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Abstract: From the information-theoretic point of view, the Gaussian distribution

is the least structured. Therefore, the most non-Gaussian direction in which to

explore the clustering structure of data is considered to be the most interesting

linear projection direction when applying projection pursuit. Non-Gaussianity is

often measured by kurtosis. However, kurtosis is well-known to be sensitive to

influential points/outliers and so the projection direction can be unduly affected

by abnormal points. In this paper, we focus on developing influence functions of

projection directions in order to detect abnormal observations, especially on high-

dimensional data. For multivariate data, a new technique is proposed for defining

and developing influence functions of projection directions. In addition, a new

influence function is suggested. Two simulated data examples and one concrete

data example are provided for illustration.

Key words and phrases: Influence function, kurtosis, non-gaussianity, projection

pursuit.

1. Introduction

Friedman and Tukey (1974) introduced the term “projection pursuit” for a
technique designed to search for “interesting” linear projections of multivariate
data. Structure can then be visualized, for example, by the distribution of data
projections on one-dimensional subspaces, or two-dimensional planes defined by
one or two of the projection pursuit directions, respectively. Projection pursuit is
an extension of the classic method of using principal component analysis (PCA)
for visualization, in which the distribution of the data is shown on the plane
spanned by the two first principal components. However, a clustering structure
is not always visible in the covariance or correlation matrix on which PCA is
based. Hence, in this paper, we focus on finding the projection directions that
reveal the clustering or other structure of the data when projection pursuit is
used for exploratory data analysis and its corresponding influence analysis. The
following example is for the illustration of finding certain structure underlying
in a data set, say clustering, by projection pursuit. Figure 1 represents the
scatter plot of the simulated data from a bivariate distribution. It is obvious
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Figure 1. Plots the simulated data.

that projecting the original data onto the x-axis reveals the clustering of the
data (the projected data aggregate into two clusters) while projecting onto y-
axis does not. Therefore, projecting the original data onto the “right” subspace
does help to discover the data structure under consideration, which is clustering
in the example. Of course one can argue that the clustering is easily seen from
the scatter plot in such an example, but for higher dimensional data, due to the
lack of panoramic visualization, applying projection pursuit is at least a plausible
option.

These issues were first addressed in Huang, Cheng, and Wang (2007) for the
two-dimensional case. The idea there is that the most non-Gaussian direction
to explore the clustering structure of the data is the most interesting linear pro-
jection direction found by applying projection pursuit. Kurtosis is often used
as a measure of non-Gaussianity. The kurtosis of the standard Gaussian dis-
tribution is 0; the most interesting projection is the one such that the kurtosis
of the projected variables is as far from 0 as possible. This is discussed for
general dimensions in Section 2. It is well known that kurtosis is sensitive to
influential points/outliers, and that the projection directions can well be affected
by these unusual points. Hence the single-perturbation influence functions in
Huang, Cheng, and Wang (2007) were developed to detect abnormal observa-
tions. Single-perturbation diagnostics can suffer from masking effects (see Riani
and Atkinson (2001)). Identification of outliers in a multivariate points cloud
is difficult, especially when there are several outliers. The classical detection
method does not always find them, because it is based on the sample mean
and covariance matrix, that are themselves affected by the outliers. To avoid
the masking effect, Rousseeuw and van Zomeren (1990) proposed to compute
distance, based on robust estimates of location and covariance, to detect out-
liers in a multivariate point cloud. However, Fung (1993) pointed out that the
high-breakdown robust estimation method, and the least median of squares and
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minimum volume ellipsoid methods proposed by Rousseeuw and van Zomeren
(1990) tend to declare too many observations as extreme. Hence, Fung (1993)
proposed a stepwise analysis, using diagnostic measures to add back omitted ob-
servations, that performs well for confirming outliers. These methods rely on
robustness ideas to uncover masked outliers, so one needs to address the issue
of determining breakdown points. Huang, Cheng, and Wang (2007, 2008) and
this paper devote themselves to the development of pair-perturbations influence
functions that provide not only a sensible way to detect outliers but also a use-
ful auxiliary scheme to uncover masked outliers. The robust method and the
influence function methodology are complementary in our detection of multiple
outliers.

Three types of influence functions in use are the empirical influence func-
tion (EIF), the deleted empirical influence function (DIF), and the sample in-
fluence function (SIF). They have been applied in various contexts in the liter-
ature. For instance, in principal component analysis, influence functions have
been considered by Critchley (1985) and Tanaka (1988), and generalizations to
pair-perturbations were discussed by Huang, Kao, and Wang (2007). In lin-
ear discriminant analysis, influence analysis has been discussed by Fung (1992,
1993, 1995, 1996), He and Fung (2000), Poon (2004) and Huang, Kao, and Wang
(2007).

This paper extends previous work by Huang, Cheng, and Wang (2007, 2008)
that discussed single-perturbation influence functions and pair-perturbation in-
fluence functions of projection direction in applying projection pursuit. Earlier
work looked at the two-dimensional case. Here we go on to high-dimensional
cases, see Remark 1 for more details. We also propose a new influence function,
the averaged influence function (AIF), that averages the information obtained
by the EIF, DIF and SIF functions. Examples in Section 4 show that EIF, DIF,
and SIF do not always agree with one another on outliers. Averaging them after
standardization can retain useful information from each while it dampens mis-
leading noise variation that individual influence functions might trigger. These
characteristics of AIF will be seen in Section 4.

The remainder of this paper is organized as follows. Our implementation
of non-Gaussianity to search projection directions in multivariate data by pro-
jection pursuit is given in Section 2. In Section 3 we propose a new technique
to develop a general framework for influence functions of the projection direc-
tions for multivariate data to detect abnormal points via single perturbation and
pair-perturbation cases. The selection of cut points of influence functions is also
discussed in Section 3. In Section 4, simulations and a data example are used to
illustrate the application of these approaches. Conclusions, additional remarks,
and a brief discussion are in Section 5.
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2. Searching Non-Gaussian Projection Direction via Projection
Pursuit for Multivariate Data

Let X = (X1, . . . , Xn) be a multivariate random variable with distribu-
tion function F . Let Y be the projection of (X1, . . . , Xn) in the direction of
a unit vector a = (a1, . . . , an), that is, Y = a · X =

∑n
i=1 aiXi is the pro-

jected random variable, and a = (a1, . . . , an) ∈ Rn is the direction vector with
‖a‖ =

√
a2

1 + . . . + a2
n = 1. We use the word “direction”, instead of “vector”,

to emphasize that any unit vector a and its opposite, −a, result in the same
projection direction. This also applies to the intervals for polar angles, discussed
next.

A convenient parametrization of the projection directions is provided by the
use of polar coordinates. Let Θ = (θ1, . . . , θn−1) be a vector of angles in polar
coordinates with −π/2 < θi ≤ π/2 for i = 1, . . . n − 1. Projection directions can
now be parametrized by their polar angles as

ai =
{

cos θ1 if i = 1,∏i−1
j=1 sin θj(cos θi)1−δin for i = 2, . . . n,

where δin is the Kronecker delta, and Y can be regarded as a function of Θ,
Y (Θ).

Let κ be the kurtosis of Y ,

κ = M4 − 3M2
2 − 6M4

1 + 12M2
1 M2 − 4M1M3, (2.1)

where Mi denotes the ith moment E[Y i] of Y . Let m = (m1, . . . ,mn) be a multi-
index, a = (a1, . . . , an) and X = (X1, . . . , Xn) be vectors. The following notation
is used:

|m| =
n∑

i=1

mi, m! = m1!m2!...mn! , am =
n∏

i=1

ami
i ,

Xm =
n∏

i=1

Xmi
i , ck

m =
k!
m!

, where k is a positive integer.

Note that the kth moment Mk of Y can be expressed in terms of the moments
of X as

Mk = E[Y k] = E
[
(a · X)k

]
= E

 ∑
|m|=k

ck
mamXm

 .

We remark that, since Y is a function of Θ, the kurtosis κ and the moments Mk

of Y are also functions of Θ. We suppress the dependence of these quantities
on Θ from time to time. The search for the projection direction that drives the
projected data as far away from being Gaussian as possible is that of maximizing
the absolute value of the kurtosis κ of Y as a function of Θ.
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Definition 1. A direction a∗ is the most non-Gaussian direction if its corre-
sponding vector of angles Θ∗ satisfies

|κ(Θ∗)| = max
Θ

|κ(Θ)|. (2.2)

The first order partial derivatives of the moments involved kurtosis with
respect to the θk’s are summarized in a lemma; the proof is by straightforward

but tedious computations, and is omitted. We write |mi| =
i−1∑
j=1

mj and tanΘ =

(tan θ1, . . . , tan θn−1).

Lemma 1. The partial derivatives with respect to θk of the moments needed in
defining the kurtosis κ of Y are

∂M4

∂θk
=

( n−1∏
i=1

cos θi

)4

hk
1(tanΘ),

∂(M2
2 )

∂θk
=

( n−1∏
i=1

cos θi

)4

hk
2(tan Θ),

∂(M4
1 )

∂θk
=

( n−1∏
i=1

cos θi

)4

hk
3(tanΘ),

∂(M2
1 M2)

∂θk
=

( n−1∏
i=1

cos θi

)4

hk
4(tanΘ),

∂(M1M3)
∂θk

=
( n−1∏

i=1

cos θi

)4

hk
5(tanΘ), (2.3)

where, with T = (ξ1, . . . , ξn−1),

hk
1(T) = φk

1(T, 4), hk
2(T) = 2φ2(T, 2)φk

1(T, 2), hk
3(T) = 4ρ3

1(T)ρk
2(T),

hk
4(T) = 2ρ1(T)ρk

2(T)φ2(T, 2) + ρ2
1(T)φk

1(T, 2),
hk

5(T) = ρk
2(T)φ2(T, 3) + ρ1(T)φk

1(T, 3),

and

φk
1(T, p) =

∑
|q|=p

{
cp
q

∏
i 6=k

ξ
p−|qi+1|
i

n−1∏
i=1

(
1 + ξ2

i

)|qi|/2

(
(p − |qk+1|)ξp−1−|qk+1|

k − qkξ
p+1−|qk+1|
k

)
E[Xq]

}
, (2.4)

φ2(T, p) =
∑
|q|=p

{
cp
q

n−1∏
i=1

ξ
p−|qi+1|
i

(
1 + ξ2

i

)|qi|/2 E[Xq]
}

, (2.5)

ρ1(T) =
n∑

i=1

( i−1∏
l=1

ξl

n−1∏
l=i+1

(
1+ξ2

l

)(1−δin)/2 EXi

)
, (2.6)

ρk
2(T) =

n∑
i=1

( i−1∏
l=1

ξl

n−1∏
l=i+1

(
1+ξ2

l

)(1−δin)/2 [
(1−δik)ξ2

k−(1−δin)δik

]
EXi

)
. (2.7)
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In obtaining the equations for the partial derivatives of the Mk’s and their
products in (2.3), we have removed the common factor

∏n−1
i=1 cos θi. We have

taken cos θi 6= 0 for all i = 1, . . . , n − 1, equivalently θi 6= π/2. After
∏n−1

i=1 cos θi

has been factored out, the hi’s become algebraic functions of the ξk’s only, where
ξk = tan θk. In fact, the hi are polynomials in ξk and

√
1 + ξ2

k of degree at most
four, for k = 1, . . . , n − 1.

Lemma 2. The first order conditions for the maximization problem (2.2), ob-
tained by setting the gradient of κ to zero, is equivalent to the system of equations

H(T) = 0, (2.8)

where

H(T) = (H1(T), . . . ,Hn−1(T)), (2.9)

Hk(T) = hk
1(T) − 3hk

2(T) − 6hk
3(T) + 12hk

4(T) − 4hk
5(T). (2.10)

Proof. In the notation of Lemma 1, the partial derivative of κ(Θ) with respect
to θk can be written as

∂κ(Θ)
∂θk

=
∂

∂θk

[
M4−3M2

2 −6M4
1 +12M2

1 M2−4M1M3

]
=

( n−1∏
i=1

cos θi

)4

· Hk(T),

where Hk(T) is given as in (2.10) by letting T = tanΘ. Then setting the gradient
∇κ(Θ) of κ to zero comes to

∇κ(Θ) =

(
n−1∏
i=1

cos θi

)4

H(T) = 0,

which, since cos θi 6= 0 for i = 1, . . . , n − 1, is equivalent to (2.8).

The system (2.8) needs to be solved numerically, for example by Newton’s
method, in order to obtain the critical T. Once we have T, the critical Θ is
obtained as Θ = arctan(T). Finally, the most non-Gaussian direction is obtained
by picking the one among the critical Θ’s that maximizes the objective function.
While we seek to maximize the absolute value of the kurtosis, the same maximum
of the absolute value of kurtosis is obtained whether the sign of the kurtosis is
positive or negative; the first order conditions for kurtosis provide the critical
points for both cases.

To simplify the computations, one can center and whiten the observations
before analyzing them, whitening makes the components of the observed vector
uncorrelated and their variances equal to 1. A popular method here is to use the
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eigenvalue decomposition (EVD) of the covariance matrix that, after centering
and whitening, is the identity matrix. Hence, the h functions hk

3, hk
4 and hk

5,
which are involved in the derivation of M4

1 , (M1)2M2 and M1M3 vanish, and
Hk(T) = hk

1(T) − 3hk
2(T).

3. Influence Functions for the Projection Directions for Multivariate
Data

We next develop influence functions to detect abnormal points for the pro-
jection directions of multivariate data. Three influence functions for practical
use are empirical, deleted empirical, and sample influence functions. We some-
times emphasize dependence on underlying distributions. For example, κ(Θ;F )
denotes the kurtosis of the projected random variable in the direction determined
by Θ, computed under the distribution function F .

Let F be the distribution function of an n-dimensional random vector and
Fε the perturbed distribution function Fε = (1 − ε)F + εδx, where δx denotes
the distribution function (Dirac measure) of the point mass concentrated at x =
(x1, . . . , xn).

Definition 2. If T is a functional acting on an n-dimensional distribution func-
tion F by T : F → R, the influence function I(F,x) of F at x is

I(F,x) := lim
ε→0+

T (Fε) − T (F )
ε

=
d

dε

∣∣∣∣
ε=0

T (Fε).

When T is given by an expectation, say

T (F ) = E[g(X)] =
∫

Rn

g(y)dF (y), (3.1)

where g(y) is an integrable function, then

I(F,x) =
d

dε

∣∣∣∣
ε=0

∫
Rn

g(y)dFε(y) = −E[g(X)] + g(x).

In particular, if g is the monomial Xm, then its influence function at x is xm −
E[Xm].

Here T = tanΘ, which is implicitly defined by the solution of the system
of equations at (2.8). Since T is implicitly defined, the computation of its in-
fluence function appeals to the technique of implicit differentiation; the result is
summarized in Theorem 1.

Theorem 1. The influence function I(T∗,x; F ) of the most non-Gaussian pro-
jection direction statistic T∗ is obtained by solving the linear system

G(T∗; F ) · I(T∗,x; F ) = −t(T∗,x; F ), (3.2)
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where G(T∗; F ) =
[
gk
j (T∗)

]
(n−1)×(n−1)

, t(T∗,x;F ) = [tk(T∗,x)](n−1)×1 and, for

j, k = 1, . . . , n− 1, gk
j (T∗) = λk

1,j − 3λk
2,j − 6λk

3,j +12λk
4,j − 4λk

5,j, and tk(T∗,x) =
πk

1 − 3πk
2 − 6πk

3 + 12πk
4 − 4πk

5 . Exact expressions for the λ and π functions are
given by (1.7)−(1.11) and (1.12)−(1.16) in the Supplement.

Finally, since the influence function I(T∗,x; F ) is an n − 1 dimensional vector;
it is natural to use the vector norm |I(T∗,x; F )| as the magnitude of influence.

Proof. We only sketch the proof of the theorem in the following because of the
complexity of the expressions. Details of full expressions and derivations are in
the Supplement. Given any ε ≥ 0, let T∗

ε = (ξ∗1,ε, . . . , ξ
∗
n−1,ε) be a solution of the

system of

H(T; Fε) = 0, (3.3)

where H is defined at (2.9) and (2.10). This for every ε ≥ 0,

H(T∗
ε; Fε) = 0. (3.4)

Write T∗
0, the critical T under the unperturbed distribution F , as T∗ = (ξ∗1 , . . .,

ξ∗n−1). Let Ii(T∗,x) = d
dεξ

∗
i,ε

∣∣
ε=0

be the influence function of ξ∗i at x, and let
I(T∗,x) = (I1(T∗,x), . . . , In−1(T∗,x)) be the influence function of T at x. To
derive the influence function of I(T∗,x), we implicitly differentiate (3.4) with
respect to ε, then evaluate the resulting equation at ε = 0. Via straightforward
computations (for details see the Supplement) plus the use of (3.4), the resulting
equation can be written as

d

dε
H(T∗

ε, Fε)
∣∣∣∣
ε=0

= G(T∗) · I(T∗,x) + t(T∗,x)

≡

 g1
1 . . . g1

n−1
...

. . .
...

gn−1
1 . . . gn−1

n−1

 ·

 I1(T∗,x)
...

In−1(T∗,x)

 +

 t1
...

tn−1

 = 0,

where, for j = 1, . . . , n − 1 and k = 1, . . . , n − 1,

gk
j (T∗) = λk

1,j − 3λk
2,j − 6λk

3,j + 12λk
4,j − 4λk

5,j ,

tk(T∗,x) = πk
1 − 3πk

2 − 6πk
3 + 12πk

4 − 4πk
5 .

We remark that all the variables λ’s and π’s involved in the above expressions
are functions of T∗ and x; we have suppressed the dependence for simplicity.
The exact expressions for the λ and π functions are given by (1.7)−(1.11) and
(1.12)−(1.16) in the Supplement. Then, the influence function I(T∗,x; F ) can
be obtained by solving the linear system in (3.2).
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Remark 1. For the two-dimensional case, only a single θ is needed to parametrize
the possible projection directions. To find the direction with maximal kurtosis,
the derivative of kurtosis can be regarded as a polynomials of tanθ and set to
zero; we end up with an explicit expression for the influence function of tanθ.
In the multi-dimensional case, we need to consider the projection directions as
a vector of angles Θ = (θ1, . . . , θn−1) in polar coordinates. In finding the max-
imizer for kurtosis, the first order criterion, ∇κ(Θ) = 0, can only be solved
numerically. Accordingly, the derivation of pair-perturbation influence functions
for the projection directions is much more involved.

3.1. Empirical influence function

In practice, the exact distribution function F is unknown but can be esti-
mated by an empirical distribution function F̂ based on a random sample. The
empirical influence function (EIF) is obtained by replacing G(·; F ) and t(·;F ) in
(3.2) by the sample estimates G(·; F̂ ) and t(·; F̂ ), respectively. That is, Î solves
the linear system

G(T∗; F̂ ) · Î(T∗,x; F̂ ) = −t(T∗,x; F̂ ).

3.2. Deleted empirical influence function

Let F̂(x) be the cdf obtained by deleting x from the empirical cdf F̂ and then
substituting it into G(·; F ) and t(·; F ) in (3.2). The deleted empirical influence
function is obtained by solving the linear system

G(T∗; F̂(x)) · Î(T∗,x; F̂(x)) = −t(T∗,x; F̂(x)).

3.3. Sample influence function

The sample influence function (SIF) was defined by Devlin, Gnanadesikan
and Kettenring, (1975) as

SIFT,F (zi) = −(N − 1)(T (F̂(i)) − T (F̂ )), (3.5)

where N is the size of a random sample. It directly measures the effect on the
functional when the ith observation is removed from the empirical cdf F̂ . As the
statistical functional is T = tanΘ in our case, the sample influence function of
the projection direction is

Ĩ(T∗,x; F̂ ) = −(N − 1)
[
T∗(F̂(x)) − T∗(F )

]
,
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where T∗(F̂(x)) and T∗(F ) are the solutions of the system (2.8) based on the
deleted empirical cdf F̂(x) and the empirical cdf F̂ .

3.4. Averaged influence function

In order to retain useful information and average out misleading noise
variation from EIF, DIF, and SIF, an averaged influence function is proposed.
The values of the three influence functions are first standardized by their corre-
sponding means and standard deviations,

S(IF ) =
(IF − IF )√

Var (IF )
, (3.6)

and then the averaged influence function is

AIF =
1
3
{S(EIF ) + S(DIF ) + S(SIF )}.

3.5. Pair-perturbation influence function for the projection direction

It is well known that single-perturbation diagnostics can suffer from a mask-
ing effect. Here we generalize the construction of the single-perturbation influ-
ence function of projection direction to the pair-perturbation influence function
of projection direction to uncover masked influential points.

Let Fε be the pair-perturbed cdf of F at x1 and x2, Fε = (1−2ε)F +ε(δx1 +
δx2), and let T be a statistical functional acting on an n-dimensional distribution
function F by T : F → R.

Definition 3. The pair-perturbation influence function I(F,x1,x2) of F at (x1,
x2) is

I(F,x1,x2) := lim
ε→0+

T (Fε) − T (F )
ε

=
d

dε

∣∣∣∣
ε=0

T (Fε).

Lemma 3. The pair-perturbation influence function I(F,x1,x2) for the statistic
in (3.1) is additive in the sense that I(F,x1,x2) = I(F,x1) + I(F,x2).

Proof. Indeed, the pair-perturbed influence function I(F,x1,x2) of the statistic
in (3.1) is determined by

I(F,x1,x2) =
d

dε

∣∣∣∣
ε=0

∫
Rn

g(y)dFε(y) = −2E[g(X)] + g(x1) + g(x2)

= I(F,x1) + I(F,x2).

For the monomial function Xm, one gets

d

dε
E[Xm; Fε]

∣∣∣∣
ε=0

= −2E[Xm] + xm
1 + xm

2 .
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Moreover, by direct computation, one can also show that the φ functions and ρ

functions share additivity in the form

d

dε
φk

1,ε(p)
∣∣∣∣
ε=0

=
n−1∑
j=1

Ijξ
k
1,j(p) − 2φk

1(p) + φk
1(p,x1) + φk

1(p,x2),

d

dε
φ2,ε(p)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijξ2,j(p) − 2φ2(p) + φ2(p,x1) + φ2(p,x2),

d

dε
ρ1,ε

∣∣∣∣
ε=0

=
n−1∑
j=1

Ij%1,j − 2ρ1 + ρ1(x1) + ρ1(x2),

d

dε
ρk
2,ε

∣∣∣∣
ε=0

=
n−1∑
j=1

Ij%
k
2,j − 2ρ2 + ρk

2(x1) + ρk
2(x2),

where Ij is the pair-perturbed influence function of ξ∗j at (x1,x2). The definitions
of the functions φk

1(p, ·), φ2(p, ·), ρ1(·), and ρk
2(·) are given by (1.4), (1.3), (1.5),

and (1.6), respectively, in the Supplement. (The dependence of the functions
φk

1(p, ·), φ2(p, ·), ρ1(·), and ρk
2(·) on T is not shown for notational simplicity.) We

conclude that

d

dε
hk

1(T
∗
ε; Fε)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijλ
k
1,j(T

∗; F ) − 2hk
1(T

∗; F ) + π
′k
1 (T∗,x1,x2; F ),

d

dε
hk

2(T
∗
ε; Fε)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijλ
k
2,j(T

∗; F ) − 2hk
2(T

∗; F ) + π
′k
2 (T∗,x1,x2; F ),

d

dε
hk

3(T
∗
ε; Fε)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijλ
k
3,j(T

∗; F ) − 2hk
1(T

∗; F ) + π
′k
3 (T∗,x1,x2; F ),

d

dε
hk

4(T
∗
ε; Fε)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijλ
k
4,j(T

∗; F ) − 2hk
2(T

∗; F ) + π
′k
4 (T∗,x1,x2; F ),

d

dε
hk

5(T
∗
ε; Fε)

∣∣∣∣
ε=0

=
n−1∑
j=1

Ijλ
k
5,j(T

∗; F ) − 2hk
2(T

∗; F ) + π
′k
5 (T∗,x1,x2; F ),

where

π
′k
1 (T∗,x1,x2; F )=φk

1(4,x1)+φk
1(4,x2),

π
′k
2 (T∗,x1,x2; F )=2

[(
φ2(2,x1)+φ2(2,x2)

)
φk

1(2)+φ2(2)
(
φk

1(2,x1)+φk
1(2,x2)

)
−2φ2(2)φk

1(2)
]
,
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π
′k
3 (T∗,x1,x2; F )=4

[
3ρ2

1ρ
k
2

(
− 2ρ1+ρ1(x1)+ρ1(x2)

)
+ρ3

1

(
ρk
2(x1)+ρk

2(x2)
)]

,

π
′k
4 (T∗,x1,x2; F )=2

(
− 2ρ1+ρ1(x1)+ρ1(x2)

)
(ρk

2φ2(2)+ρ1φ
k
1(2))

+2ρ1ρ
k
2

(
φ2(2,x1)+φ2(2,x2)

)
+ρ2

1

(
φk

1(2,x1)+φk
1(2,x2)

)
+2ρ1φ2(2)

(
− 2ρk

2+ρk
2(x1)+ρk

2(x2)
)
,

π
′k
5 (T∗,x1,x2; F )=φ2(3)

(
− 2ρk

2+ρk
2(x1)+ρk

2(x2)
)
+ρk

2

(
φ2(3,x1)+φ2(3,x2)

)
+φk

1(3)
(
− 2ρ1+ρ1(x1)+ρ1(x2)

)
+ρ1

(
φk

1(3,x1)+φk
1(3,x2)

)
.

Applying the same trick as in the proof of Theorem 1 and using these computa-
tions, we obtain the pair-perturbation influence function for the project direction
statistic T∗.

Theorem 2. The pair-perturbation influence function I(T∗,x1,x2; F ) of the
most non-Gaussian projection direction statistic T∗ is obtained by solving the
linear system

G(T∗, F ) · I(T∗,x1,x2; F ) = −t
′
(T∗,x1,x2; F ), (3.7)

where

t
′
(T∗,x1,x2; F ) = (t

′
1(T

∗,x1,x2; F ), . . . , t
′
n−1(T

∗,x1,x2; F ))T ,

t
′
k(T

∗,x1,x2; F ) = π
′k
1 − 3π

′k
2 − 6π

′k
3 + 12π

′k
4 − 4π

′k
5 .

Moreover, the pair-perturbation influence for the most non-Gaussian projec-
tion direction, defined implicitly by the solution of the system (2.8) and therefore
not immediately an expectation functional, has the additivity property.

Corollary 1. The pair-perturbation influence function I(T∗,x1,x2; F ) of the
most non-Gaussian projection direction statistic T∗, defined by the solution to
the system (3.7), is additive in the sense that I(T∗,x1,x2; F ) = I(T∗,x1; F ) +
I(T∗,x2; F ).

Proof. Referring to (1.12) to (1.16) for the π functions in the Supplement, we
note that the π′ functions also satisfy the additivity property, πk

a(T∗,x1,x2; F ) =
πk

a(T∗,x1; F ) + πk
a(T∗,x1; F ), for a = 1, . . . , 5, and therefore t′ satisfies

t
′
(T∗,x1,x2; F ) = t(T∗,x2; F ) + t(T∗,x2; F ). The additivity of t′ and (3.7)

imply the additivity of the influence function I.

3.6. Sample version of the pair-perturbation influence functions

3.6.1. Pair-perturbation empirical influence function

We replace F by F̂ in (3.7) to obtain the pair-perturbation empirical influ-
ence function of projection direction by solving

G(T∗; F̂ ) · Î(T∗,x1,x2; F̂ ) = −t
′
(T∗; F̂ ).
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3.6.2. Pair-perturbation delete empirical influence function

Let F̂(x1,x2) be the cdf obtained by deleting the x1 and x2 observations from
the empirical cdf F̂ . Then the pair-perturbation delete empirical influence of
projection direction is obtained by replacing F by F̂(x1,x2) in (3.7) as

G(T∗; F̂(x1,x2)) · Î(x1,x2)(T
∗,x1,x2; F̂(x1,x2)) = −t

′
(T∗; F̂(x1,x2)).

3.6.3. Pair-perturbation sample influence function

The pair-perturbation sample influence function of projection direction is

Ĩ(T∗,x1,x2; F̂ ) = −(N − 2)(T∗(F̂(x1,x2)) − T∗(F̂ )),

where T∗(F̂(x1,x2)) and T∗(F̂ ) are the solutions of the system (2.8) based on the
deleted empirical cdf F̂(x1,x2) and the empirical cdf F̂ , respectively.

3.6.4. Pair-perturbation averaged influence function

To calculate the pair-perturbation averaged influence function, we first stan-
dardize the values of the influence functions by their corresponding means and
standard deviations as in (3.6). Then the averaged pair-perturbation influence
function is

AIF =
{SP (EIF ) + SP (DIF ) + SP (SIF )}

3
,

where SP means standardized pair-perturbation influence function.

3.7. Cut points selection for influence functions

One can grasp the influential observations visually when the values of the
influence function are exhibited in a diagram. However, such a figure can only
present the relative magnitudes of the oscillation for the values of influence func-
tions; a choice of cut points is required to determine the “influential points”.

Write the interquartile range (IQR) as IQR := q3 − q1, where q1 is the
lower (25th) quantile and q3 is the upper (75th) quantile; the quantities LOF =
q1 − 3(IQR) and UOF = q3 + 3(IQR) are the lower outer fence and upper outer
fence, respectively. Observations with an influence value outside the outer fences
are referred to as influential points.

4. Examples

Three examples (a simulation study, a data set and a simulated data set)
illustrate the application of the proposed techniques of projection pursuit and
the use of influence functions of projection directions.
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Table 1. The single-perturbation results of a simulated data with 500 runs.

Influential observation EIF DIF SIF AIF
61st 84(16.8%) 159(13.8%) 436(87.2%) 236(47.2%)
62nd 497(99.4%) 180(36%) 481(96.2%) 499(99.8%)

Table 2. The pair-perturbation results of a simulation experiment with 500 runs.

Influential paired observations EIF DIF SIF AIF
(61st, 62nd) 492(98.4%) 468(93.6%) 468(93.6%) 499(99.8%)

4.1. A simulation study

We generated 60 observations from five independent uniforms on (−0.5, 0.5).
The data were mixed using the (randomly chosen) mixing matrix

6 2 9 5 4
2 8 1 5 5
2 6 4 8 3
9 4 2 2 1
1 8 6 8 1


and then points (0.2, 12, 0.7, 0.6, 9) and (0.1, 15, 14, 0.5, 0.3), indexed by
numbers 61 and 62, were added. We centered and whitened the observations and
then found the solution to the polynomial (2.8) in tanΘ with maximum kurtosis.
Next, the single-perturbation influence function and pair-perturbation influence
function for the projection direction were calculated. This whole procedure was
implemented 500 times.

Table 1 summarizes, the frequencies of the 61st and 62nd artificial observa-
tions when detected as influential points. The results for single-perturbation show
that the sample influence function (SIF) successfully detected both the 61st and
62nd observations as influential points with high percentages (87.2% and 96.2%)
of the time. On the other hand, EIF and AIF detected the 62nd point as influ-
ential with a high percentages (99.4%) and (99.8%), respectively; DIF detected
the 61st and the 62nd points as influential with low percentages (13.8%) and
(36%), respectively. In order to further investigate the pair-perturbation results,
we computed the average frequencies of the influential pair(s) for each observa-
tion among 500 simulation runs, and here plot the average counts (frequencies)
of the influential pair(s) versus the observation index number as a diagnostic
plot in Figure 2. The results are also summarized in Table 2. Clearly, observa-
tions paired with the 61st and 62nd observations have larger average counts of
influential pairs for all of the influence functions. These simulation results sug-
gest that the DIF does not succeed in detecting any influential point by single-
perturbation, but the pair-perturbation DIF successfully detects the 61st and the
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Figure 2. Plots of average counts of influential pair(s) versus the observation
index number for a multivariate simulated data set with 500 replications.

62nd as influential. Moreover, AIF, which averages all information from three
influence functions, also successfully uncovered the masking 61st point via the
pair-perturbation scheme. These results suggest that the pair-perturbation influ-
ence functions provide a very useful auxiliary scheme to detect masked unusual
points not detected by single perturbation influence functions.

4.2. Salinity data

Our second illustration uses the Salinity data set taken from Rousseeuw
and Leory (1987, p.82). This comprises 28 measurements of water salinity and
river discharge taken in North Carolina’s Pamlico Sound and three explanatory
variables: salinity, lagged by two weeks (x1); the trend, that is the number
of biweekly periods elapsed since the beginning of the spring season (x2); and
the volume of river discharge into the sound (x3). Carroll and Ruppert (1985)
described the physical background of the data and pointed out that cases 5 and
16 correspond to periods of very heavy discharge. Rousseeuw and van Zomeren
(1990) concluded that three good leverage points (cases 5, 23, 24) and one bad
leverage point (case 16) would be identified using larger cutoff values ±5 by
applying the least median of squares (LMS) method. However, Fung (1993)
proposed a stepwise confirmatory analysis and concluded that observation 16 is
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Table 3. Influential cases of the single-perturbation influence functions for
Salinity data.

Influence Function influence cases detected
EIF 5, 16
DIF 3, 5, 13, 16
SIF 16
AIF 16

Figure 3. Plots of values of single-perturbation influence functions of tanΘ∗

versus the observation index number for a multivariate salinity data set.

the only outlier in the data set and that observations 5 and 23 are slightly high
leverage points.

We first centered and whitened the observations. The solution to the polyno-
mial (2.8) in tanΘ with maximum kurtosis is 6.5527; thus the projection direction
Θ∗ is (0.2466π, 0). Next, we computed the four influence functions of projection
directions and here plot their values versus the observation index as a diagnostic
plot in Figure 3. The cut points of the influence functions were selected based
on the lower-upper inner fences (see Section 3). Table 3 summarizes the in-
fluential cases of single-perturbation influence functions. The results in Figure
3 and Table 3 show that EIF and DIF both detect the 5th and 16th observa-
tions as influential points. On the other hand, SIF and AIF detect only the 16th
observation as influential.
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Figure 4. Plots of average counts of influential pair(s) versus the observation
index number for a multivariate salinity data set.

We also considered the use of pair-perturbation influence functions to detect
masking influential points. The values of the pair-perturbation influence func-
tions versus the observation index are shown in the diagnostic plot of Figure 4.
Note that observations paired with the 5th and 16th observations have clearly
larger counts of influential pairs for EIF and DIF. This is not surprising for EIF
because of its additivity property. On the other hand, the observations paired
with the 16th and 23th observations have clearly larger counts of influential pairs
for SIF. The results for this data set suggest that the EIF and DIF succeed in
detecting the 5th and 16th influential points, both for the single-perturbation
and the pair-perturbation cases. This agrees with the results of Carroll and
Ruppert (1985). The SIF pair-perturbation influence function indicates that the
23th observation is a potential outlier/influential point. This is in agreement
with the residual plot with the LMS fit in Rousseeuw and Leory (1987, p.84)
and the confirmatory analysis of Fung (1993, p.519). Moreover, AIF successfully
detects only the 16th observation as influential, both for single-perturbation and
pair-perturbation cases. This also agrees with the confirmatory analysis of Fung
(1993, p.519). In brief, our proposed outlier/influential observations detection
method shows excellent performance.
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Figure 5. Plots of values of single-perturbation influence functions of tanΘ∗

versus the observation index number for the multivariate Hawkins-Bradu-
Kass data set.

4.3. Hawkins-Bradu-Kass data

For the final illustration, we use the Hawkins-Bradu-Kass data generated
artificially by Hawkins, Bradu, and Kass (1984, Table 4). This data set consists
of 75 observations with three explanatory variables. The first ten observations
are outliers as well as leverage points. They are called bad leverage points by
Rousseeuw and van Zomeren (1990). The next four observations (11th −14th)
are good leverage points (not outliers). Rousseeuw and van Zomeren (1990)
correctly identified the first 14 extreme observations using the LMS and MVE
methods. The first 14 observations are also confirmed as high leverage influential
points via a stepwise analysis proposed by Fung (1993).

We first centered and whitened the observations. The solution to the poly-
nomial (2.8) in tanΘ with maximum kurtosis is 20.63586, thus the projection
direction Θ∗ is (0,−0.5π). Next, we computed the influence functions of pro-
jection direction and here plot the values of the influence functions versus the
observation index as a diagnostic plot in Figure 5. The cut points of influ-
ence functions were selected based on the lower-upper inner fences. Table 4
summarizes the influential cases detected by the single-perturbation influence
functions. The results show that EIF detects observations 1, 3, 4, 5, 8, 9, 10, 11,
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Figure 6. Plots of average counts of influential pair(s) versus the observation
index number for the multivariate Hawkins-Bradu-Kass data set.

Table 4. Influential cases of the single-perturbation influence functions for
Hawkins-Bradu-Kass data.

Influence Function influence cases detected
EIF 1, 3, 4, 5, 8, 9, 10, 11, 12
DIF 1, 4, 5, 6, 9, 11, 12, 75
SIF 14
AIF 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 14

12 as influential; DIF detects observations 1, 4, 5, 6, 9, 11, 12, 75 as influential;
SIF detects only the 14th observation as influential; AIF detects observations 1,
2, 3, 4, 5, 8, 9, 10, 11, 12, 14 as influential. We also use the pair-perturbation
influence function to detect the masking influential points. A plot of the values
of the pair-perturbation influence functions versus the corresponding observation
index is shown in Figure 6. Note that the first 13 observations clearly have larger
counts of influential pairs for EIF, DIF, and AIF; the 14th observation clearly has
larger counts of influential pairs for SIF and AIF. The results suggest that the
EIF and DIF pair-perturbation influence functions successfully uncover masking
observations except for observation 14. The AIF successfully uncovers all mask-
ing observations not detected by single-perturbation. In fact, our proposed AIF
method confirms the analyses of Rousseeuw and van Zomeren (1990) and of Fung
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(1993).

5. Concluding Remarks

This paper extends previous work by Huang, Cheng, and Wang (2007,
2008) that discussed single-perturbation influence functions and pair-perturbation
influence functions of projection direction by applying projection pursuit. The
previous papers provided a way to detect influential observations/outliers for the
two-dimensional data case. Here, we generalize the results to general higher di-
mensions. For multivariate high-dimensional data, a technique is proposed for
defining and developing influence functions of projection directions. Also a new
influence function is suggested, the averaged influence function (AIF), which av-
erages the information obtained by the empirical influence function (EIF), the
deleted empirical influence function (DIF), and the sample influence function
(SIF). Three specific numerical examples (two simulated data, one real data) are
discussed.

In our numerical examples, the proposed pair-perturbation method uncovers
the case of one observation masked by another. The method can of course be
extended to multiple perturbation schemes. However, in the case where the
number of observation is large and/or the data dimensions are high, the number
of combinations of cases needing to be analyzed becomes extremely large. An
alternative solution then would be to apply the local influence functions proposed
by Cook (1986), as discussed in the context of principal component analysis in
Shi (1997) and Huang, Cheng, and Wang (2007).
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