and Polzehl (1998)) or on simultaneous confidence intervals
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(SCI) followed by interpolation arguments (e.g., Hall and Titterington (1988)).
We also point to Baraud (2004) for the computation of SCI on an increasing
number of (fixed) design points, and to Deheuvels and Mason (2004) for SCB
with asymptotic coverage level 100%.

In the case of time series, the construction of confidence regions proves more
difficult and has received less attention in the literature. Robinson (1997) derives
a SCI procedure that works under short-range, long-range, and negative depen-
dence. Wu and Zhao (2007) build SCB for the trend and a test for structural
breaks using a strong invariance principle. Wang (2009) provides SCB based on
constant or linear splines. The case of a random design is studied in Zhao and
Wu (2008).

We turn to the case of functional data, for which the statistical objects
under study are viewed as functions rather than scalars/vectors and are generally
observed on a dense grid. We note that this setting has attracted considerable
interest over the recent years due to the now routine collection of high frequency
data allowed by technology. (Numerous examples of areas of applications can
be found in the books of Ramsay and Silverman (2005) and Ferraty and Vieu
(2006).) In the functional data framework where both the numbers of sampled
functions, say n, and of design points, say p, may vary, Degras (2008) showed
that all linear smoothers have an asymptotic variance of order n−1. In the same
paper SCI are derived and compared to Bonferroni- and Scheffé-type intervals.
Degras (2009) builds SCB for the regression function by coupling a functional
central limit theorem [CLT] with a limit result on the supremum of a Gaussian
process.

The present work provides a functional asymptotic normality result that
serves as a building block for estimation and inference in nonparametric regres-
sion with functional data. We present applications of this result to the band
estimation of the regression function and to a goodness-of-fit test for curvilinear
regression models. To the best of our knowledge, these tasks have not yet been
addressed in the functional data setup. The proposed band estimation procedure
corrects some shortcomings of Degras (2009) by fully accounting for the covari-
ance structure of the data-generating process. The goodness-of-fit test relies on
a SCB for the difference between the regression function and its projection onto
the null space. It can detect local departures, as opposed to other tests based on
residual sums of squares or L2 norms that only track global departures.

The remainder of the paper is organized as follows. Section 2 presents the
regression model and estimator under study. Section 3 establishes the main
result of functional asymptotic normality. The normal SCB for the regression
function and the goodness-of-fit test are constructed in Section 4 and studied
numerically in Section 5, along with bootstrap SCB and a pseudo-likelihood
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ratio test. Section 6 illustrates the use of SCB methods with a speech data set.
A discussion is provided in Section 7. The proofs are deferred to the Appendix.

2. Model and Local Linear Estimator

Let (Yij , xj), 1 ≤ i ≤ n, 1 ≤ j ≤ p, be repeated measurements on a random
sample of n experimental units, where Yij stands for the observed (scalar) re-
sponse on the ith unit at the fixed value xj of a variable x. It is assumed that
x varies in a compact subset of Rd for some d ≥ 1, say [0, 1]d without loss of
generality. Consider the regression model

Yij = µ(xj) + Zi(xj) + εij , (2.1)

where µ is an unknown smooth function, the Zi are independent copies of a
random process Z = {Z(x) : x ∈ [0, 1]d} with mean zero and covariance function
R, and the εij are random errors having mean zero. A triangular array structure
is assumed for the data as n varies (in particular p = p(n) and xj = xj(n, p)).
The regression function µ may be viewed as a population mean response while
the Zi represent individual departures from µ. In this paper we restrict our
attention to the case d ∈ {1, 2} for simplicity but our results extend to higher
dimensions. The following assumptions are needed for our asymptotic study:
(A.1) The function µ has bounded (partial) derivatives on [0, 1]d up to order 2.

(A.2) With probability one, |Z(x) − Z(x′)| ≤ M‖x − x′‖β for all x, x′ ∈ [0, 1]d,
where M is a random variable (r.v.) of finite variance, β > 0 is a constant,
and ‖ · ‖ is a norm on [0, 1]d.

(A.3) The xj form a regular grid generated by a product density f(t1, . . . , td) =∏d
k=1 fk(tk), where the fk are continuous and positive densities on [0, 1]. It

holds that {xj : 1 ≤ j ≤ p} = {(xj1,1, . . . , xjd,d) : 1 ≤ jk ≤ pk, 1 ≤ k ≤ d}
where

∫ xjk,k

0 fk(t)dt = (jk − 0.5)/pk. In particular p =
∏d

k=1 pk.

(A.4) n = o
(
mink=1,...,d(p4

k)
)

and n1/(4d) log(p) = o(p) as n, p → ∞.

(A.5) The random vectors (εi1, . . . , εip)>, i = 1, . . . , n, are mutually independent,
independent of the Zi, and have the same normal distribution Np(0,V).
The eigenvalues of the covariance matrix V are uniformly bounded in n, p.

Note that assumptions (A.1)−(A.5) are tailored for the functional data frame-
work wherein typically, the design points are balanced and taken on a regular
grid, the observed random processes are smooth, and the design size p is large
enough relative to the sample size n so as to accommodate (A.4).

We recall here the definition of the local linear estimator (e.g., Fan (1992)).
Denote by 〈·, ·〉d the euclidean scalar product in Rd and use arithmetic operations
in a componentwise sense. Let K be a kernel function on Rd which we take
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nonnegative, Lipschitz-continuous, with support [−1, 1]d, and such that K(0) >
0. Let h = (h1, . . . , hd) > 0 be a vector of bandwidths. Write the data averages
as Yj = n−1

∑n
i=1 Yij , 1 ≤ j ≤ p. For a given location x ∈ [0, 1]d, the local linear

estimator µ̂(x) is defined as β̂0, where (β̂0, β̂1) is the solution of the minimization
problem

min
(β0,β1)∈Rd+1

p∑
j=1

(
Yj − β0 − 〈β1, (xj − x) 〉d

)2
K

(
xj − x

h

)
. (2.2)

This estimator can be expressed as

µ̂(x) =
p∑

j=1

Wj(x) Yj , (2.3)

where Wj(x) = wj(x)/
∑p

j=1 wj(x) and
wj(x) =

1
ph

(
s2(x) − (xj − x)s1(x)

)
K

(
xj − x

h

)
sl(x) =

1
ph

p∑
j=1

(xj − x)l K

(
xj − x

h

)
, l = 0, 1, 2

when d = 1, (2.4)



wj(x) =
[
s11(x)s22(x)−s2

12(x)+
(
s02(x)s12(x)−s01(x)s22(x)

)
(xj−x)(1)

+
(
s01(x)s12(x)−s02(x)s11(x)

)
(xj−x)(2)

]
1

ph1h2
K

(
xj−x

h

)
skl(x) =

1
ph1h2

p∑
j=1

(xj − x)(k)(xj − x)(l)K
(

xj − x

h

)
, k, l = 0, 1, 2

, (2.5)

when d = 2, with the notations z = (z(1), z(2)) and z(0) = 1 for all z ∈ R2.

3. Functional Asymptotic Normality

We start with a definition. Let ‖ ·‖∞ be the supremum norm on the space of
continuous functions C([0, 1]d). A sequence (Xn) of random elements of C([0, 1]d)
is said to converge weakly to a limit X in C([0, 1]d) if E(φ(Xn)) → E(φ(X)) as
n → ∞ for all bounded, uniformly continuous functional φ on (C([0, 1]d), ‖ · ‖∞)
(e.g., Pollard (1990, p.44)). Let G(m,C) denote a real-valued Gaussian process
indexed by [0, 1]d with arbitrary mean and covariance functions m and C. We
are now in position to state the main result.

Theorem 1. Assume (A.1)−(A.5) in model (2.1) with d ∈ {1, 2}. Consider the
local linear estimator µ̂ defined in (2.3)−(2.5) with a bandwidth h = h(n, p) such
that n‖h‖4 → 0 and (p/ log(p))

∏d
k=1 hk → ∞ as n, p → ∞. Then

√
n(µ̂ − µ)

converges weakly to G(0, R) in C([0, 1]d).
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Remarks.
1. Convergence rate. The fact that the normalizing rate

√
n depends neither on

p nor on h is consistent with the literature. It reflects the fact that (µ̂− µ) is
essentially a smoothed version of Z = n−1

∑n
i=1 Zi, whose covariance structure

(R/n) is essentially unaffected by smoothing or discretization.

2. Regularity of Z. The conclusion of Theorem 1 holds under weaker conditions
than the stochastic Hölder continuity (A.2), e.g. when Z is mean-square
continuous and has bounded variations (Degras (2009)). However (A.2) is
needed for the SCB and test procedure of Section 2.

3. Joint growth of n and p. The growth conditions (A.4) ensure that (a power
of) p is large enough relative to n. This ensures the existence of a bandwidth
h = h(n, p) small enough to make the squared bias of µ̂ negligible compared
to its variance but large enough to smooth out the measurement errors εij

uniformly as n, p → ∞. (A.4) can be weakened (allowing for larger n and
smaller p) by assuming a higher order of differentiability for µ in (A.1) and
using higher order local polynomial estimators or bias reduction techniques.

4. Measurement errors. The uniform bound on the covariance matrix V in (A.5)
accommodates various forms of dependence such as short-range dependence
and ARMA or mixing processes. The normality assumption is not essential
to the results, however the decrease rates in the tail probabilities of the εij

influence the size of h needed to smooth out these errors. For instance, if the
normality assumption is dropped then the factor (p/ log(p)) in the condition
(p/ log(p))

∏d
k=1 hk → ∞ in Theorem 1 becomes p1/2, whereas if the εij are

assumed to be uniformly bounded, the factor is equal to p.

5. Bandwidth selection. For simplicity Theorem 1 is presented with a determin-
istic h, but it also holds when h depends on the data (Yij , xj) in a way that
C1a(n, p) ≤ h(n, p) ≤ C2a(n, p), where a(n, p) is a deterministic sequence sat-
isfying the conditions of Theorem 1 and C1, C2 > 0 are constants. Hence,
suitable plug-in or cross-validation methods (e.g., Hart and Wehrly (1993))
can be used to select h. Also note that in the present context of functional
data, the asymptotic variance of µ̂(x) is of order n−1 and is only affected by h

through a second-order term in O(hn−1) (see ibid.). Therefore, the strategy
adopted here to render the bias (of order h4) negligible compared to the vari-
ance is compatible with the optimization in h of the asymptotic mean squared
error of µ̂(x); this does not slow down the convergence.

6. Longitudinal data. In contradistinction to the functional data setup, asymp-
totic normality results in C([0, 1]d) cannot be obtained in the longitudinal
data setup where, typically, many random functions are observed each at
a few time points. In this setup, nonparametric estimators mostly average
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data across the sample units, which are independent, and not within, where
the random process structure plays. Therefore they converge pointwise to a
Gaussian white noise process at the usual regression rates (Yao (2007)).

4. Applications

4.1. Simultaneous confidence bands for µ

We here apply Theorem 1 to the construction of SCB for the regression func-
tion µ. Denote respectively by σ2 and ρ the variance and correlation functions of
Z. Without loss of generality, we assume that σ2 is positive over [0, 1]d, so that
ρ is well-defined. It stems from Theorem 1 and Slutsky’s theorem that, for any
uniformly consistent estimator σ̂2 of σ2, the standardized estimator

√
n
(
µ̂−µ

)
/σ̂

converges to G(0, ρ) in C([0, 1]d) as n → ∞. For a given confidence level 1 − γ,
we seek approximate SCB of the form[

µ̂(x) − cγ
σ̂(x)√

n
, µ̂(x) + cγ

σ̂(x)√
n

]
, x ∈ [0, 1]d, (4.1)

where P
(
‖G(0, ρ)‖∞ > cγ

)
≈ γ.

A convenient estimator of σ2 is the empirical variance function of the smooth
curves µ̂i =

∑p
j=1 WjYij , i = 1, . . . , n, namely

σ̂2(x) =
1

n − 1

n∑
i=1

(
µ̂i(x) − µ̂(x)

)2
. (4.2)

This estimator is unbiased for the finite sample variance nVar (µ̂(x)), and it con-
verges uniformly to σ2(x) in probability. (The uniform convergence is obtained
by exploiting (A.2)−(A.5) together with a uniform law of large numbers (e.g.,
Pollard (1990, Thm. 8.2)) and a classical limit result on the largest eigenvalue of
a Wishart matrice (Geman (1980)) to uniformly control the errors εij .)

Two difficulties arise in the computation of the threshold cγ : first, the cor-
relation function ρ must be estimated and second, even if ρ were known, there
exists no formula for the distribution of the maximum of a general Gaussian pro-
cess (see e.g., Adler (1990, p.5)). For the first problem a suitable estimator of ρ

is the empirical correlation function

ρ̂(x, x′) =
∑n

i=1 µ̂i(x) µ̂i(x′) − n µ̂(x) µ̂(x′)
(n − 1) σ̂(x) σ̂(x′)

. (4.3)

For the second problem we resort to numerical techniques to estimate cγ . (See
Section 6 for a discussion of the limitations of theoretical approximations to the
distributions of maxima of Gaussian processes.) This can be done by simulating,
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conditional on ρ̂, a large number of sample paths of G(0, ρ̂) in order to obtain
the law L(‖G(0, ρ̂)‖∞|ρ̂), and then by setting cγ as the associated (1 − γ)100%
quantile:

P
(
‖G(0, ρ̂)‖∞ > cγ |ρ̂

)
= γ. (4.4)

The fact that cγ satisfies approximately P
(
‖G(0, ρ)‖∞ > cγ

)
= γ is justified by

the convergence of G(0, ρ̂) to G(0, ρ) in C([0, 1]d), conditionally on ρ̂. This in
turn stems from (i) the finite-dimensional convergence of G(0, ρ̂) thanks to the
uniform convergence of ρ̂, and (ii) the asymptotic tightness of G(0, ρ̂) obtained
through entropy calculations very similar to those in the Appendix.

Gathering the previous elements, we obtain the following result.

Theorem 2. Under the assumptions of Theorem 1, the simultaneous confidence
bands (4.1) have asymptotic coverage level 1 − γ for µ:

lim
n,p→∞

P
(

µ̂(x) − cγ
σ̂(x)√

n
≤ µ(x) ≤ µ̂(x) + cγ

σ̂(x)√
n

, x ∈ [0, 1]d
)

= 1 − γ,

with the estimators σ̂, ρ̂, and the threshold cγ defined in (4.2), (4.3), and (4.4).

In the case where the sample size n is small and the process Z cannot be
assumed to have an approximate normal distribution, it may not be reasonable
to rely on a functional CLT to build SCB for µ. We thus propose, without
theoretical justification, the following naive bootstrap procedure.

1. Resample with replacement from the µ̂i, i = 1, . . . , n, to produce a bootstrap
sample µ∗

1, . . . , µ
∗
n.

2. Compute the empirical mean and variance functions of the µ∗
i , say µ∗ and

(σ∗)2, and compute z∗ =
√

n‖(µ∗ − µ̂)/σ∗‖∞.

3. Repeat Steps 1 and 2 many times to approximate the conditional law L∗ =
L(z∗|Yij ’s) and take the (1 − γ)100% quantile of L∗ for cγ in (4.1).

4.2. A goodness-of-fit test for parametric models

We now apply the ideas underlying Theorems 1 and 2 to a goodness-of-fit
test for curvilinear regression models. Indeed, with the knowledge of the limit
distribution of an estimator in (C([0, 1]d), ‖ · ‖∞), it becomes possible to detect
and test local departures from a given candidate model for µ. This feature
should be contrasted with tests based on euclidean norms that only track global
departures. See e.g., Azzalini and Bowman (1993), Härdle and Mammen (1993),
and Stute (1997), where parametric and nonparametric estimates are compared
either via their residual sum of squares or directly through L2 distances.
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Consider a candidate parametric model for µ of the form

µ ∈ M =

{
L∑

l=1

θlϕl : (θ1, . . . , θL) ∈ Θ

}
, (4.5)

where L ≤ 1 is a fixed integer, Θ ⊂ RL is a parameter space, and (ϕ1, . . . , ϕL) is
a family of functions on [0, 1]d satisfying

(B.1) the ϕl are orthogonal w.r.t. the inner product 〈g1, g2〉f =
∫

g1(x)g2(x)f(x)dx;

(B.2) the ϕl have bounded (partial) derivatives on [0, 1]d up to order 2.

Introducing the vectors Y = (Y1, . . . , Yp)>, ϕ(x) = (ϕ1(x), . . . , ϕL(x))>, and the
p×L matrix Φ = (ϕ(x1), . . . , ϕ(xp))>, the least squares estimator of µ(x) under
(4.5) reads

µ̂LS(x) = ϕ(x)>(Φ>Φ)−1Φ>Y . (4.6)

We now apply the local linear weights W (x)= (W1(x), . . . ,Wp(x))> to the
residuals of the parametric fit (4.6). The smoothed residual random process r is

r(x) =
p∑

j=1

Wj(x)
(
Y j − µ̂LS(xj)

)
= W (x)> (I − P) Y , (4.7)

where I denotes the p × p identity matrix and P = Φ(Φ>Φ)−1Φ> denotes the
p × p projection matrix onto the space spanned by the columns of Φ.

Next, we determine the asymptotic mean and covariance functions of the
(scaled) process r. Under (4.5), it is straightforward to see that E(r(x)) = 0.
More generally, let P be the orthogonal projection from (L2([0, 1]d), 〈·, ·〉f ) onto
the linear subspace M, and let θ = (θ1, . . . , θL)> = (〈ϕ1, µ〉, . . . , 〈ϕL, µ〉)> be the
vector of coefficients of Pµ in M. Observe that ‖E(µ̂) − µ‖∞ = ‖µ′′‖∞O(‖h‖2)
by (A.1) and the bias properties of local linear estimators. Also, exploiting the
former bias properties, (B.1), (B.2), and classical error bounds for numerical
approximations of integrals, it can be easily proved that

E
(
W (x)>PY

)
= (W (x)>Φ)(Φ>Φ)−1(Φ>E(Y ))

=
[
1 + ‖µ′′‖∞O(‖h‖2)

]
ϕ(x)>

[
I + O(p−1)

]
θ
[
1 + O(p−1)

]
= ϕ(x)>θ + O(‖µ′′‖∞‖h‖2 + p−1)

= Pµ(x) + O(‖h‖2‖µ′′‖∞ + p−1)

uniformly in x ∈ [0, 1]d. Combining these relations with (4.7) yields

E(r(x)) = µ(x) − Pµ(x) + O(‖µ′′‖∞‖h‖2 + p−1). (4.8)
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With the above calculations one can infer from (4.7) that r has the same asymp-
totic covariance as the process µ̂−µ̂LS and then, using these calculations together
with Theorem 1, the limit covariances and cross-covariances of µ̂ and µ̂LS (scaled
by

√
n) are derived without difficulty. (In particular the limit covariance of

√
nµ̂

is R.) Finally the limit covariance function of
√

nr is

Γ(x, x′) = R(x, x′) +
L∑

k=1

L∑
l=1

ϕk(x)ϕl(x′)
∫∫

R(u, v)ϕk(u)ϕl(v)f(u)f(v)dudv

−
L∑

l=1

( ∫
R(x, u)ϕl(u)f(u)du

)
ϕl(x′) −

L∑
l=1

( ∫
R(x′, u)ϕl(u)f(u)du

)
ϕl(x),

(4.9)

where the simple (resp. double) integrals are taken over [0, 1]d (resp. [0, 1]2d).
Denote by Mc the orthogonal complement of M in (L2([0, 1]d, 〈·, ·〉f ) and by

C2([0, 1]d) the space of functions having continuous partial derivatives on [0, 1]d

up to order 2. Using the proof techniques of Theorem 1, the following asymptotic
normality holds true for

√
nr.

Theorem 3. Assume (A.1)−(A.5) and (B.1)−(B.2) in model (2.1) with d∈{1,
2}. Consider the smooth residual process r defined in (4.7) with a bandwidth
h satisfying: n‖h‖4 → 0 and (p/ log(p))

∏d
k=1 hk → ∞ as n, p → ∞. Then

under the null hypothesis (4.5),
√

nr converges weakly to G(0, Γ) in C([0, 1]d).
Under the sequence of local alternatives µ = ϕ>θ + g/

√
n, where θ ∈ Θ and

g ∈ C2([0, 1]d)
⋂

Mc are fixed,
√

nr converges weakly to G(g, Γ) in C([0, 1]d).

We now apply Theorem 3 to testing (4.5) against fixed or local alternatives
in a way that strictly parallels the SCB construction of Section 4.1. In particular
it is necessary to estimate the variance and correlation functions σΓ and ρΓ of√

nr as well as a threshold cα for a related Gaussian process. First note that for
finite samples, the covariance function of

√
nr is

Γn(x, x′) = W (x)> (I − P) (Σ + V) (I − P) W (x′)>, (4.10)

where Σ is the p× p covariance matrix (R(xj , xk)) and V is the common covari-
ance matrix of the measurement errors in (A.5). The matrix (Σ + V) can be esti-
mated by the empirical covariance of the data Yij , which is then plugged in (4.10)
to produce an estimator Γ̂(x, x′) of Γ(x, x′). The related variance and correlation
estimators are σ̂Γ(x) = Γ̂(x, x)1/2 and ρ̂Γ(x, x′) = Γ̂(x, x′)/

(
σ̂Γ(x)σ̂Γ(x′)

)
. Now

for a given significance level α, a threshold cα such that P(‖G(0, ρΓ)‖∞ > cα

)
≈ α

may be found exactly as in Section 4.1 by numerical simulation of ‖G(0, ρ̂Γ)‖∞
conditional on ρ̂Γ followed by the computation of the (1 − α)100% quantile of
the resulting distribution: P(‖G(0, ρ̂Γ)‖∞ > cα

∣∣ρ̂Γ

)
= α.

From (4.8) and Theorem 3, we deduce the following result.
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Corollary 1. In model (2.1), consider the candidate model (4.5) for µ and the
test statistic T =

√
n
∥∥r/σ̂Γ

∥∥
∞ defined by (4.7)-(4.10). For a given α ∈ (0, 1), let

cα be the conditional quantile defined above. Under the assumptions of Theorem
3, the test obtained by rejecting (4.5) if T > cα has asymptotic significance level
α and is consistent against any fixed alternative H1 : µ = g ∈ C2([0, 1]d)

⋂
Mc.

Given a constant B > 0 and a real sequence εn > 0 such that n−1/2 = o(εn), the
test is also consistent against the sequence of local alternatives Hn : µ ∈

{
g ∈

C2([0, 1]d) : ‖g′′‖∞ ≤ B, ‖g − Pg‖∞ = εn

}
.

Note that, graphically, the test can be interpreted as plotting the SCB
[
r(x) ±

cα σ̂Γ(x)/
√

n)
]

for µ(x) − Pµ(x) and rejecting (4.5) if the horizontal line y = 0
is not contained within the bands.

5. Numerical Study

5.1 Normal and bootstrap SCB procedures

In this section we assess the normal and bootstrap SCB procedures of Section
4.1 in terms of coverage and amplitude through the numerical study of two exam-
ples of model (2.1). In short, the first example depicts a favorable situation with
a smooth polynomial trend, Gaussian data, and no measurement errors while the
second features very adverse conditions with a rapidly varying trend, a strongly
non-normal random process Z, and additive white noise. More specifically, the
first example, taken from Hart and Wehrly (1986), is

Yij = µ(xj) + Zi(xj), 1 ≤ i ≤ n, 1 ≤ j ≤ p,

µ(x) = 10x3 − 15x4 + 6x5,

xj = j−0.5
p ,

Zi
i.i.d.∼ G(0, R) with R(x, x′) = (0.25)2 exp(20 log(0.9)|x − x′|).

(5.1)

Here, the xj are equidistant and the Zi are distributed as a centered Gaussian
process with an Ornstein-Uhlenbeck covariance function chosen so that any two
measurements spaced by 0.05 units have correlation 0.9. The noise level σ = 0.25
represents 25% of the range of the trend µ, which is considered as a moderate
amount of noise in the data. The second model is specified by

Yij = µ(xj) + Zi(xj) + εij , 1 ≤ i ≤ n, 1 ≤ j ≤ p,

µ(x) = sin(8πx) exp(−3x), xj = j−0.5
p ,

Zi
i.i.d.∼ Z with Z(x) =

√
2

6 (η1 − 1) sin(πx) + 2
3 (η2 − 1) (x − 0.5),

η1 ∼ χ2
1, and η2 ∼ Exponential(1),

εij
i.i.d.∼ N(0, 0.12), εij and Zi independent.

(5.2)

In this case, the regression function µ displays rapid variations over [0, 1] and has
a sharp peak near the origin at x = 0.058. The process Z strongly deviates from
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normality, being based on chi-square and exponential r.v.. The standard devia-
tion function σ̃(x) = (R(x, x) + 0.12)1/2 ranges between 0.295 and 0.348, which
represents between 21% and 25% of the range of µ. However, looking at the local
variations of µ as measured by |µ′′| and the noise level σ̃, it appears that |µ′′|/σ̃

ranges in [7, 1650] (compare with the range [0, 23] for the same function ratio in
(5.1)). Such a range indicates than in regions where µ has high curvature, i.e.,
around peaks and troughs, serious estimation problems should arise due to the
fact that the (squared) bias is overwhelmingly larger than the variance, a viola-
tion of the conditions of Theorem 1. In particular near x = 0.058, the problem
is prominent since the classical peak underestimation problem will combine with
boundary effects.

The simulations were conducted in the R environment as follows. For each
model (5.1) or (5.2), several values were selected for the sample size n, the design
size p, and the bandwidth h of the local linear estimator µ̂. For each (n, p, h) the
model was simulated Nrep = 50, 000 times to assess the normal bands and only
Nrep = 5, 000 times for the bootstrap due to its heavy computational cost. The
bands were built at the confidence level 1−γ = 95% and their coverage levels (i.e.,
the proportion of simulations for which the bands contained µ) and amplitudes
(in terms of the threshold cγ of (4.1)) were recorded. In model (5.1) the margins
of error in the coverage levels can be evaluated as about

√
γ(1 − γ)/Nrep =

0.0009, 0.0031 for the normal and bootstrap procedures, respectively. In model
(5.2) the observed coverage levels are quite different from the target 95% and
it seems more reasonable to evaluate the margins of errors by 1/(2

√
Nrep) =

0.0022, 0.0070 respectively. At another level, it has been observed that for a
given setup (n, p, h), the main source of variability in the bands’ amplitude lies
in the estimation of cγ whereas the estimation of σ2(x) bears little influence.
This is why the bands’ average amplitudes are displayed in terms of cγ , which
then allows for a direct comparison with the correct thresholds yielding nominal
coverage.

The SCB were implemented as follows. For the normal SCB, µ was estimated
by a local linear fit with the Epanechnikov kernel K(x) = 0.75max(1 − x2, 0).
For this task a R script based on sparse matrix representations was written by
the author, allowing for fast and exact evaluations. The variance function σ2

of Z was estimated by the empirical variance function of the µ̂i, as in Section
4.1. The correlation function ρ of Z was estimated by a shrinkage estimator ρ̂

based on the empirical correlation of the µ̂i (R package corpcor. After that,
a number N of sample paths of the process G(0, ρ̂) were simulated on an eq-
uispaced grid of size 100 in [0, 1], and the threshold cγ in (4.1) was computed
as the 95%-quantile of the associated sup norms (N was set to 8,000, 10,000,
and 13,000 for p = 10, 20, 100, respectively, to ensure a good tradeoff between
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Table 1. Observed coverage levels and thresholds for SCB of nominal level
95% in model (5.1). For each (n, p, h), the model was simulated 50,000
and 5,000 times for the normal and bootstrap procedures, respectively. The
two columns cγ indicate the median threshold obtained in (4.1). The last
two columns show the actual thresholds yielding 95% coverage when the
covariance function R is estimated or known.

Normal SCB Bootstrap SCB Correct 95% threshold cγ

n p h Coverage cγ Coverage cγ R estimated R known
10 10 0.2 0.926 3.20 0.977 4.14 3.51 2.66
20 20 0.1 0.957 3.11 0.964 3.19 3.07 2.69
20 20 0.15 0.955 3.08 0.961 3.10 3.01 2.61
20 20 0.2 0.951 3.05 0.948 3.03 3.08 2.72
50 50 0.05 0.962 3.01 0.947 2.90 2.90 2.73
50 100 0.05 0.961 3.00 0.953 2.91 2.89 2.69
50 100 0.1 0.970 2.95 0.947 2.82 2.82 2.60

100 10 0.16 0.931 2.84 0.903 2.70 2.98 2.94
100 10 0.2 0.879 2.81 0.838 2.67 3.23 3.03
100 20 0.1 0.960 2.88 0.966 2.75 2.79 2.69
100 20 0.15 0.941 2.83 0.927 2.69 2.88 2.72
100 20 0.2 0.892 2.80 0.874 2.65 3.16 2.89
100 50 0.05 0.961 2.93 0.946 2.82 2.82 2.73
100 100 0.05 0.961 2.92 0.952 2.82 2.82 2.70
100 100 0.1 0.960 2.87 0.945 2.73 2.77 2.62
100 100 0.15 0.945 2.82 0.946 2.68 2.86 2.65

numerical accuracy and computational time). Concerning the bootstrap SCB, µ

and σ2 were estimated as in the normal SCB procedure and the threshold cγ was
estimated as in Section 4.1 with 2,500 bootstraps.

It can be observed from Table 1 that both the normal and bootstrap SCB
methods work quite well in model (5.1) for a wide range of combinations of n, p

and h. They have similar performances (see Figure 1) and achieve a coverage
near the target level 95%. This positive result can be explained by three favorable
aspects of (5.1): the low curvature of the polynomial function µ; the absence of
measurement errors; and the normality of Z. The first point ensures that even
for large n and small p, the squared bias of µ̂ remains uniformly small compared
to its variance over [0, 1]. The second point allows the use of small bandwidths
since no smoothing is needed to control the absent errors. (In this case the second
condition in (A.4) and the condition (p/ log(p))

∏d
k=1 hk → ∞ in Theorem 1 can

be dropped.) The second and third points imply, for the normal bands, that the
normal approximation to the distribution of µ̂ is exact.

In model (5.2) the estimation conditions are very adverse, as seen earlier. It
is thus no surprise to observe in Table 2 that the coverage levels fall short of the
95% target level for both normal and bootstrap SCB, although the bootstrap
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Table 2. Observed coverage levels and thresholds for SCB of nominal level
95% in model (5.2). For each (n, p, h), the model was simulated 50,000
and 5,000 times for the normal and bootstrap procedures, respectively. The
columns cγ indicate the median threshold obtained in (4.1). The last two
columns show the actual thresholds yielding nominal coverage when the
covariance R is estimated or known.

Normal SCB Bootstrap SCB Correct 95% threshold cγ

n p h Coverage cγ Coverage cγ R estimated R known
10 20 0.08 0.156 3.29 0.663 6.10 10.31 5.41
10 50 0.035 0.769 3.29 0.959 6.95 6.16 2.98
10 50 0.05 0.713 3.28 0.941 6.50 6.40 3.44
15 20 0.08 0.055 3.24 0.341 4.47 10.23 6.22
20 20 0.08 0.013 3.20 0.131 3.87 10.53 6.92
20 50 0.035 0.839 3.20 0.928 4.12 4.48 3.13
20 50 0.05 0.704 3.19 0.852 4.02 4.91 3.90
20 100 0.02 0.878 3.20 0.934 4.22 4.28 2.78
20 100 0.05 0.716 3.18 0.842 3.93 4.94 3.84
50 50 0.035 0.814 3.07 0.837 3.20 3.93 3.59

100 100 0.02 0.929 2.97 0.927 2.97 3.18 2.96
100 100 0.035 0.738 2.94 0.715 2.88 3.81 3.82

is more robust. On the other hand the last two columns of Table 2 show how
intrinsically difficult the band estimation is in (5.2). For instance when p = 20
and R is unknown, the threshold yielding correct coverage is close to 10 (compare
to the 95% standard normal quantile 1.96 used in pointwise confidence bands),
yielding SCB so large that they lose all practical interest. (See also the right panel
in Figure 1.) Note that the extreme difficulty of the case p = 20 stems mostly
from the sparsity of the data near the sharp peak of µ at x = 0.058. Regarding
the influence of smoothing on the coverage level, it appears in Table 2 that the
smaller the bandwidth h, the higher the coverage. This observation is essentially
related to the control of the bias and it has been confirmed with a wider range
of values h not displayed here. For each p = 20, 50, 100, the values selected for
h were first, the smallest h for which µ̂ is well-defined on the evaluation grid
and second, a nearby value indicating how quickly the coverage degrades when h

increases. Interestingly enough, increasing the sample size n has different effects
on the coverage according to p: for p = 20, as n increases the coverage decreases.
This is due to the corresponding decrease in Var (µ̂(x)) ≈ σ2(x)/n, that makes the
squared bias increasingly non-negligible compared to the variance. For p = 50,
increasing n also increases the squared bias to variance ratio but the latter may
remain negligible provided n is not too big: the coverage increases from n = 10
to n = 20 and then decreases from n = 20 to n = 50. For p = 100 the coverage,
as a function of n, would start to decrease after a value n much larger than 100.
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Figure 1. SCB for the regression function µ. Left panel: model (5.1) with
n = p = 50 and h = 0.035. The normal and bootstrap bands are identical
and achieve the target coverage level 95%. Right panel: model (5.2) with
n = 10, p = 50, and h = 0.05. The bootstrap bands are wider than the
normal ones (cγ = 6.50 vs cγ = 3.28 in (4.1)) and have nearly nominal
coverage (94.1% vs 71.3%).

(Note that the supremum of the squared bias to variance ratio is asymptotic to
nh4/4·‖µ′′/σ2‖∞.) Two other important effects of increasing n are first to reduce
the stochastic error in the normal approximation to the distribution of µ̂, and
second to improve the estimation of σ2.

To conclude this section, we comment briefly on additional simulations not
displayed here. When simulating model (5.1) with different correlation levels,
replacing the parameter ν = 0.9 in the covariance R by ν = 0.7 or 0.5 led to
coverage levels close to nominal for the two SCB procedures and, as expected,
the threshold cγ increased as the amount of correlation ν decreased. Also, when
crossing the functions µ and R of (5.1) and (5.2) in new simulations, we confirmed
the idea that the coverage level depends mostly on the (negligibility of) the
squared bias to variance ratio and on the (non-)normality of the estimator.

5.2. Goodness-of-fit: comparison between the SCB test and a pseudo-
likelihood ratio test

This section assesses numerically the statistical significance and the power of
the goodness-of-fit test of Section 4.2, referred to as the SCB test henceforth. We
use the Pseudo-Likelihood Ratio Test (PLRT) of Azzalini and Bowman (1993)
as a benchmark for comparison because of its generality and simplicity of im-
plementation in model (2.1). Hereafter we proceed to describe the simulation
model, the implementation of the tests, and the experimental results.
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The model under study is

Yij = µ(xj) + Zi(xj), 1 ≤ i ≤ n, 1 ≤ j ≤ p,

xj = j−0.5
p ,

H0 : µ(x) = x,

Hn : µ(x) = x + n−1/2 log(n)g(x)
with g ∈ C2([0, 1]), g(x) = 0 for x ∈ [0, 0.4] ∪ [0.6, 1],

g(x) ∈ π5 for x ∈ (0.4, 0.45], g(x) ∈ π5 for x ∈ (0.55, 0.6],
g(x) = 0.2 exp(−(x − 0.5)2) for x ∈ (0.45, 0.55],

Zi
i.i.d.∼ Z = G(0, R) with R(x, x′) = (0.25)2 exp(20 log(0.9)|x − x′|),

(5.3)

where πk denotes the space of polynomials of degree at most k. (The covariance
structure of the data is the same as in model (5.1).) The candidate model for µ is
M = π1, the space of linear functions. The local alternatives Hn are obtained by
adding a scaled bump function g to µ0(x) = x, which produces a local nonlinearity
on [0.4, 0.6]. On account of Section 4.2 we can expect the SCB test to detect the
nonlinearity in µ while the PLRT might very well miss it.

The simulations were realized similarly to Section 5.1. For different values of
(n, p, h), model (5.3) was simulated 50,000 times under H0 and Hn, the goodness-
of-fit tests were implemented and their type I&II error rates measured. The
SCB test required the estimation of the covariance function of the test statistic√

nr defined by (4.7) and the threshold cα of Corollary 1. The covariance was
estimated by shrinking the empirical covariance of the data with the R package
corpcor and plugging the shrinkage matrix into (4.10) in place of Σ. (Observe
that the error covariance matrix V is zero in the absence of measurement errors in
(5.3).) The threshold cα was estimated as in Section 4.2, using an equispaced grid
of size 100 to simulate realizations of the Gaussian process G(0, ρ̂Γ) conditional
on the correlation estimator ρ̂Γ. The PLRT of Azzalini and Bowman (1993) was
implemented with standard R packages. We give here a short description of this
procedure in the context of (5.3). The test starts by fitting a regression line µ̂LS

and a local linear estimator µ̂ to the averaged data (xj , Yj). It then computes
the test statistic F = RSS0/RSS1 − 1, where RSS0 and RSS1 are the residual
sums of squares of µ̂LS and µ̂, respectively. Denoting by Fobs the observed value
of F and putting Zp = (Z(x1), . . . , Z(xp))>, the p-value P(F ≥ Fobs|H0) can be
written as P (Zp

>AZp > 0) for some p × p symmetric matrix A depending on
Fobs and the smoothing matrices of µ̂LS and µ̂. The distribution of Zp

>AZp is
well approximated by an aχ2

b + c distribution, where a, b, c depend on A and Σ
and are obtained by matching the first three cumulants of the two distributions.
The p-value then obtains as 1 − P (χ2

b ≤ −c/a). Returning to our simulations,
the PLRT required the estimation of the unknown covariance Σ = (σ2ρ|j−k|),
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Table 3. Type I error rates in testing for linearity in model (5.3) at the
significance level α = 5%. For each (n, p, h) and each test, 50,000 simulations
were run. In the PLRT procedure, the covariance structure of the data was
either estimated nonparametrically, parametrically, or known.

SCB PLRT
n p h Cov. nonpar. Cov. nonpar. Cov. par. Cov. known
10 10 0.17 0.038 0.093 0.065 0.051
10 10 0.25 0.047 0.089 0.060 0.052
20 20 0.08 0.047 0.063 0.062 0.050
20 20 0.15 0.074 0.061 0.063 0.051
50 50 0.035 0.053 0.049 0.062 0.050
50 50 0.05 0.061 0.050 0.063 0.050

100 100 0.02 0.053 0.047 0.064 0.050
100 100 0.05 0.063 0.046 0.065 0.052

with ρ = (0.9)20/p and σ = 0.25. The estimation was done either with the
empirical covariance of the data, or by correctly assuming an AR(1) model for the
discretized process (Z(x1), . . . , Z(xp)) and estimating σ2 and ρ through standard
repeated measurements techniques (e.g., Hart and Wehrly (1986)). To assess
the influence of covariance estimation, the PLRT was also implemented with Σ
known.

Table 3 displays the type I error rates over the simulations. For the PLRT
procedure, when Σ is known, this rate is very near the significance level α = 5%
as expected. When Σ is estimated parametrically the rate is slightly excessive,
around 6%. In the case of a nonparametric estimation of Σ, the PLRT is clearly
not accurate for a small sample size n = p = 10, slightly off for n = p = 20, and
it works fine for n = p = 50 and n = p = 100. In comparison, the SCB test is
overall less accurate regarding the target level α = 5% except for small sample
sizes where it seems more robust. It should be noted however that for each (n, p),
there is at least one value h yielding nearly nominal coverage.

Looking at Table 4, it appears that the SCB test has a much larger statistical
power than the PLRT. Across the simulations, the average power is 80% for the
SCB test versus about 35% for the PLRT. Besides, the power does not go below
45% for the SCB test while it can be as low as 1%–5% for the PLRT for small
samples. In other simulations not displayed here, the superiority of the SCB test
was even larger when the bump function n−1/2 log(n)g(x) in (5.3) was replaced
by a smaller bump n−1/2 log log(n)g(x). Heuristically, the low power of the PLRT
can be attributed to the fact that, since Hn is local in nature and F is based
on a euclidean norm, the local discrepancy between µ̂ and µ̂LS at the bump is
masked by their global agreement on [0, 0.4]∪ [0.6, 1]. Put differently, there is no
clear-cut difference between the distribution of F under H0 and under Hn until
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Table 4. Statistical power of the the SCB and PLRT procedures in model
(5.3). The nominal significance level was α = 5% and 50,000 simulations
were executed for each (n, p, h) and each procedure. For the PLRT proce-
dure, the covariance structure of the data is either estimated nonparametri-
cally, parametrically, or known.

SCB PLRT
n p h Cov. nonpar. Cov. nonpar. Cov. par. Cov. known
10 10 0.17 0.512 0.052 0.025 0.015
10 10 0.25 0.459 0.031 0.012 0.008
20 20 0.08 0.807 0.230 0.238 0.190
20 20 0.15 0.664 0.061 0.059 0.040
50 50 0.035 0.993 0.454 0.548 0.438
50 50 0.05 0.995 0.232 0.307 0.232

100 100 0.02 1.000 0.990 0.996 0.994
100 100 0.05 1.000 0.390 0.516 0.423

Figure 2. Density curves for the PLRT statistic F (left panel) and the sup
norm-based statistic T (right panel) under H0 and Hn in model (5.3) with
n = p = 50 and h = 0.05. The vertical lines indicate the critical points for
the tests at the level α = 5%. The associated statistical power is 23.6% for
the PLRT and 98.9% for the SCB test (approximated by 23.2% and 99.5%
in the simulations of Table 4).

‖µ0 − µn‖L2 becomes “large” enough, for large n, p, and small h. See Figure 2
(the densities have been obtained by numerical simulation). Note that analytic
power calculations can be obtained for the PLRT via saddlepoint approximations
to noncentral F distributions (see e.g., Butler and Paolella (2002)).
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6. Illustration with a Speech Data Set

In this section we look into a speech data set studied by Hastie, Tibshirani
and Friedman (2009) and available on the web at http://www-stat.stanford.
edu~tibs/ElemStatLearn/. The data consist in 4509 log-periodograms obtained
at 256 equidistant frequencies in the range 0-8kHz. Each discretized curve corre-
sponds to one of five phonemes coded as ’aa’ as the vowel in ’dark’ (695 curves);
’ao’ as the first vowel in ’water’ (1,022 curves); ’dcl’ as in ’dark’ (757 curves);
’iy’ as the vowel in ’she’ (1,163 curves); and ’sh’ as in ’she’ (872 curves). For
simplicity of notation we rewrite the observation points in the frequency domain
as 1, . . . , 256.

To illustrate the possible uses of SCB techniques, we present three inference
procedures relevant to the statistical analysis of our data set.

6.1. Band estimation of regression curves

We apply the SCB procedure of Section 4.1 to the mean regression curves
for each phoneme. Prior to inferring the mean regression curve, it is worth ex-
amining how this mean curve relates to the individual ones. Indeed it may very
well be that the mean curve does not resembles any single curve at all. In our
case, the roughness in the log-periodograms is smoothed out by averaging over
the large sample available. However some salient features in the individual curves
such as peaks and valleys are recovered after averaging, due to the remarkable
fact that these features are present in almost all the curves at approximately the
same locations (see Figure 3 and Section 5.3). We observe that smoothing in the
frequency domain seems necessary to make the curves more readily analysable
and interpretable. The general allure of the individual smoothed curves (e.g., fre-
quency subdomains where the log-intensity is approximately monotone or linear)
is also conserved through the averaging.

The average log-periodograms are displayed in Figure 3. For each phoneme,
the empirical standard deviation curve varies between 1 and 3 log-intensity units,
which represents a fraction of the range of the average log-periodogram varying
between 10% and 21% for the phonemes ’aa’ and ’ao’ (indicating a low variability
in the data), 15% and 30% for ’dcl’ and ’iy’ (low to moderate variability), and
between 28% and 35% for ’sh’ (moderate to large variability). For brevity we
only show the SCB for the phoneme ’sh’ in Figure 4. The displayed SCB are
based on the 872 ’sh’ curves and implemented with a local linear estimator, using
a truncated Gaussian kernel and a bandwidth h = 0.94 obtained by leave-one-
curve-out cross validation (see e.g., Hart and Wehrly (1993)).

http://www-stat.stanford.edu~tibs/ElemStatLearn/
http://www-stat.stanford.edu~tibs/ElemStatLearn/
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Figure 3. Average log-periodograms. For each phoneme, the roughness in
the individual curves is smoothed out by averaging but the peaks and valleys
are conserved.

6.2. Comparison of regression curves

After building SCB for a single regression curve, we turn to another im-
portant inference task which is the comparison of two mean curves. Figure 3
indicates quite a number of similarities between the regression curves for the
phonemes ’aa’ and ’ao’. A formal inference tool that could confirm or in-
firm the hypothesis of equality between the two curves would indeed be de-
sirable. Such a procedure can be achieved simply by following the method of
Section 4.1: (i) for each phoneme ’aa’ and ’ao’, build the corresponding esti-
mator µ̂ and its estimated covariance R̂/n; (ii) estimate the difference in the
regressions (µaa − µao) by (µ̂aa − µ̂ao) whose estimated covariance is R̂aa−ao =
(R̂aa/naa + R̂ao/nao) (observe that µ̂aa and µ̂ao are independent); (iii) denoting
by σ̂aa−ao and ρ̂aa−ao the standard deviation and correlation functions associ-
ated to R̂aa−ao, obtain numerically the distribution of ‖G(0, ρ̂aa−ao)‖∞ and, for
a given significance level α, use the relevant quantile cα of this distribution to
build the SCB

{[
(µ̂aa − µ̂ao)(x) ± cασ̂aa−ao(x)

]
: 0 ≤ x ≤ 256

}
of level 1 − α for

(µaa−µao); (v) reject H0 : µaa = µao if the horizontal line is not within the bands
or equivalently, if µ̂aa is not within the bands centered on µ̂ao. By implementing
this procedure with any reasonable bandwidth, H0 is rejected at any significance
level (p-value < 10−16; see also Figure 5).
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Figure 4. SCB of levels 95% and 99% for the regression curve of the phoneme
’sh’. Due to the large sample size (n = 872), the bands have a small ampli-
tude allowing one to confirm the remarkable features in the regression curve
(existence and location of local extrema, monotonicity patterns, etc.). Note
that the bands are almost identical at the two confidence levels.

6.3. Prediction of individual curves

The ability to predict new curves and to assess their range of variation proves
useful in various situations, e.g., in voice recognition where the goal is to identify
the speaker. In the present data set, where only a few curves are available for
each subject, we study prediction by randomly splitting the available curves for
each phoneme into a training set and a test set of equal sizes. Prediction bands
are built from the training set as in Section 4.1 (omitting of course the factor√

n in (4.1) since the goal here is prediction and not regression estimation) and
their coverage levels, the proportions of curves in the test set contained within
the bands, are observed as a function of the amount of smoothing applied to
the data. Ten fixed bandwidths h = 1, . . . , 10, are considered as well as a data-
driven bandwidth obtained by splitting the training set in half and selecting the
bandwidth ĥ ∈ {1, . . . , 10} that gives the closest coverage to the target level 95%
or 99% for the other half of the training set. For each phoneme the random split
is repeated 50 times. The mean coverage levels are reported in Table 5 for a
subset of values of h.

Table 5 indicates that the coverage levels are very close to nominal as soon as
the bandwidth is large enough (and in particular for the data-driven bandwidth ĥ)
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Figure 5. Test for equality of the regression curves µaa and µao. SCB of
level 99% are plotted around the estimate µ̂aa. Since µ̂ao is not within the
bands, the hypothesis H0 : µaa = µao can be rejected at the significance
level α = 1% (in fact, at any α).

except for the phoneme ’dcl’. These results can be explained by the facts that (i) a
minimal amount of smoothing is needed to attenuate the erratic, spikey behavior
in the raw data curves and make them more predictable; (ii) the distributions
of the data curves appear approximately Gaussian for all phonemes except for
’dcl’ which displays strong non-normality. (Our diagnostics for normality were
established by performing a functional principal components analysis (PCA) for
each set of curves, inspecting visually the plots of the scores along the first few
components, and running Shapiro-Wilks tests on the scores.)

7. Discussion

We have established in this paper a functional asymptotic normality result
for nonparametric regression with functional data. The result allows one to
build SCB that prove useful in various statistical tasks such as estimating the
regression function, testing the goodness of fit of parametric models, testing the
equality of mean curves, and predicting individual curves. The SCB procedures
are fully nonparametric (regression and covariance estimation) and the required
bandwidth selection can be data-driven.

It has been seen that the SCB estimation of the regression µ yields accurate
coverage whenever µ is reasonably smooth and sufficient data are available. It
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Table 5. Coverage levels for the prediction of new curves with SCB of levels
95% (5 top rows) and 99% (5 bottom rows). For each phoneme, the bands
were based on a random sample comprising half of the available curves and
used to predict the remaining half of the curves. The random sampling was
replicated 50 times. The reported numbers are the mean coverage levels over
the replications in function of the bandwidth used. The column ĥ denotes a
data-driven bandwidth selection procedure.

h 1 2 5 8 10 ĥ
aa 0.927 0.938 0.944 0.943 0.941 0.945
ao 0.924 0.940 0.942 0.947 0.947 0.948
dcl 0.888 0.882 0.884 0.886 0.885 0.890
iy 0.919 0.936 0.945 0.943 0.944 0.946
sh 0.922 0.941 0.949 0.951 0.951 0.952
aa 0.985 0.984 0.984 0.983 0.984 0.987
ao 0.977 0.984 0.988 0.988 0.988 0.989
dcl 0.945 0.933 0.931 0.932 0.932 0.945
iy 0.971 0.984 0.991 0.993 0.992 0.991
sh 0.980 0.992 0.992 0.991 0.992 0.992

produces significantly better results than an initial attempt of the author to ex-
tend the SCI of Degras (2008) to full bands via the interpolation arguments of
Hall and Titterington (1988). (This approach required the difficult estimation
of derivatives of µ, causing visually unattractive confidence bands and low cov-
erage.) The present SCB estimation of µ, which relies on a numerical method
to compute the threshold cγ in (4.1), also improves upon previous attempts to
approximate cγ via theoretical formulae such as Borell’s inequality (see (A.13) in
Section A.2) which is too conservative, or the limit result of Landau and Shepp
(1970) that only depends on the confidence level 1 − γ and not on the limit cor-
relation function ρ of µ̂ (see Degras (2009)). (Indeed a sensible estimate of cγ

should depend on ρ since the stronger the correlation structure of a (centered,
Gaussian) process, the less likely it is to jump above a given threshold c > 0.)

On the basis of our numerical study, the SCB goodness-of-fit test clearly
outperforms the PLRT of Azzalini and Bowman (1993) in detecting local de-
partures of µ from a linear model while retaining a close-to-nominal significance
level. This superiority, due to the use of a supremum norm in the test, can be
expected to hold in comparison with other tests based on residual sums of squares
or L2 distances. On the other hand, the latter kind of test can probably do a
better job of detecting small but global departures from a parametric model. We
remark that, beyond curvilinear models, the SCB test for goodness-of-fit can be
extended e.g., to nonlinear parametric models fitted by maximum likelihood.

The application of the SCB method to functional prediction (Section 5.3)
relies on the approximate normality of the data. If normality does not hold,
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one may resort to the bootstrap method proposed in Section 4.1. Another use
of SCB with potential interest resides in the estimation of local extrema of the
regression function µ: because the functional asymptotic normality result of this
paper also holds for the estimation of µ′ (a formal proof is obviously beyond our
scope here), it is possible to build SCB for µ′ and derive confidence intervals for
the location and size of local extrema based on the zero crossings of the bands.
See Song et al. (2006) for a related work on microarray data.

We say a word about data-driven bandwidth selection and bias reduction.
First, the popular leave-one-curve-out cross-validation technique appears well
suited to our setup because of its practical efficiency and its optimality proper-
ties with functional data (Hart and Wehrly (1993)). Since by construction the
bandwidth hCV in this method is of order n−1/3, it suffices to slightly strengthen
the condition (A.4) into n1/3 log(p) = o(p) for our results to hold with hCV when
d = 1. Second, our results extend easily to jacknife-type estimators of the form
2µ̂h − µ̂h

√
2 and to local quadratic estimators, that allow reduction of bias from

order h2 (local linear) to h3, assuming three bounded derivatives for µ in (A.1).
Finally, we mention a possible extension to this work that is of particular

interest for handling functional time series: does the functional asymptotic nor-
mality of the estimator still hold in the case of dependent data curves? If so,
what is the normalizing rate?
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Appendix

A. Proof of Theorem 1. The proof of Theorem 1 consists in: checking that
the squared bias of the local linear estimator µ̂(x) defined in (2.3)−(2.5) is uni-
formly negligible compared to its variance over [0, 1]d as n → ∞; establishing the
conditions of the functional CLT 10.6 of Pollard (1990), which mostly amounts
to proving the manageability of the smooth curves µ̂i(x) =

∑p
j=1 Wj(x)Zi(xj);

showing that the smoothed error process
∑p

j=1 Wj(x)εj goes uniformly to zero
in probability at a rate faster than n−1/2 for x ∈ [0, 1]d. The second and third
points are addressed in Sections A.1 and A.2, respectively. Putting these results
together directly yields the theorem, given the decomposition

µ̂(x) − µ(x) =
(
E(µ̂(x)) − µ(x)

)
+

p∑
j=1

Wj(x)Z(xj) +
p∑

j=1

Wj(x)εj . (A.1)
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The proof of the theorem being essentially the same in dimensions d = 1, 2, we
only address the univariate case and briefly indicate how the arguments extend to
the bivariate case. Throughout this section the letter C denotes a generic positive
constant not depending on n, p, nor h. The notation Jx = {j : |xj − x| < h}
is used for the set of indexes j for which Wj(x) 6= 0 (recall that K has support
[−1, 1]). The cardinality |Jx| is of order ph due to (A.3).

We address here the issue of bias control. With classical bias results for local
linear estimators (e.g., Fan (1992)) and Theorem 1 of Degras (2008), it is easy
to see that under (A.1)–(A.3),

sup
x∈[0,1]d

∣∣E(µ̂(x)) − µ(x)
∣∣2 = ‖µ′′‖2

∞O
(
‖h‖4

)
,

sup
x∈[0,1]d

∣∣Var (µ̂(x)) − n−1R(x, x)
∣∣ = o(n−1),

as n, p → ∞, h → 0, and p
∏d

k=1 hk → ∞. This entails the condition n‖h‖4 → 0
in order to make the first negligible compared to the second.

A.1. Manageability

We write φin(x) = n−1/2
∑p

j=1 Wj(x)Zi(xj) for i = 1, . . . , n, and Xn =∑n
i=1 φin. Our aim here is to show the asymptotic normality of Xn in C([0, 1]).

To do this, we need to establish the conditions (i)–(v) of the functional CLT 10.6
of Pollard (1990). We start by defining the objects relevant to this theorem. Let
Φni = n−1/2(|Zi(0)| + Mi) for i = 1, . . . , n, where the Mi are the r.v. appearing
in assumption (A.2), and consider the envelope Φn = (Φn1, . . . , Φnn) for the φin.
Also define ρn(x, x′) =

[∑n
i=1 E

(
φin(x) − φin(x′)

)2]1/2.

Using the fact that the Zi are independent and distributed as Z and the
convergence properties of local linear fits, it appears easily that

ρ2
n(x, x′) = E

( p∑
j=1

(Wj(x) − Wj(x′))Z(xj)
)2

=
∑
j,k

(
Wj(x)Wk(x) − 2Wj(x)Wk(x′) + Wj(x′)Wk(x′)

)
R(xj , xk)

= R(x, x) − 2R(x, x′) + R(x′, x′) + o(1) (A.2)

as n → ∞, h → 0 and ph → ∞. Observe that with the same arguments as
above, E(Xn(x)Xn(x′)) → R(x, x′) as n → ∞, h → 0, and ph → ∞, which
is condition (ii) of the aforementioned theorem. Conditions (iii) and (iv) hold
because

∑n
i=1 E(Φ2

ni) = E(|Z(0)| + M)2 < ∞ by (A.2), and
∑n

i=1 E(Φ2
niI{Φni >

ε}) = E
(
(|Z(0)| + M)2I{(|Z(0)| + M) > ε

√
n}

)
→ 0 as n → ∞ for all ε > 0.
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Condition (v) is guaranteed by the uniform convergence in (A.2) that comes
from the continuity of R over [0, 1]2 (taking expectations in (A.2)), and from
the uniformity of the local linear approximation to continuous functions over
compact domains.

It remains to show the more difficult condition (i), namely the manageability
property of the φni, i = 1, . . . , n with respect to the envelope Φn. Given an
arbitrary ε > 0, this amounts to evaluating the smallest number N(ε) such that
there exist τ1, . . . , τN(ε) ∈ [0, 1] verifying

∀x ∈ [0, 1], ∃k ∈ {1, . . . , N(ε)} : ∀i ∈ {1, . . . , n},
∣∣φni(x) − φni(τk)

∣∣ ≤ εΦni.

Note that the packing numbers, euclidean norm and rescaling terminology of
Definition 7.9 in Pollard (1990) have been rephrased in terms of covering numbers
and l∞ norm after observing that

∑n
i=1 α2

i (φni(x) − φni(x′))2 ≤ ε2
∑n

i=1 α2
i Φ

2
ni

for all rescaling (α1, . . . , αn) ∈ Rn is equivalent to |φni(x) − φni(x′)| ≤ εΦni for
i = 1, . . . , n. Let us fix ε > 0 and distinguish two cases according to h = h(n).

• hβ ≤ ε. First write∣∣φni(x) − Zi(x)
∣∣ =

∣∣∣∣ p∑
j=1

Wj(x) (Zi(xj) − Zi(x))
∣∣∣∣ ≤ CMih

β ≤ CMiε (A.3)

for all x ∈ [0, 1] and all h ≥ 1/(2p max[0,1](f)) (the latter condition ensures
well-definiteness of local linear smoothing under the design (A.3)), by using the
compacity of the support of K, the Hölder-continuity assumption (A.2) for Zi,
and the trivial fact that

∑p
j=1 |Wj(x)| is uniformly bounded in x and n. Again

with (A.2), observe that
∣∣Zi(x) − Zi(x′)

∣∣ ≤ CMiε as soon as |x − x′| ≤ ε1/β.
Conclude that for all (x, x′) such that |x − x′| ≤ ε1/β , we have∣∣φni(x) − φni(x′)

∣∣ ≤ 3Cε Φni, (A.4)

which yields a covering number N(ε) of the order of ε−1/β .

• hβ > ε. In this case one easily sees that∣∣φni(x) − φni(x′)
∣∣ ≤ p∑

j=1

∣∣Wj(x) − Wj(x′)
∣∣ Φni. (A.5)

We study the previous increment with the following result.

Lemma A.1. As n, p → ∞, h → 0 and ph → ∞,∣∣Wj(x)
∣∣ = O

(
1
ph

K

(
x − xj

h

))
, (A.6a)

∣∣Wj(x) − Wj(x′)
∣∣ = O

(
1
ph

(
|x − x′|

h
∧ 1

))
, (A.6b)

uniformly in j = 1, . . . , p, and in x, x′ ∈ [0, 1], where a ∧ b = min(a, b).
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Proof. Recall that Wj(x) = wj(x)/
∑p

j=1 wj(x), with the wj defined in (2.4).
In view of (A.3), it can easily be shown that the functions sl(x) defined in (2.4)
satisfy

sl(x) =
∫ 1

0

(x − u)l

h
K

(
x − u

h

)
f(u)du + O

(
hl−1

p

)
for l = 0, 1, 2, uniformly in x ∈ [0, 1] as n → ∞ and h → 0.

Further, it holds that∫ 1

0

(x − u)l

h
K

(
x − u

h

)
f(u)du = (−1)lhlf(x)

∫ (1−x)/h

−x/h
ulK(u)du + O

(
hl+1

)
and as a consequence, we have

sl(x) = (−1)lhlf(x)
∫ (1−x)/h

−x/h
ulK(u)du + o

(
hl

)
, (A.7)

p∑
j=1

wj(x) = s2(x)s0(x) − s2
1(x) = o

(
h2

)
+ h2f2(x)

×
(∫ (1−x)/h

−x/h
u2K(u)du

∫ (1−x)/h

−x/h
K(u)du −

(∫ (1−x)/h

−x/h
uK(u)du

)2)
, (A.8)

uniformly in x ∈ [0, 1] as n → ∞, h → 0, and ph → ∞.
Now, the integral factor in (A.8) is positive by virtue of the Cauchy-Schwarz

inequality in L2([0, 1]2). (For x far enough from the boundaries this factor reduces
to

∫
u2K(u)du by the moment properties of K and the compactness of its sup-

port, K is a symmetric density function supported by [−1, 1].) Moreover, being a
continuous function of x ∈ [0, 1], it remains bounded away from zero and infinity
so that

∑p
j=1 wj(x) is uniformly of order h2. Invoking (A.7) and the compact sup-

port of K, one sees that wj(x) = (1/(ph))K ((x − xj)/h)
(
s2(x)−(x−xj)s1(x)

)
=

O
(
(1/(ph))K ((x − xj)/h) h2

)
. The two former facts on the numerator and de-

nominator of Wj(x) produce (A.6a).
It remains to compare Wj(x) and Wj(x′) for arbitrary j, x, x′. First observe

that if either |x − xj | ≥ h or |x′ − xj | ≥ h, then at least one of these weights
is zero, in which case (A.6b) reduces to (A.6a). We may thus assume that
max(|x − xj |, |x′ − xj |) < h. In view of the decomposition

Wj(x) − Wj(x′) =
wj(x) − wj(x′)∑p

j=1 wj(x)
− Wj(x′)

∑p
j=1(wj(x) − wj(x′))∑p

j=1 wj(x)
, (A.9)

(A.6a), the fact that
∑

j wj(x) is of order h2, and (2.4), the comparison of the
weights Wj(x) and Wj(x′) comes down to comparing sl(x) and sl(x′) for l =
0, 1, 2.
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Basic linear algebra shows that∣∣sl(x) − sl(x′)
∣∣ = O

((
|x − x′|

h
∧ 1

)
hl

)
(A.10)

uniformly in x and x′. We now get from (A.7) and (A.10) that

ph
∣∣∣wj(x) − wj(x′)

∣∣∣
=

∣∣∣∣(s2(x)−(x−xj)s1(x))K

(
x−xj

ph

)
−

(
s2(x′)−(x′−xj)s1(x′)

)
K

(
x′−xj

ph

)∣∣∣∣
≤

∣∣∣∣K (
x − xj

ph

)
− K

(
x′ − xj

ph

)∣∣∣∣ · ∣∣s2(x) − (x − xj)s1(x)
∣∣

+K

(
x′−xj

ph

){∣∣(s2(x)−s2(x)
∣∣+∣∣s1(x)(x−x′)

∣∣+∣∣(x−xj)(s1(x′)−s1(x))
∣∣}

=
(
|x − x′|

h
∧ 1

)
· O

(
h2

)
. (A.11)

Finally, putting together the fact that |Jx| and |Jx′ | are of order ph (i.e.,
the non-null weights entering the sum

∑p
j=1(wj(x) − wj(x′)) in (A.9) are in a

number of order ph), (A.6a), (A.8), and (A.10), one may conclude (A.6b) without
difficulty.

Now, using Lemma A.1 and the fact that |Jx| and |Jx′ | are of order ph, one
obtains from (A.5) the following bound:∣∣∣φni(x) − φni(x′)

∣∣∣ ≤ C

(
|x − x′|

h
∧ 1

)
Φni. (A.12)

Since hβ > ε by assumption, it follows that for any x, x′ such that |x − x′| ≤
ε1+1/β/C, the distance between φni(x) and φni(x′) (i = 1, . . . , n) is smaller than
εΦni. Therefore the covering number N(ε) is at most of the order of ε−1−1/β .

Finally, gathering the cases hβ ≤ ε and hβ > ε, we see that N(ε) is at most
of order max(ε−1/β, ε−1−1/β) = ε−1−1/β for ε < 1, which guarantees the fact that∫ 1
0

(
log N(ε)

)1/2
dε < ∞, i.e., the manageability of the φni with respect to the

envelope Φn. All the conditions of the functional CLT 10.6 of Pollard (1990) are
thus met. Applying it, we get that Xn =

√
n

∑p
j=1 WjZ(xj) converges weakly in

C([0, 1]) to a Gaussian process with mean zero and covariance R, as claimed.

Remark A.1. In the bivariate case (d = 2), the previous arguments carry
over with a few simple modifications. In particular in Lemma A.1, (A.6a)
transforms into |Wj(x)| = O

(
(ph1h2)−1K

(
h−1(x − xj)

))
and (A.6b) becomes
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∣∣ = O

(
(ph1h2)−1(‖h−1(x − x′)‖ ∧ 1)

)
. The manageability prop-

erty is obtained exactly as when d = 1, by studying four cases according to the
signs of hβ

1 − ε and hβ
2 − ε. The other conditions of the functional CLT come

alike.

A.2. Control of the smoothed error process

Denote by W (x) the vector of weight functions (W1(x), . . . ,Wp(x))> of the
local linear estimator at x, and by ε̂(x) the smoothed error process

∑
j Wj(x)εj .

We show that
√

n‖widehatε‖∞ converges to zero in probability as n → ∞ by
applying the well-known Borell inequality

P

(
sup
t∈T

X(t) > λ

)
≤ 2 exp

(
− 1

2σ2
T

(
λ − E

(
sup
t∈T

X(t)
))2

)
, (A.13)

holding for all centered, continuous Gaussian processes X indexed by a set T

and for all λ > E(supt∈T X(t)), where σ2
T = supt∈T E(X2(t)) (e.g., Adler (1990,

p.43)). In the present context X =
√

nε̂ and T = [0, 1].
Before applying (A.13), we must bound the quantities E(supx∈[0,1]

√
nε̂(x))

and n supx∈[0,1] Var (ε̂(x)). For the first quantity, we use the classical entropy
bound

E
(

sup
t∈T

X(t)
)
≤ C

∫ ∞

0

√
log N(ε) dε (A.14)

(see e.g., Adler (1990, p.106)) where C > 0 is a universal constant and N(ε) is
the smallest number of balls needed to cover T in the pseudo-metric d(s, t) =
(E(X(s) − X(t))2)1/2. Here, with assumption (A.5) on the common covariance
matrix V of the random vectors (εi1, . . . , εip)>, i = 1, . . . , n, we have

d2(x, x′) = E
(√

n

p∑
j=1

(Wj(x) − Wj(x′))εj

)2

=
(
W (x) − W (x′)

)>V
(
W (x) − W (x′)

)
≤ ‖V‖ × ‖W (x) − W (x′)‖2

≤ C‖W (x) − W (x′)‖2,

where ‖V‖ denotes the largest eigenvalue of V. It follows from Lemma A.1 that

d(x, x′) ≤ C√
ph

(∣∣∣∣x − x′

h

∣∣∣∣ ∧ 1
)

(A.15)

and thus, for all n ≥ 1 and ε > 0, it holds that{
N(ε) = 1 if ε ≥ C√

ph
,

N(ε) ≤ C
h
√

phε
if ε < C√

ph
.

(A.16)



CONFIDENCE BANDS FOR FUNCTIONAL DATA 1763

Plugging (A.16) in (A.14) we obtain

E
(

sup
x∈[0,1]

√
nε̂(x)

)
≤ C

∫ C√
ph

0

√
− log(p1/2h3/2ε) dε

=
C

h
√

ph

∫ ∞

√
log(C/h)

u2 exp(−u2) du

≤ C

h
√

ph
× h

√
| log(h)| = C

√
| log(h)|

ph
(A.17)

after using the change of variable u =
√

− log(p1/2h3/2ε), an integration by parts,
and the classical tail probability bound

∫ ∞
x φ(t)dt < x−1φ(x) (with x > 0 and

φ(t) = (2π)−1/2 exp(−t2/2)). Hence it suffices that h → 0 and log(h)/ph → 0
as n → ∞ to ensure that E(supx∈[0,1]

√
nε̂(x)) → 0. After simple algebraic

manipulations of the condition log(h)/ph → 0 together with the rates n = o(p4)
in (A.4) and nh4 → 0 in Theorem 1, it turns out that this condition is equivalent
to h → 0, n1/(4d) log(p) = o(p) in (A.4), and (p/ log(p))h → ∞ in Theorem 1.
We thus use the latter conditions that are more explicit than the former.

Turning to the variance of ε̂, we utilize again Lemma A.1 and (A.5) to get,
for all x ∈ [0, 1],

Var (ε̂(x)) =
W (x)>VW (x)

n
≤ ‖V‖ · ‖W (x)‖2

n
≤ C

nph
. (A.18)

Borell’s inequality (A.13) may now be applied to X =
√

nε̂ with λ set to an
arbitrary ε > 0. Under the conditions h → 0 and ph| log(h)| → ∞ as n → ∞, we
deduce from (A.17) and (A.18) that

P

(√
n sup

x∈[0,1]
ε̂(x) > ε

)
= O

(
exp

(
−Cphε2

))
, (A.19)

which yields the uniform convergence in probability of the smoothed error process√
nε̂ to zero, as requested.

Remark A.2. The former arguments extend to the bivariate case simply by
replacing h with h1h2 and |(x − x′)/h| with ‖(x − x)′/h‖ in (A.15)–(A.19). In
particular (A.15) extends to the case d = 2 thanks to Remark A.1 and a simple
partitioning of [0, 1]2, while the other equations come in a straightforward way.
The conclusion then holds under the conditions ‖h‖ → 0, ph1h2 → ∞, and
(ph1h2)−1 log(h1h2) → 0, or equivalently ‖h‖ → 0 and p/ log(p)(h1h2) → ∞.
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