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Abstract: We introduce a fast stepwise regression method, called the orthogonal

greedy algorithm (OGA), that selects input variables to enter a p-dimensional linear

regression model (with p À n, the sample size) sequentially so that the selected

variable at each step minimizes the residual sum squares. We derive the convergence

rate of OGA and develop a consistent model selection procedure along the OGA

path that can adjust for potential spuriousness of the greedily chosen regressors

among a large number of candidate variables. The resultant regression estimate is

shown to have the oracle property of being equivalent to least squares regression

on an asymptotically minimal set of relevant regressors under a strong sparsity

condition.
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1. Introduction

Consider the linear regression model

yt = α +
p∑

j=1

βjxtj + εt, t = 1, . . . , n, (1.1)

with p predictor variables xt1, xt2, . . . , xtp that are uncorrelated with the mean-
zero random disturbances εt. When p is larger than n, there are computational
and statistical difficulties in estimating the regression coefficients by standard re-
gression methods. Major advances to resolve these difficulties have been made in
the past decade with the introduction of L2-boosting (Bühlmann and Yu (2003)),
LARS (Efron et al. (2004)), and Lasso (Tibshirani (1996)) which has an extensive
literature because much recent attention has focused on its underlying principle,
namely, l1-penalized least squares. It has also been shown that consistent esti-
mation of the regression function

y(x) = α + β>x, where β = (β1, . . . , βp)>,x = (x1, . . . , xp)>, (1.2)
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is still possible under a sparsity condition on the regression coefficients. In partic-
ular, by assuming the “weak sparsity” condition that the regression coefficients
are absolutely summable, Bühlmann (2006) has shown that for p = exp(O(nξ))
with 0 < ξ < 1, the conditional mean squared prediction error

CPE := E{(y(x) − ŷm(x))2|y1,x1, . . . , yn,xn} (1.3)

of the L2-boosting predictor ŷm(x) (defined in Section 2.1) can converge in prob-
ability to 0 if m = mn → ∞ sufficiently slowly, but there are no results on the
convergence rate. The most comprehensive theory to date for high-dimensional
regression methods has been developed for Lasso, and Section 3 gives a brief
overview of this theory, including recent work on ”oracle inequalities” for Lasso
and a closely related method, the Dantzig selector.

A method that is widely used in applied regression analysis to handle a large
number of input variables, albeit without Lasso’s strong theoretical justification,
is stepwise least squares regression which consists of (a) forward selection of
input variables in a ”greedy” manner so that the selected variable at each step
minimizes the residual sum of squares after least squares regression is performed
on it together with previously selected variables, (b) a stopping rule to terminate
forward inclusion of variables, and (c) stepwise backward elimination of variables
according to some criterion. In this paper we develop an asymptotic theory for
a version of stepwise regression in the context of high-dimensional regression
(p À n) under certain sparsity assumptions, and demonstrate its advantages in
simulation studies of its finite-sample performance.

The forward stepwise component of this procedure is called the orthogonal
greedy algorithm (OGA) or orthogonal matching pursuit in information theory,
compressed sensing and approximation theory, which focuses on approximations
in noiseless models (i.e., εt = 0 in (1.1)); see Temlyakov (2000), Tropp (2004), and
Tropp and Gilbert (2007). We also develop a fast iterative procedure for updat-
ing OGA that uses componentwise linear regression similar to the L2-boosting
procedure of Bühlmann and Yu (2003) and does not require matrix inversion.
Section 3 gives an oracle inequality for OGA and the rate of convergence of the
squared prediction error (1.3) in which ŷm(·) is the OGA predictor, under the
weak sparsity condition that

∑p
j=1 |βj | remains bounded as n → ∞.

In Section 4, we develop a consistent model selection procedure along an
OGA path under a ”strong sparsity” condition that the nonzero regression co-
efficients satisfying the weak sparsity condition are not too small. Applying the
convergence rate of OGA established in Theorem 1, we prove that, with prob-
ability approaching 1 as n → ∞, the OGA path includes all relevant regressors
when the number of iterations is large enough. The sharp convergence rate in
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Theorem 1 also suggests the possibility of developing high-dimensional modifica-
tions of penalized model selection criteria like BIC and proving their consistency
by an extension of the arguments of Hannan and Quinn (1979). We call such
modification a high-dimensional information criterion (HDIC). This combined
estimation and variable selection scheme, which we denote by OGA+HDIC, is
shown in Theorem 4 to select the smallest set of all relevant variables along the
OGA path with probability approaching 1 (and is therefore variable-selection
consistent). We then further trim this set by making use of HDIC to come up
with the minimal set of regressors under the strong sparsity condition; the oracle
property of this approach is established in Theorem 5. In this connection, Sec-
tion 4 also reviews recent work on variable selection in high-dimensional sparse
linear models, and, in particular, the one proposed by Chen and Chen (2008)
and developments in Lasso and adaptive Lasso. Section 5 presents simulation
studies to illustrate the performance of OGA+HDIC and some issues raised in
the review. Concluding remarks and further discussion are given in Section 6.

2. L2-Boosting, Forward Stepwise Regression and Temlyakov’s Greedy
Algorithms

We begin this section by reviewing Bühlmann and Yu’s (2003) L2-boosting
and then represent forward stepwise regression as an alternative L2-boosting
method. The ”population versions” of these two methods are Temlyakov’s (2000)
pure greedy and orthogonal greedy algorithms (PGA and OGA). Replacing yt

by yt − ȳ and xtj by xtj − x̄j , where x̄j = n−1
∑n

t=1 xtj and ȳ = n−1
∑n

t=1 yt, it
will be assumed that α = 0. Let xt = (xt1, . . . , xtp)>.

2.1. PGA iterations

Bühlmann and Yu’s (2003) L2-boosting is an iterative procedure that gen-
erates a sequence of linear approximations ŷk(x) of the regression function (1.2)
(with α = 0), by applying componentwise linear least squares to the residuals
obtained at each iteration. Initializing with ŷ0(·) = 0, it computes the residuals
U

(k)
t := yt − ŷk(xt), 1 ≤ t ≤ n, at the end of the kth iteration and chooses xt,ĵk+1

on which the pseudo-responses U
(k)
t are regressed, such that

ĵk+1 = arg min
1≤j≤p

n∑
t=1

(U (k)
t − β̃

(k)
j xtj)2, (2.1)

where β̃
(k)
j =

∑n
t=1 U

(k)
t xtj/

∑n
t=1 x2

tj . This yields the update

ŷk+1(x) = ŷk(x) + β̃
(k)

ĵk+1
xĵk+1

. (2.2)
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The procedure is then repeated until a pre-specified upper bound m on the
number of iterations is reached. When the procedure stops at the mth iteration,
y(x) in (1.2) is approximated by ŷm(x). Note that the same predictor variable
can be entered at several iterations, and one can also use smaller step sizes to
modify the increments as ŷk+1(xt) = ŷk(xt) + δβ̃

(k)

ĵk+1
xt,ĵk+1

, 0 < δ ≤ 1, during

the iterations; see Bühlmann (2006, p.562).

2.2. Forward stepwise regression via OGA iterations

Like PGA, OGA uses the variable selector (2.1). Since
∑n

t=1(U
(k)
t − β̃

(k)
j xtj)2

/
∑n

t=1(U
(k)
t )2 = 1 − r2

j , where rj is the correlation coefficient between xtj and

U
(k)
t , (2.1) chooses the predictor that is most correlated with U

(k)
t at the kth stage.

However, our implementation of OGA updates (2.2) in another way and also car-
ries out an additional linear transformation of the vector Xĵk+1

to form X⊥
ĵk+1

,

where Xj = (x1j , . . . , xnj)>. Our idea is to orthogonalize the predictor variables
sequentially so that OLS can be computed by componentwise linear regression,
thereby circumventing difficulties with inverting high-dimensional matrices in the
usual implementation of OLS. With the orthogonal vectors Xĵ1

,X⊥
ĵ2

, . . . ,X⊥
ĵk

al-

ready computed in the previous stages, we can compute the projection X̂ĵk+1
of

Xĵk+1
into the linear space spanned by Xĵ1

,X⊥
ĵ2

, . . . ,X⊥
ĵk

by adding the k projec-
tions into the respective one-dimensional linear spaces (with each projection being
componentwise linear regression of xt,ĵk+1

on x⊥
t,ĵi

for some i ≤ k). This also yields

the residual vector X⊥
ĵk+1

= Xĵk+1
− X̂ĵk+1

. With X⊥
ĵk+1

= (x⊥
1,ĵk+1

, . . . , x⊥
n,ĵk+1

)>

thus computed, OGA uses the following update in lieu of (2.2):

ŷk+1(xt) = ŷk(xt) + β̂
(k)

ĵk+1
x⊥

t,ĵk+1
, (2.3)

where β̂
(k)

ĵk+1
= (

∑n
t=1 U

(k)
t x⊥

t,ĵk+1
)/

∑n
t=1(x

⊥
t,ĵk+1

)2.

Note that OGA is equivalent to the least squares regression of yt on (xt,ĵ1
, . . . ,

xt,ĵk+1
)> at stage k + 1 when it chooses the predictor xt,ĵk+1

that is most cor-

related with U
(k)
t . By sequentially orthogonalizing the input variables, OGA

preserves the attractive computational features of componentwise linear regres-
sion in PGA while replacing (2.2) by a considerably more efficient OLS update.
Since

∑n
t=1 U

(k)
t x⊥

tj =
∑n

t=1 U
(k)
t xtj , β̃

(k)
j and β̂

(k)
j only differ in their denomina-

tors,
∑n

t=1 x2
tj and

∑n
t=1(x

⊥
tj)

2. Note that OGA still uses β̃
(k)
j , which does not

require computation of vector X⊥
j , for variable selection. However, because U

(k)
t

are the residuals in regressing yt on (xt,ĵ1
, . . . , xt,ĵk

)> for OGA, the corresponding
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variable selector for ĵk+1 in (2.1) can be restricted to j /∈ {ĵ1, . . . , ĵk}. Therefore,
unlike PGA for which the same predictor variable can be entered repeatedly,
OGA excludes variables that are already precluded from further consideration in
(2.1).

2.3. Population version of OGA

Let y, z1, . . . , zp be square integrable random variables having zero means
and such that E(z2

i ) = 1. Let z = (z1, . . . , zp)>. The population version of
OGA, which is a special case of Temlyakov’s (2000) greedy algorithms, is an
iterative scheme which chooses j1, j2, . . . sequentially by

jk+1 = arg max
1≤j≤p

|E(ukzj)|, where uk = y − ỹk(z), (2.4)

and which updates ỹk(z) by the best linear predictor
∑

j∈Jk+1
λjzj of y that

minimizes E(y −
∑

j∈Jk+1
λjzj)2, where Jk+1 = {j1, . . . , jk+1} and ỹ0(z) = 0.

3. An Oracle-Type Inequality and Convergence Rates under Weak
Sparsity

In the first part of this section, we prove convergence rates for OGA in linear
regression models in which the number of regressors is allowed to be much larger
than the number of observations. Specifically, we assume that p = pn → ∞ and

(C1) log pn = o(n),

which is weaker than Bühlmann’s (2006) assumption (A1) for PGA. Moreover,
similar to Bühlmann’s assumptions (A2)−(A4), we assume that the (εt,xt) in
(1.1) are i.i.d., such that εt is independent of xt, and

(C2) E{exp(sε)} < ∞ for |s| ≤ s0,

where (ε,x) denotes an independent replicate of (εt,xt). As in Section 2, we
assume that α = 0 and E(x) = 0. Letting σ2

j = E(x2
j ), zj = xj/σj , and

ztj = xtj/σj , we assume that there exists s1 > 0 such that

(C3) lim supn→∞ max1≤j≤pn E{exp(s1z
2
j )} < ∞.

This assumption is used to derive exponential bounds for moderate deviation
probabilities of the sample correlation matrix of xt. In addition, we assume the
weak sparsity condition

(C4) supn≥1

∑pn

j=1 |βjσj | < ∞,
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which is somewhat weaker than Bühlmann’s assumption (A2). While Bühlmann’s
moment condition (A4) is weaker than (C2), his (A3) requires xj(1 ≤ j ≤ pn) to
be uniformly bounded random variables and (C3) is considerably weaker. The
second part of this section gives an inequality for OGA similar to Bickel, Ritov,
and Tsybakov’s (2009) oracle inequality for Lasso. In this connection we also
review related inequalities in the recent literature.

3.1. Uniform convergence rates

Let Kn denote a prescribed upper bound on the number m of OGA iterations.
Let

Γ(J) = E{z(J)z>(J)}, gi(J) = E(ziz(J)), (3.1)

where z(J) is a subvector of (z1, . . . , zp)> and J denotes the associated subset of
indices 1, . . . , p. We assume that for some δ > 0, M > 0, and all large n,

min
1≤](J)≤Kn

λmin(Γ(J)) > δ, max
1≤](J)≤Kn,i∈/J

‖Γ−1(J)gi(J)‖1 < M, (3.2)

where ](J) denotes the cardinality of J and

‖ν‖1 =
k∑

j=1

|νj | for ν = (ν1, . . . , νk)>. (3.3)

The following theorem gives the rate of convergence, which holds uniformly over
1 ≤ m ≤ Kn, for the CPE (defined in (1.3)) of OGA provided the correlation ma-
trix of the regressors satisfies (3.2), whose meaning will be discussed in Sections
3.2 and Example 3 of Section 5.

Theorem 1. Assume (C1)-(C4) and (3.2). Suppose Kn → ∞ such that Kn =
O((n/ log pn)1/2). Then for OGA,

max
1≤m≤Kn

(
E[{y(x) − ŷm(x)}2|y1,x1, . . . , yn,xn]

m−1 + n−1m log pn

)
= Op(1).

Let y(x) = β>x and let yJ(x) denote the best linear predictor of y(x) based
on {xj , j ∈ J}, where J is a subset of {1, . . . , pn}. Let Jk be the set of input
variables selected by the population version of OGA at the end of stage k. Then
by Theorem 3 of Temlyakov (2000), the squared bias in approximating y(x)
by yJm(x) is E(y(x) − yJm(x))2 = O(m−1). Since OGA uses ŷm(·) instead of
yJm(·), it has not only larger squared bias but also variance in the least squares
estimates β̂ĵi

, i = 1, . . . ,m. The variance is of order O(n−1m log pn), noting that
m is the number of estimated regression coefficients, O(n−1) is the variance per
coefficient, and O(log pn) is the variance inflation factor due to data-dependent
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selection of ĵi from {1, . . . , pn}. Combining the squared bias with the variance
suggests that O(m−1 + n−1m log pn) is the smallest order one can expect for
En({y(x)− ŷm(x)}2), and standard bias-variance tradeoff suggests that m should
not be chosen to be larger than O((n/ log pn)1/2). Here and in the sequel, we
use En(·) to denote E[·|y1,x1, . . . , yn,xn]. Theorem 1 says that, uniformly in
m = O((n/ log pn)1/2), OGA can indeed attain this heuristically best order of
m−1 +n−1m log pn for En({y(x)− ŷm(x)}2). Section 3.2 gives further discussion
of these bias-variance considerations and the restriction on Kn.

Proof of Theorem 1. Let Ĵk = {ĵ1, . . . , ĵk} and note that Ĵk is independent of
(y,x, ε). Replacing xtj by xtj/σj and xj by xj/σj in the OGA and its population
version, we can assume without loss of generality that σj = 1 for 1 ≤ j ≤ pn, and
therefore zj = xj ; recall that (C4) actually involves

∑pn

j=1 |βj |σj . For i /∈ J , let

µJ,i = E[{y(x) − yJ(x)}xi], µ̂J,i =
n−1

∑n
t=1(yt − ŷt;J)xti(

n−1
∑n

t=1 x2
ti

)1/2
, (3.4)

where ŷt;J denotes the fitted value of yt when Y = (y1, . . . , yn)> is projected into
the linear space spanned by Xj , j ∈ J 6= ∅, setting ŷt;J = 0 if J = ∅. Note that µ̂J,i

is the method-of-moments estimate of µJ,i; the denominator (n−1
∑n

t=1 x2
ti)

1/2 in
(3.4) is used to estimate σj (which is assumed to be 1), recalling that E(xti) = 0.
In view of (1.2) with α = 0, for i /∈ J ,

µJ,i =
∑
j /∈J

βjE[(xj − x
(J)
j )xi] =

∑
j /∈J

βjE[xj(xi − x
(J)
i )] =

∑
j /∈J

βjE(xjx
⊥
i;J), (3.5)

where x⊥
i;J = xi − x

(J)
i and x

(J)
i is the projection (in L2) of xi into the linear

space spanned by {xj , j ∈ J}, i.e.,

x
(J)
i = x>

J Γ−1(J)gi(J), with xJ = (xl, l ∈ J). (3.6)

Since yt =
∑pn

j=1 βjxtj + εt and since
∑n

t=1(εt − ε̂t;J)xti =
∑n

t=1 εtx̂
⊥
ti;J ,

where x̂⊥
ti;J = xti − x̂ti;J , and ε̂t;J and x̂ti;J are the fitted values of εt and xti

when ε = (ε1, . . . , εn)> and Xi are projected into the linear space spanned by
Xj , j ∈ J , it follows from (3.4) and (3.5) that

µ̂J,i − µJ,i =

∑n
t=1 εtx̂

⊥
ti;J√

n(
∑n

t=1 x2
ti)1/2

+
∑
j∈/J

βj

{
n−1

∑n
t=1 xtj x̂

⊥
ti;J

(n−1
∑n

t=1 x2
ti)1/2

− E(xjx
⊥
i;J)

}
. (3.7)

In Appendix A, we make use of (C2) and (C3), together with (3.2) and (3.6),
to derive exponential bounds for the right-hand side of (3.7), and combine these
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exponential bounds with (C1) and (C4) to show that there exists a positive
constant s, independent of m and n, such that

lim
n→∞

P (Ac
n(Kn)) = 0, where

An(m)=
{

max
(J,i):](J)≤m−1,i/∈J

|µ̂J,i − µJ,i| ≤ s(
log pn

n
)1/2

}
. (3.8)

For any 0 < ξ < 1, let ξ̃ = 2/(1 − ξ) and take

Bn(m) =
{

min
0≤i≤m−1

max
1≤j≤pn

|µĴi,j
| > ξ̃s(log

pn

n
)1/2

}
, (3.9)

in which we set µJ,j = 0 if j ∈ J , and µĴ0,j = µ∅,j . We now show that for all
1 ≤ q ≤ m,

|µĴq−1,ĵq
| ≥ ξ max

1≤i≤pn

|µĴq−1,i| on An(m)
∩

Bn(m), (3.10)

by noting that on An(m)
∩

Bn(m),

|µĴq−1,ĵq
| ≥ −|µ̂Ĵq−1,ĵq

− µĴq−1,ĵq
| + |µ̂Ĵq−1,ĵq

|
≥ − max

(J,i):](J)≤m−1,i∈/J
|µ̂J,i − µJ,i| + |µ̂Ĵq−1,ĵq

|

≥ −s(log
pn

n
)1/2 + max

1≤j≤pn

|µ̂Ĵq−1,j | (since |µ̂Ĵq−1,ĵq
|= max

1≤j≤pn

|µ̂Ĵq−1,j |)

≥ −2s(log
pn

n
)1/2 + max

1≤j≤pn

|µĴq−1,j | ≥ ξ max
1≤j≤pn

|µĴq−1,j |,

since 2s(n−1 log pn)1/2 < (2/ξ̃)max1≤j≤pn |µĴq−1,j | on Bn(m) and 1 − ξ = 2/ξ̃.
Consider the “semi-population version” of OGA that uses the variable se-

lector (ĵ1, ĵ2, · · · ) but still approximates y(x) by
∑

j∈Ĵk+1
λjxj , where the λj are

the same as those for the population version of OGA. In view of (3.10), this
semi-population version is the “weak orthogonal greedy algorithm” introduced
by Temlyakov (2000, pp.216-217), whose Theorem 3 can be applied to conclude
that

En[{y(x) − yĴm
(x)}2] ≤ (

pn∑
j=1

|βj |)2(1 + mξ2)−1on An(m)
∩

Bn(m). (3.11)
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For 0 ≤ i ≤ m − 1, En[{y(x) − yĴm
(x)}2] ≤ En[{y(x) − yĴi

(x)}2], and therefore

En[{y(x) − yĴm
(x)}2] ≤ min

0≤i≤m−1
En{(y(x) − yĴi

(x))(
pn∑

j=1

βjxj)}

≤ min
0≤i≤m−1

max
1≤j≤pn

|µĴi,j
|

pn∑
j=1

|βj |

≤ ξ̃s(n−1 log pn)1/2
pn∑

j=1

|βj | on Bc
n(m).

Combining this with (C4), (3.11), and the assumption that m ≤ Kn = O((n
/ log pn)1/2) yields

En[{y(x) − yĴm
(x)}2]IAn(m) ≤ C∗m−1 (3.12)

for some constant C∗ > 0. Moreover, since An(Kn) ⊆ An(m), it follows from
(3.8) and (3.12) that max1≤m≤Kn mEn[{y(x) − yĴm

(x)}2] = Op(1). Theorem 1
follows from this and

max
1≤m≤Kn

nEn[{ŷm(x) − yĴm
(x)}2]

m log pn
= Op(1), (3.13)

whose proof is given in Appendix A, noting that

En[{y(x) − ŷm(x)}2] = En[{y(x) − yĴm
(x)}2] + En[{ŷm(x) − yĴm

(x)}2].

3.2. A bias-variance bound

In this section, we assume that the xtj in (1.1) are nonrandom constants and
develop an upper bound for the empirical norm

‖ŷm(·) − y(·)‖2
n = n−1

n∑
t=1

(ŷm(xt) − y(xt))2 (3.14)

of OGA, providing an analog of the oracle inequalities of Candes and Tao (2007),
Bunea, Tsybakov, and Wegkamp (2007) Bickel, Ritov, and Tsybakov (2009) and
Candes and Plan (2009) for Lasso and Dantzig selector that will be reviewed
below. In the approximation theory literature, the εt in (1.1) are usually as-
sumed to be either zero or nonrandom. In the case εt = 0 for all t, an upper
bound for (3.14) has been obtained by Tropp (2004). When the εt are nonzero
but nonrandom, a bound for the bias of the OGA estimate has also been given
by Donoho, Elad, and Temlyakov (2006). When the εt in (1.1) are zero-mean
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random variables, an upper bound for (3.14) should involve the variance besides
the bias of the regression estimate and should also provide insights into the bias-
variance tradeoff, as is the case with the following theorem for which p can be
much larger than n. Noting that the regression function in (1.1) has infinitely
many representations when p > n, we introduce the representation set

B = {b : Xb = (y(x1), . . . , y(xn))>}, (3.15)

where X = (X1, . . . ,Xp) is n × p. In addition, for J ⊆ {1, . . . , p} and 1 ≤ i ≤ p

with i /∈ J , let BJ,i = {θJ,i : X>
J Xi = X>

J XJθJ,i}. Moreover, take

rp = arg min
0<r<1/2

1
r

{
1 +

( log
√

1/(1 − 2r)
log p

)}
, r̃p =

1
1 − 2rp

. (3.16)

Note that as p → ∞, rp → 1/2 and r̃p = o(pη) for any η > 0.

Theorem 2. Suppose εt are i.i.d. normal random variables with E(εt) = 0 and
E(ε2

t ) = σ2. Assume that xtj are nonrandom constants, normalized so that
n−1

∑n
t=1 x2

tj = 1, and satisfying

max
1≤](J)≤bn/ log pc,i/∈J

inf
θJ,i∈BJ,i

‖θJ,i‖1 < M for some M > 0. (3.17)

Let 0 < ξ < 1, C >
√

2(1 + M), s > {1 + (2 log p)−1 log r̃p}/rp, where rp and r̃p

are defined by (3.16), and

ωm,n = ( inf
b∈B

‖b‖1)max
{

infb∈B ‖b‖1

1 + mξ2
,

2Cσ

1 − ξ

( log p

n

)1/2
}

. (3.18)

Then for all p ≥ 3, n ≥ log p, and 1 ≤ m ≤ bn/ log pc,

‖ŷm(·) − y(·)‖2
n ≤ ωm,n + sσ2m

(log p)
n

(3.19)

with probability at least

1 − p exp
{
− C2 log p

2(1 + M)2

}
− r̃

1/2
p p−(srp−1)

1 − r̃
1/2
p p−(srp−1)

.

The upper bound (3.19) for the prediction risk of OGA is a sum of a vari-
ance term, sσ2m(log p)/n, and a squared bias term, ωm,n. The variance term
is the usual “least squares” risk mσ2/n multiplied by a risk inflation factor
s log p; see Foster and George (1994) for a detailed discussion of the idea of
risk inflation. The squared bias term is the maximum of (infb∈B ‖b‖1)2/(1 +
mξ2), which is the approximation error of the “noiseless” OGA, and 2Cσ(1 −
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ξ)−1 infb∈B ‖b‖1(n−1 log p)1/2, which is the error caused by the discrepancy be-
tween the noiseless OGA and the sample OGA; see (B.5), (B.6), (B.7), and (B.8)
in Appendix B.

The ‖θJ,i‖1 in (3.17) is closely related to the “cumulative coherence function”
introduced by Tropp (2004). Since Theorem 2 does not put any restriction on
M and infb∈B ‖b‖1, the theorem can be applied to any design matrix although
a large value of M or infb∈B ‖b‖1 will result in a large bound on the right-hand
side of (3.19). Note that the population analog of ‖θJ,i‖1 for random regressors
is ‖Γ−1(J)gi(J)‖1, which appears in the second part of (3.2), the first part of
which assumes that Γ(J) is uniformly positive definite for 1 ≤ ](J) ≤ Kn. Note
also the similarity of (3.17) and the second part of (3.2). Although (3.2) makes
an assumption on λmin(Γ(J)), it does not make assumptions on λmax(Γ(J)); this
is similar to the “restricted eigenvalue assumption” introduced by Bickel, Ritov,
and Tsybakov (2009) but differs from the “sparse Riesz condition” that will be
discussed in the second paragraph of Section 5.

When M and infb∈B ‖b‖1 are bounded by a positive constant independent
of n and p, the upper bound in (3.19) suggests that choosing m = D(n/ log p)1/2

for some D > 0 can provide the best bias-variance tradeoff, for which (3.19)
reduces to

‖ŷm(·) − y(·)‖2
n ≤ d(n−1 log p)1/2, (3.20)

where d does not depend on n and p. Note that D(n/ log p)1/2 can be used to
explain why there is no loss in efficiency for the choice Kn = O((n/ log p)1/2) in
Theorem 1. We can regard (3.20) as an analog of the oracle inequality of Bickel,
Ritov, and Tsybakov (2009, Thm. 6.2) for the Lasso predictor ŷLasso(r)(xt) =
x>

t β̂Lasso(r), where

β̂Lasso(r) = arg min
c∈Rp

{
n−1

n∑
t=1

(yt − x>
t c)2 + 2r‖c‖1

}
, (3.21)

with r > 0. Letting M(b) denote the number of nonzero components of b ∈
B and defining Q̄ = infb∈B M(b), they assume instead of (3.17) that X>X
satisfies a restricted eigenvalue assumption RE(Q̄, 3), and show under the same
assumptions of Theorem 2 (except for (3.17)) that for r = Aσ(n−1 log p)1/2 with
A > 2

√
2,

‖ŷLasso(r)(·) − y(·)‖2
n ≤ F

Q̄ log p

n
(3.22)

with probability at least 1 − p1−A2/8, where F is a positive constant depending
only on A, σ, and 1/κ, in which κ = κ(Q̄, 3) is the defining restricted eigenvalue
of RE(Q̄, 3). Suppose that F in (3.22) is bounded by a constant independent of n

and p and that log p is small relative to n. Then (3.20) and (3.22) suggest that the
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risk bound for Lasso is smaller (or larger) than that of OGA if Q̄ ¿ (n/ log p)1/2

(or Q̄ À (n/ log p)1/2).

4. Consistent Model Selection under Strong Sparsity

The convergence rate theory of OGA in Theorems 1 and 2 suggests terminat-
ing OGA iterations after Kn = O((n/ log p)1/2) steps or, equivalently, after Kn

input variables have been included in the regression model. We propose to choose
along the OGA path the model that has the smallest value of a suitably cho-
sen criterion, which we call a “high-dimensional information criterion” (HDIC).
Specifically, for a non-empty subset J of {1, . . . , p}, let σ̂2

J = n−1
∑n

t=1(yt−ŷt;J)2,
where ŷt;J is defined below (3.4). Let

HDIC(J) = n log σ̂2
J + ](J)wn log p, (4.1)

k̂n = arg min
1≤k≤Kn

HDIC(Ĵk), (4.2)

in which different criteria correspond to different choices of wn and Ĵk = {ĵ1, . . .,
ĵk}. Note that σ̂2

Ĵk
, and therefore HDIC(Ĵk) also, can be readily computed at

the kth OGA iteration, and therefore this model selection method along the
OGA path involves little additional computational cost. In particular, wn =
log n corresponds to HDBIC; without the log p factor, (4.1) reduces to the usual
BIC. The case wn = c log log n with c > 2 corresponds to the high-dimensional
Hannan-Quinn criterion (HDHQ), and the case wn = c corresponds to HDAIC,
recalling that AIC(J) = n log σ̂2

J +2](J). For fixed p, Zhang, Li, and Tsai (2010)
also consider general penalities wn in their genelized information criterion (GIC)
that “makes a connection between the classical variable selection criterion and
the regularization parameter selections for the nonconcave penalized likelihood
approaches.”

A standard method to select the number m of input variables to enter the
regression model is cross-validation (CV) or its variants such as Cp and AIC that
aim at striking a suitable balance between squared bias and variance. However,
these variable selection methods do not work well when p À n, as shown by
Chen, Ing and Lai (2011) who propose to modify these criteria by including a
factor log p, as in HDAIC, for weakly sparse models. Whereas that paper con-
siders the general weakly sparse setting in which the βj may all be nonzero, we
focus here on the case in which a substantial fraction of the βj is 0. We call an
input variable “relevant” if its associated βj is nonzero, and “irrelevant” other-
wise. In Section 4.1, we review the literature on variable selection consistency
(i.e., selecting all relevant variables and no irrelevant variables, with probability
approaching 1) and on the sure screening property (i.e., including all relevant
variables with probability approaching 1). To achieve consistency of variable
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selection, some lower bound (which may approach 0 as n → ∞) on the abso-
lute values of nonzero regression coefficients needs to be imposed. We therefore
assume a “strong sparsity” condition:

(C5) There exists 0 ≤ γ < 1 such that nγ = o((n/ log pn)1/2) and

lim inf
n→∞

nγ min
1≤j≤pn:βj 6=0

β2
j σ2

j > 0.

Note that (C5) imposes a lower bound on β2
j σ2

j for nonzero βj . This is more
natural than a lower bound on |βj | since the predictor of yi involves βjxij . Instead
of imposing an upper bound on the number of nonzero regression coefficients, as
in the oracle inequality (3.22) for Lasso, we assume strong sparsity in Section
4.2 and first show that OGA has the sure screening property if the number Kn

of iterations is large enough. We then show that the best fitting model can
be chosen along an OGA path by minimizing a high-dimensional information
criterion (4.1) with limn→∞ wn = ∞. In Section 4.3, we further use HDIC to
remove irrelevant variables included along the OGA path so that the resultant
procedure has the oracle property that it is equivalent to performing ordinary
least squares regression on the set of relevant regressors.

4.1. Sure screening and consistent variable selection

When p = pn → ∞ but the number of nonzero regression parameters remains
bounded, Chen and Chen (2008) propose to modify the usual BIC by

BICγ(J) = n log σ̂2
J + ](J) log n + 2γ log τ](J), where τj =

(
p
j

)
, (4.3)

in which J ⊂ {1, . . . , p} is non-empty and 0 ≤ γ ≤ 1 is related to a prior
distribution on the parameter space partitioned as

∪p
j=1 Θj , with Θj consisting

of all β = (β1, . . . , βp)> such that exactly j of the βi’s are nonzero. The prior
distribution puts equal probability to each of τj choices of the j relevant regressors
for β ∈ Θj , and assigns to Θj probability proportional to 1/τ1−γ

j . Assuming the
εt to be normal, extension of Schwarz’s (1978) argument yields the “extended
BIC” (4.3). Chen and Chen (2008) propose to choose the J that has the smallest
BICγ(J). Since there are 2p−1 non-empty subsets of {1, . . . , p}, this approach is
“computationally infeasible” for large p. They therefore propose to apply BICγ

to a manageable subset of models selected by other methods, e.g., Lasso(r) over
a range of r. Wang (2009) recently proposed to use forward stepwise regression
to select this manageable subset; his method and results are discussed in Sections
4.2 and 5.
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As pointed out by Zhao and Yu (2006), “obtaining (sparse) models through
classical model selection methods usually involve heavy combinatorial search,”
and Lasso “provides a computationally feasible way for model selection.” On the
other hand, Leng, Lin, and Wahba (2006) have shown that Lasso is not variable-
selection consistent when prediction accuracy is used as the criterion for choosing
the penalty r in (3.21). However, if pn = O(nκ) for some κ > 0 and r = rn is
chosen to grow at an appropriate rate with n, Zhao and Yu (2006) proved that
Lasso is variable-selection consistent under a “strong irrepresentable condition”
on the design matrix, and additional regularity conditions. A closely related
result is model selection consistency of Lasso with suitably chosen penalty in
Gaussian graphical models under a similar condition, which is called the “neigh-
borhood stability condition.” As noted by Zhao and Yu (2006), Lasso can fail to
distinguish irrelevant predictors that are highly correlated with relevant predic-
tors, and the strong irrepresentable condition is used to rule out such cases. It
is closely related to the “coherence condition” of Donoho, Elad, and Temlyakov
(2006) and is “almost necessary and sufficient” for Lasso to be sign-consistent
for some choice of penalty. Under a sparse Riesz condition, Zhang and Huang
(2008) have studied sparsity and bias properties of Lasso-based model selection
methods.

Fan and Li (2001) pointed out that the l1-penalty used by Lasso may lead
to severe bias for large regression coefficients and proposed a “smoothly chipped
absolute deviation” (SCAD) penalty to address this problem. Because the asso-
ciated minimization problem is non-convex and direct computation is infeasible
for large p, multi-step procedures in which each step involves convex optimiza-
tion have been introduced, as in the local quadratic approximation of Fan and
Li (2001) and the local linear approximation (LLA) of Zou and Li (2008), who
also show that the one-step LLA estimator has certain oracle properties if the
initial estimator is suitably chosen. Zhou, van de Geer, and Bühlmann (2009)
have pointed out that one such procedure is Zou’s (2006) adaptive Lasso, which
uses the Lasso as an initial estimator to determine the weights for a second-
stage weighted Lasso (that replaces ‖c‖1 =

∑p
i=1 |ci| in (3.21) by a weighted sum∑p

i=1 ωi|ci|). They have also substantially weakened the conditions of Huang,
Ma, and Zhang (2008) on the variable selection consistency of adaptive Lasso,
which Zou (2006) established earlier for the case of fixed p.

The concept of sure screening was introduced by Fan and Lv (2008), who also
proposed a method called “sure independence screening” (SIS) that has the sure
screening property in sparse high-dimensional regression models satisfying certain
conditions. For given positive integer d, SIS selects d regressors whose sample
correlation coefficients with yt have the largest d absolute values. Although SIS
with suitably chosen d = dn has been shown by Fan and Lv (2008, Sec. 5) to
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have the sure screening property without the irrepresentable (or neighborhood
stability) condition mentioned earlier for Lasso, it requires an assumption on the
maximum eigenvalue of the covariance matrix of the candidate regressors that can
fail to hold when all regressors are equally correlated, as will be shown in Section
5. Fan and Lv (2010) give a comprehensive overview of SIS and a modification
called “iterative sure independence screening” (ISIS), their applications to feature
selection for classification, and penalized likelihood methods for variable selection
in sparse linear and generalized linear models.

4.2. OGA+HDIC in strongly sparse linear models

The procedure proposed in the first paragraph of Section 4, which we call
OGA+HDIC, consists of (i) carrying out Kn OGA iterations, (ii) computing
HDIC(Ĵk) defined by (4.1) at the end of the kth iteration, i.e., after k regressors
are selected for the linear regression model, and (iii) choosing the k that minimizes
HDIC(Ĵk) over 1 ≤ k ≤ Kn after the OGA iterations terminate. Concerning the
ingredient (i) of the procedure, we make use of Theorem 1 to show that it has
the sure screening property in strongly sparse linear models.

Theorem 3. Assume (C1)−(C5) and (3.2). Suppose Kn/nγ → ∞ and Kn =
O((n/ log pn)1/2). Then limn→∞ P (Nn ⊂ ĴKn) = 1, where Nn = {1 ≤ j ≤ pn :
βj 6= 0} denotes the set of relevant input variables.

Proof. Without loss of generality, assume that σj = 1 so that zj = xj for
1 ≤ j ≤ pn. Let a > 0 and define An(m) by (3.8), in which m = banγc = o(Kn).
By (3.8) and (3.12),

lim
n→∞

P (Ac
n(m)) ≤ lim

n→∞
P (Ac

n(Kn)) = 0,

En{[y(x) − yĴm
(x)]2}IAn(m) ≤ C∗m−1.

(4.4)

From (4.4), it follows that

lim
n→∞

P (Fn) = 0,where Fn = {En[y(x) − yĴm
(x)]2 > C∗m−1}. (4.5)

For J ⊆ {1, . . . , pn} and j ∈ J , let β̃j(J) be the coefficient of xj in the best
linear predictor

∑
i∈J β̃i(J)xi of y that minimizes E(y −

∑
i∈J λixi)2. Define

β̃j(J) = 0 if j /∈ J . Note that

En[y(x) − yĴm
(x)]2 = En

{ ∑
j∈Ĵm∪Nn

(βj − β̃j(Ĵm))xj

}2
. (4.6)

From (C4) and (C5), it follows that ](Nn) = o(nγ/2), yielding ](Ĵm ∪ Nn) =
o(Kn), and it then follows from (4.6) that for all large n,

En[{y(x)−yĴm
(x)}2] ≥ (min

j∈Nn

β2
j ) min

1≤](J)≤Kn

λmin(Γ(J)) on {Nn∩Ĵc
m 6= ∅}. (4.7)
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Combining (4.7) with (C5) and (3.2) then yields En[{y(x)−yĴm
(x)}2] ≥ bn−γ on

{Nn ∩ Ĵc
m 6= ∅}, for some b > 0 and all large n. By choosing the a in m = banγc

large enough, we have bn−γ > C∗m−1, implying that {Nn∩ Ĵc
m 6= ∅} ⊆ Fn, where

Fn is defined in (4.5). Hence by (4.5), limn→∞ P (Nn ⊆ Ĵm) = 1. Therefore,
the OGA path that terminates after m = banγc iterations contains all relevant
regressors with probability approaching 1. This is also true for the OGA path
that terminates after Kn iterations if Kn/m → ∞.

To explain the importance of the factor log pn in the definition (4.1) of
HDIC when pn À n, suppose x1, . . . , xpn are uncorrelated, i.e., Γ(J) = I, for
which “hard thresholding” (Donoho and Johnstone (1994)) can be used for vari-
able selection. Assuming for simplicity that σ2 and σ2

j are known, note that
(β̂j − βj)/(σ2/

∑n
t=1 x2

tj)
1/2, 1 ≤ j ≤ pn, are asymptotically independent stan-

dard normal random variables in this case. Since max1≤j≤pn |n−1
∑n

t=1 x2
tj − σ2

j |
converges to 0 in probability (see Lemma A.2 in Appendix A), it follows that

max
1≤j≤pn

n(β̂j − βj)2
σ2

j

σ2
− (2 log pn − log log pn)

has a limiting Gumbel distribution. In view of (C5) that assumes β2
j σ2

j ≥ cn−γ for
nonzero βj and some positive constant c, screening out the regressors with β̂2

j σ2
j <

(σ2wn log pn)/n yields consistent variable selection if wn log pn = o(n1−γ) and
lim infn→∞ wn > 2. Such wn can indeed be chosen if nγ = o(n/ log pn), recalling
that log pn = o(n). In the more general case where x1, . . . , xpn are correlated
and therefore so are the β̂j , we make use of (3.2) and regard the threshold
(σ2wn log pn)/n as a penalty for including an input variable in the regression
model. The preceding argument then leads to the criterion (4.1) and suggests
selecting the regressor set Ĵk that minimizes HDIC(Ĵk). We next establish, under
strong sparsity, consistency of variable selection along OGA paths by HDIC with
wn in (4.1) satisfying

wn → ∞, wn log pn = o(n1−2γ). (4.8)

Define the minimal number of relevant regressors along an OGA path by

k̃n = min{k : 1 ≤ k ≤ Kn, Nn ⊆ Ĵk} (min ∅ = Kn). (4.9)

Theorem 4. With the same notation and assumptions as in Theorem 3, suppose
(4.8) holds, Kn/nγ → ∞, and Kn = O((n/ log pn)1/2). Then limn→∞ P (k̂n

= k̃n) = 1.
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Proof. Assume σ2
j = 1 as in the proof of Theorem 3, and drop the subscript n

in k̃n and k̂n for notational simplicity. We first show that P (k̂ < k̃) = o(1). As
shown in the proof of Theorem 3, for sufficiently large a,

lim
n→∞

P (Dn) = 1, where Dn = {Nn ⊆ Ĵbanγc} = {k̃ ≤ anγ}. (4.10)

On {k̂ < k̃}, exp{HDIC(Ĵk̂)/n} ≤ exp{HDIC(Ĵk̃)/n} and σ̂2
Ĵk̂

≥ σ̂2
Ĵk̃−1

, so

σ̂2
Ĵk̃−1

− σ̂2
Ĵk̃

≤ σ̂2
Ĵk̃

{exp(n−1wnk̃ log pn) − exp(n−1wnk̂ log pn)}. (4.11)

Let HJ denote the projection matrix associated with projections into the linear
space spanned by Xj , j ∈ J ⊆ {1, . . . , p}. Then, on the set Dn,

n−1{
n∑

t=1

(yt − ŷt;Ĵk̃−1
)2 −

n∑
t=1

(yt − ŷt;Ĵk̃
)2}

= n−1(βĵk̃
Xĵk̃

+ ε)>(HĴk̃
− HĴk̃−1

)(βĵk̃
Xĵk̃

+ ε)

=

{
βĵk̃

X>
ĵk̃

(I − HĴk̃−1
)Xĵk̃

+ X>
ĵk̃

(I − HĴk̃−1
)ε

}2

nX>
ĵk̃

(I − HĴk̃−1
)Xĵk̃

. (4.12)

Simple algebra shows that the last expression in (4.12) can be written as β2
ĵk̃

Ân +

2βĵk̃
B̂n + Â−1

n B̂2
n, where

Ân = n−1X>
ĵk̃

(I − HĴk̃−1
)Xĵk̃

and B̂n = n−1X>
ĵk̃

(I − HĴk̃−1
)ε, Ĉn = σ̂2

Ĵk̃

− σ2.

(4.13)
Hence it follows from (4.8), (4.11), and (4.12) that there exists λ > 0 such that
β2

ĵk̃

Ân + 2βĵk̃
B̂n + Â−1

n B̂2
n ≤ λn−1wn(log pn)banγc(Ĉn + σ2) on {k̂ < k̃}

∩
Dn,

which implies that

2βĵk̃
B̂n − λn−1wn(log pn)banγc|Ĉn|

≤ −β2
ĵk̃

Ân + λn−1wn(log pn)banγcσ2 on {k̂ < k̃}
∩

Dn. (4.14)

Define vn = min1≤](J)≤banγc λmin(Γ(J)). By (3.2), vn > δ for all large n. In
Appendix A, it is shown that for any θ > 0,

P (Ân ≤ vn

2
,Dn)+P (|B̂n|≥θn−γ/2,Dn)+P (wn(log pn)|Ĉn|≥θn1−2γ ,Dn)=o(1).

(4.15)
From (C5), (4.10), (4.14), and (4.15), it follows that P (k̂ < k̃) = o(1).
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It remains to prove P (k̂ > k̃) = o(1). Note that on {k̂ > k̃},

σ̂2
Ĵk̂

exp(n−1wnk̂ log pn) ≤ σ̂2
Ĵk̃

exp(n−1wnk̃ log pn).

Since βj = 0 for j /∈ Ĵk̃, this implies the following counterpart of (4.11) and
(4.12) on {k̂ > k̃}:

ε>(HĴk̂
− HĴk̃

)ε ≥ ε>(I−HĴk̃
)ε{1 − exp(−n−1wn(k̂ − k̃) log pn)}. (4.16)

Let Fk̂,k̃ denote the n× (k̂− k̃) matrix whose column vectors are Xj , j ∈ Ĵk̂ − Ĵk̃.
Then

ε>(HĴk̂
−HĴk̃

)ε = ε>(I − HĴk̃
)Fk̂,k̃{F

>
k̂,k̃

(I − HĴk̃
)Fk̂,k̃}

−1F>
k̂,k̃

(I − HĴk̃
)ε

≤ ‖Γ̂−1(ĴKn)‖‖n−1/2F>
k̂,k̃

(I − HĴk̃
)ε‖2

≤ 2‖Γ̂−1(ĴKn)‖‖n−1/2F>
k̂,k̃

ε‖2+2‖Γ̂−1(ĴKn)‖‖n−1/2F>
k̂,k̃

HĴk̃
ε‖2

≤ 2(k̂ − k̃)(ân + b̂n), (4.17)

where Γ̂(J) denotes the sample covariance matrix that estimates Γ(J) for J ⊆
{1, . . . , pn} (recalling that σ2

j = 1) and ‖L‖ = sup‖x‖=1 ‖Lx‖ for a nonnegative
definite matrix L,

ân = ‖Γ̂−1(ĴKn)‖ max
1≤j≤pn

(
n−1/2

n∑
t=1

xtjεt

)2
,

b̂n = ‖Γ̂−1(ĴKn)‖ max
1≤](J)≤k̃,i/∈J

(
n−1/2

n∑
t=1

εtx̂ti;J

)2
.

(4.18)

Since n−1ε>(I − HĴk̃
)ε − σ2 = Ĉn, combining (4.17) with (4.16) yields

2(k̂ − k̃)(ân + b̂n) + |Ĉn|n[1 − exp(−n−1wn(k̂ − k̃) log pn)]

≥ nσ2[1 − exp(−n−1wn(k̂ − k̃) log pn)] on {k̂ > k̃}. (4.19)

In Appendix A it is shown that for any θ > 0,

P{(ân+b̂n)(k̂−k̃)≥θn[1−exp(−n−1wn(k̂−k̃) log pn)], k̂ > k̃}=o(1),

P{|Ĉn| ≥ θ} = o(1).
(4.20)

From (4.19) and (4.20), P (k̂ > k̃) = o(1) follows.

Theorem 4 is a much stronger result than Theorem 2 of Wang (2009) that
only establishes the sure screening property limn→∞ P (Nn ⊆ Ĵm̂n) = 1 of us-
ing the extended BIC (EBIC) to choose variables along an OGA path, where
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m̂n = arg min1≤m≤n EBIC(Ĵm). In addition, Wang proves this result under much
stronger assumptions than those of Theorem 4, such as εt and xt having normal
distributions and a ≤ λmin(Σn) ≤ λmax(Σn) ≤ b for some positive constants a
and b and all n ≥ 1, where Σn is the covariance matrix of the pn-dimensional
random vector xt.

4.3. Further trimming by HDIC to achieve oracle property

Although Theorem 4 shows that k̃n can be consistently estimated by k̂n, Ĵk̂n

may still contain irrelevant variables that are included along the OGA path, as
will be shown in Example 3 of Section 5. To exclude irrelevant variables, we
make use of HDIC to define a subset N̂n of Ĵk̂n

by

N̂n = {ĵl : HDIC(Ĵk̂n
− {ĵl}) > HDIC(Ĵk̂n

), 1 ≤ l ≤ k̂n} if k̂n > 1, (4.21)

and N̂n = {ĵ1} if k̂n = 1. Note that (4.21) only requires the computation of k̂n−1
additional least squares estimates and their associated residual sum of squares∑n

t=1(yt − ŷt;Ĵk̂n
−{ĵl})

2, 1 ≤ l < k̂n, in contrast to the intractable combinatorial
optimization problem of choosing the subset with the smallest extended BIC
among all non-empty subsets of {1, . . . , pn}, for which Chen and Chen (2008,
Thm. 1) established variable selection consistency under an “asymptotic iden-
tifiability” condition and pn = O(nκ) for some κ > 0. The following theorem
establishes the oracle property of N̂n and shows that this much simpler procedure,
which is denoted by OGA+HDIC+Trim, achieves variable selection consistency.

Theorem 5. Under the same assumptions as in Theorem 4, limn→∞ P (N̂n =
Nn) = 1.

Proof. As in the proof of Theorem 4, assume σ2
j = 1 and drop the subscript n

in k̃n and k̂n. For k̃ > 1, define δl = 1 if HDIC(Ĵk̃ −{ĵl}) > HDIC(Ĵk̃) and δl = 0
otherwise. Then

P (N̂n 6= Nn) ≤ P (N̂n 6= Nn, k̂ > 1, Nn ⊆ Ĵk̂) + P (Nn * Ĵk̂)+P (N̂n 6=Nn, k̂=1)

≤ P (δl = 1 and βĵl
= 0 for some 1 ≤ l ≤ k̃, Nn ⊆ Ĵk̃, k̃ > 1)

+P (δl = 0 and βĵl
6= 0 for some 1 ≤ l ≤ k̃, Nn ⊆ Ĵk̃, k̃ > 1)

+P (k̂ 6= k̃) + P (Nn * Ĵk̂) + P (N̂n 6= Nn, k̂ = 1). (4.22)

With Ĉn given in (4.13) and vn given below (4.14), let

Gn =
{

max
](J)≤k̃−1,i/∈J

|n−1
n∑

t=1

εtx̂
⊥
ti;J | ≥ θn−γ/2

}
∪{

|Ĉn| ≥
θn1−γ

wn log pn

}∪{
λmin(Γ̂(Ĵk̃)) ≤

vn

2

}
.
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By (C5) and arguments similar to those in (4.11)-(4.15), there exists θ > 0 such
that for all large n,

P (δl = 0 and βĵl
6= 0 for some 1 ≤ l ≤ k̃, Nn ⊆ Ĵk̃, k̃ > 1) ≤ P (Gn) = o(1).

(4.23)
Moreover, by arguments similar to those used in (4.16)-(4.20), there exists θ > 0
such that for all large n,

P (δl = 1 and βĵl
= 0 for some 1 ≤ l ≤ k̃, Nn ⊆ Ĵk̃, k̃ > 1) ≤ P (Hn) = o(1),

(4.24)
where Hn = {â1,n + b̂1,n ≥ θwn log pn}

∪
{|Ĉn| ≥ θ}, in which and â1,n and b̂1,n

are the same as ân and b̂n in (4.18) but with Kn replaced by k̃, and k̃ replaced
by k̃ − 1. By Theorem 4, P (k̂ 6= k̃) + P (Nn * Ĵk̂) + P (N̂n 6= Nn, k̂ = 1) = o(1),
which can be combined with (4.22)−(4.24) to yield the desired conclusion.

5. Simulation Studies

In this section, we report simulation studies of the performance of OGA
+HDBIC and OGA+HDHQ. These simulation studies consider the regression
model

yt =
q∑

j=1

βjxtj +
p∑

j=q+1

βjxtj + εt, t = 1, . . . , n, (5.1)

where βq+1 = · · · = βp = 0, p À n, εt are i.i.d. N(0, σ2) and are independent of
the xtj . Although (5.1) is a special case of (1.1) with α = 0, we do not assume
prior knowledge of the value of α and estimate α by ȳ +

∑p
j=1 β̂j x̄j , which is

equivalent to centering the yt and xtj by their sample means, as noted in the first
paragraph of Section 2.

Examples 1 and 2 consider the case

xtj = dtj + ηwt, (5.2)

in which η ≥ 0 and (dt1, . . . , dtp, wt)>, 1 ≤ t ≤ n, are i.i.d. normal with mean
(1, . . . , 1, 0)> and covariance matrix I. Since for any J ⊆ {1, . . . , p} and 1 ≤ i ≤ p

with i /∈ J ,

λmin(Γ(J)) =
1

1 + η2
> 0 and ‖Γ−1(J)gi(J)‖1 ≤ 1, (5.3)

(3.2) is satisfied; moreover, Corr(xtj , xtk) = η2/(1+η2) increases with η > 0. On
the other hand,

max
1≤](J)≤ν

λmax(Γ(J)) =
1 + νη2

1 + η2
. (5.4)
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As noted in Section 4.1, Fan and Lv (2008) require λmax(Γ({1, . . . , p})) ≤ cnr

for some c > 0 and 0 ≤ r < 1 in their theory for the sure independence screen-
ing method, but this fails to hold for the equi-correlated regressors (5.2) when
η > 0 and p À n, in view of (5.4). Although Fan and Song (2010) have recently
made use of empirical process techniques to remove this condition, they require
additional conditions in their Section 5.3 for “controlling false selection rates”
by SIS or ISIS. As will be shown in Example 2, ISIS can include all relevant
regressors but still have high false selection rates (or, equivalently, serious over-
fitting) when λmax(Γ({1, . . . , p})) is larger than n. For nonrandom regressors
for which there is no population correlation matrix Γ(J) and the sample version
Γ̂(J) is nonrandom, Zhang and Huang (2008) have shown that under the sparse
Riesz condition c∗ ≤ min1≤](J)≤q∗ λmin(Γ̂(J)) ≤ max1≤](J)≤q∗ λmax(Γ̂(J)) ≤ c∗

for some c∗ ≥ c∗ > 0 and q∗ ≥ {2 + (4c∗/c∗)}q + 1, the set of regressors selected
by Lasso includes all relevant regressors, with probability approaching 1. If these
fixed regressors are actually a realization of (5.2), then in view of (5.3) and (5.4),
it is difficult to meet the requirement q∗ ≥ {2+(4c∗/c∗)}q+1 in the sparse Riesz
condition when q ≥ (2η)−2.

Example 1. Consider (5.1) with q = 5, (β1, . . . , β5) = (3,−3.5, 4,−2.8, 3.2), and
assume that σ = 1 and (5.2) holds. The special case η = 0, σ = 1 or 0.1, and
(n, p) = (50, 200) or (100, 400) was used by Shao and Chow (2007) to illustrate
the performance of their variable screening method. The cases η = 0, 2 and
(n, p) =(50, 1,000), (100, 2,000), (200, 4,000) are considered here to accommodate
a much larger number of candidate variables and allow substantial correlations
among them. In light of Theorem 4 which requires the number Kn of iterations to
satisfy Kn = O((n/ log pn)1/2), we choose Kn = b5(n/ log pn)1/2c. We have also
allowed D in Kn = bD(n/ log pn)1/2c to vary between 3 and 10, and the results
are similar to those for D = 5. Table 1 shows that OGA+HDBIC, OGA+HDHQ
and OGA+HDBIC+Trim perform well, in agreement with the asymptotic theory
of Theorems 4 and 5. Each result is based on 1,000 simulations. Here and in
the sequel, we choose c = 2.01 for HDHQ. We have allowed c in HDHQ to vary
among 2.01, 2.51, 3.01, 3.51 and 4.01, but the results are quite similar for the
different choices of c. In the simulations for n ≥ 100, OGA always includes the
5 relevant regressors within Kn iterations, and HDBIC and HDHQ identify the
smallest correct model for 99% or more of the simulations, irrespective of whether
the candidate regressors are uncorrelated (η = 0) or highly correlated (η = 2).
The performance of OGA+HDBIC+Trim is even better because it can choose
the smallest correct model in all simulations.

For comparison, we have also included in Table 1 the performance of OGA
+BIC and Wang’s (2009) forward regression procedure, denoted by FR, that
carries out OGA with n iterations and then chooses Ĵm̂n as the final set of
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regressors, where m̂n = arg min1≤m≤nEBIC(Ĵm), in which EBIC is defined by
(4.3) with γ = 1 and τj = pj . Table 1 shows that for n ≥ 100, FR (or OGA+BIC)
always chooses the largest model along the OGA path, which is Ĵn (or ĴKn).
Examination of the simulation runs shows that BIC(Ĵk) is a decreasing function
of k and that EBIC(Ĵk) is initially decreasing, then increasing and eventually
decreasing in k. Define the mean squared prediction errors

MSPE =
1

1, 000

1,000∑
l=1

(
p∑

j=1

βjx
(l)
n+1,j − ŷ

(l)
n+1)

2, (5.5)

in which x
(l)
n+1,1, . . . , x

(l)
n+1,p are the regressors associated with y

(l)
n+1, the new out-

come in the lth simulation run, and ŷ
(l)
n+1 denotes the predictor of y

(l)
n+1. The

MSPEs of OGA+BIC are at least 16 (or 23) times those of OGA+HDBIC,
OGA+HDBIC+Trim and OGA+HDHQ when n = 100 (or n = 200). The
MSPEs of FR are even larger than those of OGA+BIC due to more serious
overfitting when OGA terminates after n (instead of Kn) iterations. In the case
of n = 50 and p =1,000, OGA can include all relevant regressors (within Kn

iterations) about 92% of the time when η = 0; this ratio decreases to 80% when
η = 2. In addition, HDBIC identifies the smallest correct model for 86% when
η = 0 and 63% when η = 2. These latter two ratios, however, can be increased
to 92% and 79%, respectively, by using the trimming method in Section 4.3. As
shown in Table 2 of Shao and Chow (2007), for the case of n = 100 and p = 400,
applying their variable screening method in conjunction with AIC or BIC can
only identify the smallest correct model about 50% of the time even when η = 0.
On the other hand, BIC used in conjunction with OGA that terminates after Kn

iterations can include all relevant variables in this case, but it also includes all
irrelevant variables, as shown in Table 1. Note that p is 20 times the value of
n, resulting in many spuriously significant regression coefficients if one does not
adjust for multiple testing. The factor wn log pn in the definition (4.8) of HDIC
can be regarded as such adjustment, as explained in the paragraph preceding
Theorem 4.

Example 2. Consider (5.1) with q = 9, n = 400, p =4,000, (β1, . . . , βq)=(3.2,
3.2, 3.2, 3.2, 4.4, 4.4, 3.5, 3.5, 3.5), and assume that σ2 = 2.25 and (5.2) holds with
η = 1. This example satisfies Meinshausen and Bühlmann’s (2006) neighborhood
stability condition that requires that for some 0 < δ < 1 and all i = q +1, . . . , p,

|c′
qiR

−1(q)sign(β(q))| < δ, (5.6)

where xt(q) = (xt1, . . . , xtq)>, cqi = E(xt(q)xti), R(q) = E(xt(q)x>
t (q)), and

sign(β(q)) = (sign(β1), . . . , sign(βq))>. To show that (5.6) holds in this example,
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Table 1. Frequency, in 1,000 simulations, of including all five relevant vari-
ables (Correct), of selecting exactly the relevant variables (E), of selecting
all relevant variables and i irrelevant variables (E+i), and of selecting the
largest model, along the OGA path, which includes all relevant variables
(E∗).

η n p Method E E+1 E+2 E+3 E+4 E+5 E∗ Correct MSPE

0 50 1,000 OGA+HDHQ 812 86 19 8 0 0 1 926 6.150

OGA+HDBIC 862 52 7 1 0 0 0 922 6.550

OGA+HDBIC+Trim 919 3 0 0 0 0 0 922 6.550

OGA+BIC 0 0 0 0 0 0 926 926 8.310

FR 0 0 0 0 0 0 926 926 8.300

100 2,000 OGA+HDHQ 993 6 0 1 0 0 0 1,000 0.065

OGA+HDBIC 999 0 0 1 0 0 0 1,000 0.064

OGA+HDBIC+Trim 1,000 0 0 0 0 0 0 1,000 0.064

OGA+BIC 0 0 0 0 0 0 1,000 1,000 1.320

FR 0 0 0 0 0 0 1,000 1,000 1.729

200 4,000 OGA+HDHQ 999 1 0 0 0 0 0 1,000 0.034

OGA+HDBIC 1,000 0 0 0 0 0 0 1,000 0.034

OGA+HDBIC+Trim 1,000 0 0 0 0 0 0 1,000 0.034

OGA+BIC 0 0 0 0 0 0 1,000 1,000 0.796

FR 0 0 0 0 0 0 1,000 1,000 1.612

2 50 1,000 OGA+HDHQ 609 140 36 15 5 2 0 807 13.250

OGA+HDBIC 629 130 29 5 0 0 0 793 14.110

OGA+HDBIC+Trim 792 1 0 0 0 0 0 793 14.100

OGA+BIC 0 0 0 0 0 0 807 807 14.660

FR 0 0 0 0 0 0 807 807 14.990

100 2,000 OGA+HDHQ 988 9 3 0 0 0 0 1,000 0.070

OGA+HDBIC 994 3 3 0 0 0 0 1,000 0.069

OGA+HDBIC+Trim 1,000 0 0 0 0 0 0 1,000 0.069

OGA+BIC 0 0 0 0 0 0 1,000 1,000 1.152

FR 0 0 0 0 0 0 1,000 1,000 1.537

200 4,000 OGA+HDHQ 1,000 0 0 0 0 0 0 1,000 0.033

OGA+HDBIC 1,000 0 0 0 0 0 0 1,000 0.033

OGA+HDBIC+Trim 1,000 0 0 0 0 0 0 1,000 0.033

OGA+BIC 0 0 0 0 0 0 1,000 1,000 0.779

FR 0 0 0 0 0 0 1,000 1,000 1.688

straightforward calculations give cqi = η21q, R−1(q) = I − {η2/(1 + η2q)}1q1>
q ,

and sign(β(q)) = 1q, where 1q is the q-dimensional vector of 1’s. Therefore, for
all i = q + 1, . . . , p, |c′

qiR
−1(q)sign(β(q))| = η2q/(1 + η2q) < 1. Under (5.6) and

some other conditions, Meinshausen and Bühlmann (2006, Thms. 1 and 2) have
shown that if r = rn in the Lasso estimate (3.21) converges to 0 at a rate slower
than n−1/2, then limn→∞ P (L̂n = Nn) = 1, where L̂n is the set of regressors
whose associated regression coefficients estimated by Lasso(rn) are nonzero.

Table 2 compares the performance of OGA+HDBIC, OGA+HDHQ and
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OGA+HDBIC+
Trim, using Kn = b5(n/ log p)1/2c iterations for OGA, with that of SIS-SCAD,
ISIS-SCAD, LARS, Lasso, and adaptive Lasso. To implement Lasso, we use the
Glmnet package in R (Friedman, Hastie, and Tibshirani (2010)) that conducts 5-
fold cross-validation to select the optimal penalty r, yielding the estimate Lasso
in Table 2. To implement LARS, we use the LARS package in R (Hastie and
Efron (2007)) and conduct 5-fold cross-validation to select the optimal tuning
parameter, yielding the estimate LARS in Table 2. For adaptive lasso, we use
the parcor package in R (Kraemer and Schaefer (2010)), which uses an initial
Lasso estimate to calculate the weights for the final weighted Lasso estimate.
Table 2 shows that OGA+HDBIC and OGA+HDHQ can choose the smallest
correct model 98% of the time and choose slightly overfitting models 2% of the
time. Moreover, OGA+HDBIC+Trim can choose the smallest correct model in
all simulations. The MSPEs of these three methods are near the oracle value
qσ2/n = 0.051. On the other hand, although Lasso and LARS can include the
9 relevant variables in all simulation runs, they encounter overfitting problems.
The smallest number of variables selected by Lasso (or LARS) was 31 (or 97)
in the 1,000 simulations, while the largest number was 84 (or 300). Although
the model chosen by Lasso is more parsimonious than that chosen by LARS,
the MSPE of Lasso is larger than that of LARS. Adaptive Lasso can choose the
smallest correct model in all 1,000 simulations. However, its MSPE is still over
5 times, while those of LARS and Lasso are over 10 times the value of qσ2/n.

To implement SIS and ISIS followed by the SCAD regularization method
(instead of Lasso that uses the l1-penalty), we use the SIS package in R (Fan et
al. (2010)), which provides the estimates SIS-SCAD and ISIS-SCAD in Table 2.
As shown in Table 2, although ISIS-SCAD can include the 9 relevant variables in
all simulation runs, it encounters overfitting problems and the resulting MSPE is
about 29 times the value of qσ2/n. Moreover, SIS-SCAD performs much worse
than ISIS-SCAD. It includes the 9 relevant variables in 28.9% of the simulations
and its MSPE is over 10 times that of ISIS-SCAD. Besides the mean of the
squared prediction errors in Table 2, we also give in Table 3 a 5-number summary
of {(

∑p
j=1 βjx

(l)
n+1,j − ŷ

(l)
n+1)

2 : 1 ≤ l ≤ 1, 000}.

Example 3. Let q = 10, (β1, . . . , βq)=(3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9,
9.75), n = 400, and p =4,000 in (5.1). Assume that σ = 1, that xt1, . . . , xtq are
i.i.d. standard normal, and

xtj = dtj + b

q∑
l=1

xtl, for q + 1 ≤ j ≤ p, (5.7)

where b = (3/4q)1/2 and (dt(q+1), . . . , dtp)> are i.i.d. multivariate normal with
mean 0 and covariance matrix (1/4)I and are independent of xtj for 1 ≤ j ≤ q.
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Table 2. Frequency, in 1,000 simulations, of including all nine relevant vari-
ables and selecting all relevant variables in Example 2; see notation in Table
1.

Method E E+1 E+2 E+3 Correct MSPE
OGA+HDHQ 980 18 1 1 1,000 0.067
OGA+HDBIC 982 16 1 1 1,000 0.067
OGA+HDBIC+Trim 1,000 0 0 0 1,000 0.066
SIS-SCAD 127 19 10 14 289 15.170
ISIS-SCAD 0 0 0 0 1,000 1.486
Adaptive Lasso 1,000 0 0 0 1,000 0.289
LARS 0 0 0 0 1,000 0.549
Lasso 0 0 0 0 1,000 0.625

Table 3. 5-number summaries of squared prediction errors in 1,000 simula-
tions.

Method Minimum 1st Quartile Median 3nd Quartile Maximum
OGA+HDHQ 0.000 0.006 0.026 0.084 1.124
OGA+HDBIC 0.000 0.006 0.026 0.084 1.124
OGA+HDBIC+Trim 0.000 0.005 0.026 0.084 1.124
SIS-SCAD 0.000 0.100 2.498 17.210 507.200
ISIS-SCAD 0.000 0.153 0.664 1.845 21.340
Adaptive Lasso 0.000 0.030 0.118 0.360 3.275
LARS 0.000 0.047 0.224 0.719 5.454
Lasso 0.000 0.067 0.280 0.823 7.399

Using the same notation as in the first paragraph of Example 2, straightforward
calculations show that for q + 1 ≤ j ≤ p, cqj = (b, . . . , b)>, R(q) = I, and
sign(β(q)) = (1, . . . , 1)>. Therefore, for q + 1 ≤ j ≤ p, |c>qjR

−1(q)sign(β(q))| =
(3q/4)1/2 = (7.5)1/2 > 1, and hence (5.6) is violated. On the other hand, it is
not difficult to show that (3.2) is satisfied in this example and that

min
q+1≤i≤p

|E(xiy)| > max
1≤i≤q

|E(xiy)|. (5.8)

In fact, |E(xiy)| = 24.69 for all q +1 ≤ i ≤ p and max1≤i≤q |E(xiy)| = βq = 9.75.
Making use of (5.8) and Lemmas A.2 and A.4 in Appendix A, it can be shown
that limn→∞ P (Ĵ1 ⊆ {1, . . . , q}) = 0, and therefore with probability approaching
1, the first iteration of OGA selects an irrelevant variable, which remains in the
OGA path until the last iteration.

Table 4 shows that although OGA+HDHQ and OGA+HDBIC fail to choose
the smallest set of relevant regressors in all 1,000 simulations, consistent with
the above asymptotic theory, they include only 1−3 irrelevant variables while
correctly including all relevant variables. Moreover, by using HDBIC to define the
subset (4.21) of Ĵk̂n

, OGA+HDBIC+Trim is able to choose all relevant variables
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Table 4. Frequency, in 1,000 simulations, of including all nine relevant vari-
ables and selecting all relevant variables in Example 3; see notation in Table
1.

Method E E+1 E+2 E+3 Correct MSPE
OGA+HDHQ 0 39 945 16 1,000 0.035
OGA+HDBIC 0 39 945 16 1,000 0.035
OGA+HDBIC+Trim 1,000 0 0 0 1,000 0.028
SIS-SCAD 0 0 0 0 0 51.370
ISIS-SCAD 0 0 0 0 1,000 0.734
Adaptive Lasso 0 0 0 0 0 27.270
LARS 0 0 0 0 0 0.729
Lasso 0 0 0 0 0 2.283

without including any irrelevant variables in all 1,000 simulations, and its MSPE
is close to the oracle value of qσ2/n = 0.025 while those of OGA+HDBIC and
OGA+HDHQ are somewhat larger. Similar to Example 2, ISIS-SCAD includes
all relevant regressors in all 1,000 simulations, but also includes many irrelevant
regressors. Its MSPE is 0.73, which is about 29 times the value of qσ2/n. The
performance of SIS-SCAD is again much worse than that of ISIS-SCAD. It fails
to include all relevant regressors in all 1,000 simulations and its MSPE is about
70 times that of ISIS-SCAD.

Like SIS-SCAD, LARS, Lasso, and adaptive Lasso also fail to include all
10 relevant regressors in all 1,000 simulations, even though they also include
many irrelevant variables. The smallest number of selected variables in the 1,000
simulations is 8 for adaptive Lasso, 234 for Lasso, and 372 for LARS. The average
and the largest numbers of selected variables are 12.59 and 19 for adaptive Lasso,
272.2 and 308 for Lasso, and 393.7 and 399 for LARS. On the other hand, the
MSPE of LARS is 0.73, which is about 1/3 of that of Lasso and 1/40 of that
of adaptive Lasso. This example shows that when Lasso fails to have the sure
screening property, adaptive Lasso, which relies on an initial estimate based
on Lasso to determine the weights for a second-stage weighted Lasso, may not
be able to improve Lasso and may actually perform worse. The example also
illustrates an inherent difficulty with high-dimensional sparse linear regression
when irrelevant input variables have substantial correlations with relevant ones.
Assumptions on the design matrix are needed to ensure that this difficulty is
surmountable; in particular, (3.17) or the second part of (3.2) can be viewed as a
“sparsity” constraint, when a candidate irrelevant input variable is regressed on
the set of variables already selected by the OGA path, to overcome this difficulty.

6. Concluding Remarks and Discussion

Forward stepwise regression is a popular regression method that seems to
be particularly suitable for high-dimensional sparse regression models but has
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encountered computational and statistical difficulties that hinder its use. On the
computational side, direct implementation of least squares regression involves
inverting high-dimensional covariance matrices and has led to the L2-boosting
method of Bühlmann and Yu (2003) that uses gradient descent instead. The
statistical issue with forward stepwise regression is when to stop sequential vari-
able addition and how to trim back after stopping so that a minimal number of
variables can be included in the final regression model. The usual model selec-
tion criteria, such as Mallows’ Cp, AIC and BIC, do not work well in the high-
dimensional case, as we have noted in the second paragraph of Section 4. A major
contribution of this paper is a high-dimensional information criterion (HDIC) to
be used in conjunction with forward stepwise regression, implemented by OGA,
and backward trimming, implemented by (4.21), so that OGA+HDIC+Trim has
the oracle property of being equivalent to least squares regression on an asymp-
totically minimal set of relevant regressors under a strong sparsity assumption.
The novel probabilistic arguments in the Appendix used in conjunction with
Temlyakov’s (2000) bounds for weak orthogonal greedy algorithms show how
OGA+HDIC+Trim resolves the issue of spurious variable selection when the
number of variables is much larger than the sample size. There are no compara-
ble results in the literature except for Lasso and its variants. In Section 3.2, we
have compared the rates of OGA with those of Lasso obtained by Bickel, Ritov,
and Tsybakov (2009). In particular, they show that OGA can have substantially
better rates than Lasso in some situations, and that the reverse is also true in
some other situations. High-dimensional sparse regression is a difficult but im-
portant problem and needs an arsenal of methods to address different scenarios.
Our results in Sections 3-5 have shown OGA+HDIC or OGA+HDIC+Trim to
be worthy of inclusion in this arsenal, which now already includes Lasso and its
variants.

Whereas OGA+HDIC+Trim is straightforward to implement, the convex
program in Lasso requires numerical optimization and we have relied on open-
source software to perform repeated simulations in reasonable time. As noted by
Wainwright (2009, p.2183), although a “natural optimization-theoretic formula-
tion” of the problem of estimating a high-dimensional linear regression vector β

with mostly zero components is via “l0-minimization, where the l0-norm of a vec-
tor corresponds to the number of nonzero elements,” l0-minimization is “known
to be NP-hard” and has motivated the use of “computationally tractable approx-
imations or relaxations,” among which is Lasso. Using the l1-norm as a surrogate
for the l0-norm, Lasso has become very popular because it can be solved by con-
vex programming in polynomial time with standard optimization software. The
software packages in R used in Examples 2 and 3 have further facilitated the use
of Lasso and adaptive Lasso in high-dimensional regression problems despite the
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inherent complexity of these methods. In particular, in the simulations in Exam-
ples 2 and 3, Glmnet is relatively fast and its computation time is comparable to
that of OGA+HDBIC+Trim, while the computation time of adaptive Lasso (or
LARS) is about 8 (or 100) times that of Glmnet. It should be noted that these
software packages have made many computational short cuts and simplifying ap-
proximations to the original convex optimization problem defining Lasso. On the
other hand, the implementation of OGA+HDBIC+Trim is straightforward and
does not require any approximation to speed it up.

Barron et al. (2008) have recently made use of empirical process theory to
extend the convergence rates of OGA in noiseless models (i.e., εt = 0 in (1.1))
to regression models in which εt and xt are bounded so that |yt| ≤ B for some
known bound B. They need this bound to apply empirical process theory to
the sequence of estimates ŷ

(B)
m (x) = sgn(ŷm(x))min{B, |ŷm(x)|}. They propose

to terminate OGA after bnac iterations for some a ≥ 1 and to select m∗ that
minimizes

∑n
i=1{yi − ŷ

(B)
m (xi)}2 + κm log n over 1 ≤ m ≤ bnac, for which they

show choosing κ ≥ 2568B4(a + 5) yields their convergence result for ŷ
(B)
m∗ . In

comparison, the convergence rate and oracle inequality in Section 3 are sharper
and are directly applicable to ŷm, while the model selection criterion in Section 4
has definitive oracle properties. Wang (2009) terminates OGA after n iterations
and selects m̂n that minimizes EBIC(Ĵm) over 1 ≤ m ≤ n. Although this
method has the sure screening property under conditions that are much stronger
than those of Theorem 4, Example 1 has shown that it has serious overfitting
problems. Wang actually uses it to screen variables for a second-stage regression
analysis using Lasso or adaptive Lasso. Forward stepwise regression followed by
cross-validation as a screening method in high-dimensional sparse linear models
has also been considered by Wasserman and Roeder (2009), who propose to use
out-of-sample least squares estimates for the selected model after partitioning
the data into a screening group and a remaining group for out-of-sample final
estimation. By using OGA+HDIC+Trim instead, we can already achieve the
oracle property without any further refinement.
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Appendix A: Proofs of (3.8), (3.13), (4.15) and (4.20)

The proof of (3.8) relies on the representation (3.7), whose right-hand side
involves (i) a weighted sum of the i.i.d. random variables εt that satisfy (C2),
and (ii) the difference between a nonlinear function of the sample covariance
matrix of the xtj that satisfy (C3) and its expected value, recalling that we have
assumed σj = 1 in the proof of Theorem 1. The proof of (3.13) also makes use
of a similar representation. The following four lemmas give exponential bounds
for moderate deviation probabilities of (i) and (ii).

Lemma A.1. Let ε, ε1, . . . , εn be i.i.d. random variables such that E(ε) = 0,
E(ε2) = σ2 and (C2) holds. Then, for any constants ani(1 ≤ i ≤ n) and un > 0
such that

un max
1≤i≤n

|ani|
An

→ 0 and
u2

n

An
→ ∞ as n → ∞, (A.1)

where An =
∑n

i=1 a2
ni, we have

P{
n∑

i=1

aniεi > un} ≤ exp
{−(1 + o(1))u2

n

2σ2An

}
. (A.2)

Proof. Let eψ(θ) = E(eθε), which is finite for |θ| < t0 by (C2). By the Markov
inequality, if θ > 0 and max1≤i≤n |θani| < t0, then

P
{ n∑

i=1

aniεi > un

}
≤ exp

{
− θun +

n∑
i=1

ψ(θani)
}

. (A.3)

By (A.1) and the Taylor approximation ψ(t)∼σ2t2/2 as t→0, θun−
∑n

i=1ψ(θani)
is minimized at θ ∼ un/(σ2An) and has minimum value u2

n/(2σ2An). Putting
this minimum value in (A.3) proves (A.2).

Lemma A.2. With the same notation and assumptions as in Theorem 1, and
assuming that σj = 1 for all j so that zj = xj, there exists C > 0 such that

max
1≤i,j≤pn

P{|
n∑

t=1

(xtixtj − σij)| > nδn} ≤ exp(−Cnδ2
n) (A.4)

for all large n, where σij = Cov(xi, xj) and δn are positive constants satisfying
δn → 0 and nδ2

n → ∞ as n → ∞. Define Γ(J) by (3.1) and let Γ̂n(J) be the
corresponding sample covariance matrix. Then, for all large n,

P{ max
1≤](J)≤Kn

‖Γ̂n(J) − Γ(J)‖ > Knδn} ≤ p2
nexp(−Cnδ2

n). (A.5)
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If furthermore Knδn = O(1), then there exists c > 0 such that

P{ max
1≤](J)≤Kn

‖Γ̂−1
n (J) − Γ−1(J)‖ > Knδn} ≤ p2

nexp(−cnδ2
n) (A.6)

for all large n, where Γ̂−1
n denotes a generalized inverse when Γ̂n is singular.

Proof. Since (xti, xtj) are i.i.d. and (C3) holds, the same argument as that in
the proof of Lemma A.1 can be used to prove (A.4) with C < 1/(2Var(xixj)).
Letting 4ij = n−1

∑n
t=1 xtixtj − σij , note that max1≤](J)≤Kn

‖Γ̂n(J) − Γ(J)‖ ≤
Kn max1≤i,j≤pn |4ij | and therefore (A.5) follows from (A.4). Since λmin(Γ̂n(J)) ≥
λmin(Γ(J))−‖Γ̂n(J)−Γ(J)‖, it follows from (3.2) and (A.5) that the probability
of Γ̂n(J) being singular is negligible in (A.6), for which we can therefore assume
Γ̂n(J) to be nonsingular.

To prove (A.6), denote Γ̂n(J) and Γ(J) by Γ̂ and Γ for simplicity. Making
use of Γ̂−1−Γ−1 = Γ−1(Γ− Γ̂)Γ̂−1 and Γ̂ = Γ{I+Γ−1(Γ̂−Γ)}, it can be shown
that ‖Γ̂−1 − Γ−1‖(1 − ‖Γ−1‖‖Γ̂ − Γ‖) ≤ ‖Γ−1‖2‖Γ − Γ̂‖, and hence

max
1≤](J)≤Kn

‖Γ̂−1 − Γ−1‖(1 − max
1≤](J)≤Kn

‖Γ−1‖‖Γ̂ − Γ‖)

≤ max
1≤](J)≤Kn

‖Γ−1‖2‖Γ − Γ̂‖. (A.7)

By (3.2), max1≤](J)≤Kn
‖Γ−1‖ ≤ δ−1 for all large n. Letting G = supn≥1 Knδn,

we bound P{max1≤](J)≤Kn
‖Γ̂−1 − Γ−1‖ > Knδn} by

P

{
max

1≤](J)≤Kn

‖Γ̂−1 − Γ−1‖ > Knδn, max
1≤](J)≤Kn

‖Γ−1‖‖Γ̂ − Γ‖ ≤ Knδn

G + 1

}
+P

{
max

1≤](J)≤Kn

‖Γ−1‖‖Γ̂ − Γ‖ >
Knδn

G + 1

}
≤ P

{
max

1≤](J)≤Kn

‖Γ−1‖2‖Γ − Γ̂‖ >
Knδn

G + 1

}
+P

{
max

1≤](J)≤Kn

‖Γ−1‖‖Γ̂ − Γ‖ >
Knδn

G + 1

}
, (A.8)

in view of (A.7) and 1−(G+1)−1Knδn ≥ (G+1)−1. Since max1≤](J)≤Kn
‖Γ−1‖2 ≤

δ−2 for all large n, combining (A.8) with (A.5) (in which δn is replaced by
δ2δn/(G + 1) for the first summand in (A.8), and by δδn/(G + 1) for the second)
yields (A.6) with c < Cδ4/(G + 1)2.

Lemma A.3. With the same notation and assumptions as in Theorem 1 and
assuming σj = 1 for all j, let n1 =

√
n/(log n)2 and nk+1 =

√
nk for k ≥ 1.

Let un be positive constants such that un/n1 → ∞ and un = O(n). Let K be a
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positive integer and Ωn = {max1≤t≤n |εt| < (log n)2}. Then there exists α > 0
such that for all large n,

max
1≤i≤pn

P{ max
1≤t≤n

|xti| ≥ n1} ≤ exp(−αn2
1), (A.9)

max
1≤k≤K,1≤i≤pn

P
( n∑

t=1

|εtxti|I{nk+1≤|xti|<nk} ≥ un(log n)2, Ωn

)
≤exp(−αun).(A.10)

Proof. (A.9) follows from (C3). To prove (A.10), note that on Ωn,
n∑

t=1

|εtxti|I{nk+1≤|xti|<nk} ≤ nk(log n)2
n∑

t=1

I{|xti|≥nk+1}.

Therefore it suffices to show that for all large n and 1 ≤ i ≤ pn, 1 ≤ k ≤ K,

exp(−αun) ≥ P (
n∑

t=1

I{|xti|≥nk+1} ≥
un

nk
) = P{Binomial(n, πn,k,i) ≥

un

nk
},

where πn,k,i = P (|xi| ≥ nk+1) ≤ exp(−cn2
k+1) = exp(−cnk) for some c > 0, by

(C3). The desired conclusion follows from standard bounds for the tail probabil-
ity of a binomial distribution, recalling that un = O(n) and un/n1 → ∞.

Lemma A.4. With the same notation and assumptions as in Lemma A.3, let δn

be positive numbers such that δn = O(n−θ) for some 0 < θ < 1/2 and nδ2
n → ∞.

Then there exists β > 0 such that for all large n,

max
1≤i≤pn

P
(
|

n∑
t=1

εtxti| ≥ nδn, Ωn

)
≤ exp(−βnδ2

n). (A.11)

Proof. Let ni, i ≥ 1 be defined as in Lemma A.3. Let K be a positive integer such
that 2−K < θ. Then since δn = O(n−θ), n2−K

= o(δ−1
n ). Letting A(1) = [n1,∞),

A(k) = [nk, nk−1) for 2 ≤ k ≤ K, A(K+1) = [0, nK), note that

P
(
|

n∑
t=1

εtxti| ≥ nδn, Ωn

)
≤

K+1∑
k=1

P
(
|

n∑
t=1

εtxtiI{|xti|∈A(k)}| ≥
nδn

K + 1
, Ωn

)
≤ P ( max

1≤t≤n
|xti| ≥ n1) +

K+1∑
k=2

P
(
|

n∑
t=1

εtxtiI{|xti|∈A(k)}| ≥
nδn

K + 1
,Ωn

)
. (A.12)

From (A.10) (in which un is replaced by nδn/{(K + 1)(log n)2}), it follows that
for 2 ≤ k ≤ K and all large n,

max
1≤i≤pn

P
(
|

n∑
t=1

εtxtiI{|xti|∈A(k)}| ≥
nδn

K + 1
, Ωn

)
≤exp

{
− αnδn

(K+1)(log n)2
}

, (A.13)
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where α is some positive constant. Moreover, by (A.9), max1≤i≤pn P (max1≤t≤n

|xti| ≥ n1) ≤ exp {−αn/(log n)4} for some α > 0. Putting this bound and (A.13)
into (A.12) and noting that 1/{(log n)2δn} → ∞, it remains to show for some
a1 > 0 and all large n,

max
1≤i≤pn

P
(
|

n∑
t=1

εtxtiI{|xti|∈A(K+1)}| ≥
nδn

K + 1
, Ωn

)
≤ exp(−a1nδ2

n). (A.14)

Let 0 < λ < 1 and Li = {λ ≤ n−1
∑n

t=1 x2
tiI{|xti|∈A(K+1)} < λ−1}. By an argu-

ment similar to that used in the proof of (A.4), it can be shown that there exists
a2 > 0 such that for all large n, max1≤i≤pn P (Lc

i ) ≤ exp(−a2n). Application
of Lemma A.1 after conditioning on Xi, which is independent of (ε1, . . . , εn)>,
shows that there exists a3 > 0 for which

max
1≤i≤pn

P
(∣∣∣ n∑

t=1

εtxtiI{|xti|∈A(K+1)}

∣∣∣ ≥ nδn

K + 1
, Li

)
≤ exp(−a3nδ2

n),

for all large n. This completes the proof of (A.14).

Proof of (3.8). Let Ωn = {max1≤t≤n |εt| < (log n)2}. It follows from (C2) that
limn→∞ P (Ωc

n) = 0. Moreover, by (A.4), there exists C > 0 such that for any
a > 1/

√
C and all large n,

P
(

max
1≤i≤pn

|n−1
n∑

t=1

x2
ti − 1| > a(log

pn

n
)1/2

)
)

≤ pnexp(−Ca2 log pn) = exp{log pn − Ca2 log pn} = o(1). (A.15)

Combining (A.15) with (3.7), (C4), and limn→∞ P (Ωc
n) = 0, it suffices for the

proof of (3.8) to show that for some λ > 0,

P
(

max
](J)≤Kn−1,i∈/J

|n−1
n∑

t=1

εtx̂
⊥
ti;J | > λ(log

pn

n
)1/2, Ωn

)
= o(1), (A.16)

P
(

max
i,j /∈J,](J)≤Kn−1

|n−1
n∑

t=1

xtj x̂
⊥
ti;J − E(xjx

⊥
i;J)| > λ(log

pn

n
)1/2

)
= o(1). (A.17)

To prove (A.16), let xt(J) be a subvector of xt, with J denoting the cor-
responding subset of indices, and denote Γ̂n(J) by Γ̂(J) for simplicity. Note
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that

max
](J)≤Kn−1,i/∈J

|n−1
n∑

t=1

εtx̂
⊥
ti;J | ≤ max

1≤i≤pn

|n−1
n∑

t=1

εtxti|

+ max
1≤](J)≤Kn−1,i/∈J

|(n−1
n∑

t=1

x⊥
ti:Jxt(J))>Γ̂−1(J)(n−1

n∑
t=1

εtxt(J))|

+ max
1≤](J)≤Kn−1,i/∈J

|g>
i (J)Γ−1(J)(n−1

n∑
t=1

εtxt(J))| := S1,n+S2,n+S3,n,(A.18)

where x⊥
ti:J = xti − g>

i (J)Γ−1(J)xt(J). Since

S3,n ≤ max
1≤i≤pn

|n−1
n∑

t=1

εtxti| max
1≤](J)≤Kn−1,i/∈J

‖Γ−1(J)gi(J)‖1,

and since we can bound max1≤](J)≤Kn−1,i/∈J ‖Γ−1(J)gi(J)‖1 above by M for all
large n in view of (3.2), it follows from Lemma A.4 that there exists β > 0 such
that for any b > β−1/2(M + 1) and all large n,

P (S1,n +S3,n > b(log
pn

n
)1/2, Ωn) ≤ pnexp

(
−βb2 log

pn

(M + 1)2
)

= o(1). (A.19)

Since Kn = O((n/ log n)1/2), there exists D > 0 such that for all large n, Kn ≤
D(n/ log pn)1/2. As shown in the proof of Lemma A.2, max1≤](J)≤Kn

‖Γ−1(J)‖ ≤
δ−1 for all large n. In view of this and (A.6), there exists c > 0 such that for any
d > (2D2/c)1/2 and all large n,

P ( max
1≤](J)≤Kn

‖Γ̂−1(J)‖ > δ−1 + d) ≤ P ( max
1≤](J)≤Kn

‖Γ̂−1(J) − Γ−1(J)‖ > d)

≤ p2
nexp

(−cnd2

K2
n

)
= o(1). (A.20)

Since max1≤](J)≤Kn−1,i/∈J ‖n−1
∑n

t=1 εtxt(J)‖ ≤ K
1/2
n max1≤i≤pn |n−1

∑n
t=1 εtxti|

and

max
1≤](J)≤Kn−1,i/∈J

‖n−1
n∑

t=1

x⊥
ti;Jxt(J)‖

≤ K1/2
n max

1≤i,j≤pn

|n−1
n∑

t=1

xtixtj − σij |(1 + max
1≤](J)≤Kn,i/∈J

‖Γ−1(J)gi(J)‖1), (A.21)

it follows from (3.2) that for all large n,

S2,n ≤ ( max
1≤](J)≤Kn

‖Γ̂−1(J)‖)Kn(1 + M)

×( max
1≤i,j≤pn

|n−1
n∑

t=1

xtixtj − σij |)( max
1≤i≤pn

|n−1
n∑

t=1

εtxti|). (A.22)
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Take d > (2D2/c)1/2 and let c1 = δ−1 +d. By (A.4), (A.20), (A.22), and Lemma
A.4, there exists sufficiently large c2 such that

P (S2,n > c2(log
pn

n
)1/2, Ωn) ≤ P ( max

1≤](J)≤Kn

‖Γ̂−1(J)‖ > c1)

+P

(
max

1≤i≤pn

|n−1
n∑

t=1

εtxti| >
c
1/2
2 (log pn

n )1/4

(Knc1(1 + M))1/2
,Ωn

)

+P

(
max

1≤i,j≤pn

|n−1
n∑

t=1

xtixtj − σij | >
c
1/2
2 (log pn

n )1/4

(Knc1(1 + M))1/2

)
= o(1). (A.23)

From (A.18), (A.19), and (A.23), (A.16) follows if λ is sufficiently large.
To prove (A.17), we use the bound

max
](J)≤Kn−1,i,j /∈J

|n−1
n∑

t=1

xtj x̂
⊥
ti;J − E(xjx

⊥
i;J)|

≤ max
1≤i,j≤pn

|n−1
n∑

t=1

xtjxti − σij |

+ max
1≤](J)≤Kn−1,i,j /∈J

|g>
j (J)Γ−1(J)n−1

n∑
t=1

x⊥
ti;Jxt(J)|

+ max
1≤](J)≤Kn−1,i,j /∈J

|g>
i (J)Γ−1(J)(n−1

n∑
t=1

xtjxt(J) − gj(J))|

+ max
1≤](J)≤Kn−1,i,j /∈J

‖Γ̂−1(J)‖‖n−1
n∑

t=1

x⊥
ti;Jxt(J)‖‖n−1

n∑
t=1

x⊥
tj;Jxt(J)‖

:= S4,n + S5,n + S6,n + S7,n. (A.24)

Analogous to (A.21) and (A.22), it follows from (3.2) that for all large n,

S5,n ≤ max
1≤i,j≤pn

|n−1
n∑

t=1

xtjxti − σij |(M + M2), S6,n

≤ max
1≤i,j≤pn

|n−1
n∑

t=1

xtjxti − σij |M.

Combining this with (A.4) yields that for some c3 > 0,

P{S4,n + S5,n + S6,n > c3

(
log

pn

n

)1/2
} = o(1). (A.25)

In view of (A.21) and (3.2), it follows that for all large n,

S7,n ≤ ( max
1≤](J)≤Kn

‖Γ̂−1(J)‖)Kn(1 + M)2 max
1≤i,j≤pn

(n−1
n∑

t=1

xtjxti − σij)2.
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Therefore by (A.4) and (A.20), there exists c4 > 0 such that for all large n,

P{S7,n > c4(log
pn

n
)1/2} ≤ P ( max

1≤](J)≤Kn

‖Γ̂−1(J)‖ > c1)

+P

(
max

1≤i,j≤pn

(n−1
n∑

t=1

xtjxti − σij)2 >
c4(log pn

n )1/2

c1Kn(1 + M)2

)
= o(1). (A.26)

From (A.24)−(A.26), (A.17) follows if λ is sufficiently large.

Proof of (3.13). Let q(J) = E(yxJ) and Q(J) = n−1
∑n

t=1(yt − x>
t (J)Γ−1(J)

q(J))xt(J). Then

‖Q(Ĵm)‖2 ≤ 2m max
1≤i≤pn

(n−1
n∑

t=1

εtxti)2 + 2m max
1≤i,j≤pn

(n−1
n∑

t=1

xtixtj − σij)2

×(
pn∑

j=1

|βj |)2(1 + max
1≤](J)≤Kn,1≤l≤pn

‖Γ−1(J)gl(J)‖1)2.

Combining this bound with (3.2), (C4), (A.4), and (A.11) yields

max
1≤m≤Kn

{n‖Q(Ĵm)‖2

m log pn

}
= Op(1). (A.27)

Moreover, by (A.5) and (A.6), max1≤m≤Kn ‖Γ̂−1(Ĵm)‖ = Op(1) and max1≤m≤Kn

‖Γ̂(Ĵm) − Γ(Ĵm)‖ = Op(1). The desired conclusion (3.13) follows from this,
(A.27), and

En(ŷm(x) − yĴm
(x))2

= Q>(Ĵm)Γ̂−1(Ĵm)Γ(Ĵm)Γ̂−1(Ĵm)Q(Ĵm)

≤ ‖Q(Ĵm)‖2‖Γ̂−1(Ĵm)‖2‖Γ̂(Ĵm) − Γ(Ĵm)‖ + ‖Q(Ĵm)‖2‖Γ̂−1(Ĵm)‖.

Proof of (4.15). Denote banγc in (4.10) by m0. By (3.2) and an argument
similar to that to derive (A.20), there exists d1 > 0 such that for all large n,

P ( max
1≤](J)≤m0

‖Γ̂−1(J)‖ > 2δ−1) ≤ p2
nexp(−d1n

1−2γ) = o(1). (A.28)

Defining Ωn as in Lemma A.3, it follows from (A.16) and (C5) that

P (|B̂n| ≥ θn−γ/2,Dn,Ωn) ≤ P ( max
](J)≤m0−1,i/∈J

|n−1
n∑

t=1

εtx̂
⊥
ti;J | ≥ θn−γ/2, Ωn)

= o(1). (A.29)
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Since (4.8) implies that n1−2γ/(wn log pn) → ∞, it follows from Lemma A.4,
(3.2), (4.8), and (A.28) that

P (|Ĉn| ≥
θn1−2γ

wn log pn
,Dn,Ωn) ≤ P (|n−1

n∑
t=1

ε2
t − σ2| ≥ θ

2
)

+P ( max
1≤](J)≤m0

‖Γ̂−1(J)‖m0 max
1≤j≤pn

(n−1
n∑

t=1

εtxtj)2 ≥ θ

2
,Ωn) = o(1). (A.30)

As noted in the proof of (3.8), P (Ωn) = 1 + o(1). Moreover, by (4.8) and (A.5)
with Kn replaced by m0, there exists d2 > 0 such that for all large n,

P (Ân <
vn

2
,Dn) ≤ P (λmin(Γ̂(Ĵk̃n

)) <
vn

2
,Dn) ≤ P (λmin(Γ̂(Ĵm0)) <

vn

2
)

≤ P ( max
1≤](J)≤m0

‖Γ̂(J) − Γ(J)‖ >
δ

2
) ≤ p2

nexp(−d2n
1−2γ) = o(1), (A.31)

recalling that vn > δ for all large n by (3.2). From (A.29)−(A.31), (4.15) follows.

Proof of (4.20). Since k̂ ≤ Kn ≤ D(n/ log pn)1/2 for some D > 0, log pn = o(n)
and wn → ∞, there exist η > 0 and ζn → ∞ such that on {k̂ > k̃},

n{1 − exp(n−1wn(k̂ − k̃) log pn)}
k̂ − k̃

≥ η min{(n log pn)1/2, wn log pn}

≥ ζn log pn. (A.32)

From (4.18), (A.18), and (A.32), we obtain the bound

P{(ân + b̂n)(k̂ − k̃) ≥ θn[1 − exp(−n−1wn(k̂ − k̃) log pn)], k̂ > k̃}
≤ P (Ωc

n) + P (‖Γ̂−1(ĴKn)‖ ≥ δ−1 + d)

+P ( max
1≤j≤pn

(n−1/2
n∑

t=1

xtjεt)2 ≥ θζn(log pn)
2(δ−1 + d)

, Ωn)

+P (n(S2,n + S3,n)2 ≥ θζn(log pn)
2(δ−1 + d)

, Ωn), (A.33)

where S2,n and S3,n are defined in (A.18) and d is the same as that in (A.20).
By Lemma A.4, there exists β > 0 such that for all large n,

P ( max
1≤j≤pn

(n−1/2
n∑

t=1

xtjεt)2 ≥ θζn(log pn)
2(δ−1 + d)

, Ωn)

≤ pn max
1≤j≤pn

P
(
|n−1/2

n∑
t=1

xtjεt| ≥
{θζn(log pn)

2(δ−1 + d)

}1/2
, Ωn

)
≤ pnexp(−βζn log pn) = o(1).
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An argument similar to that in (A.19) and (A.23) yields

P (n(S2,n + S3,n)2 ≥ θζn(log pn)
2(δ−1 + d)

, Ωn) = o(1).

Moreover, as already shown in the proof of (3.8), P (Ωc)=o(1) and P (‖Γ̂−1(ĴKn)‖
≥ δ−1 + d) = o(1); see (A.20). Adding these bounds for the summands in (A.33)
yields the first conclusion in (4.20). The second conclusion P (|Ĉn| ≥ θ) = o(1)
can be derived similarly from (A.30) and (4.10).

Appendix B: Proof of Theorem 2

Note that when the regressors are nonrandom, the population version of
OGA is the “noiseless” OGA that replaces yt in OGA by its mean y(xt). Let
µ = (y(x1), . . . , y(xn))>. Let HJ denote the projection matrix associated with
the projection into the linear space spanned by Xj , j ∈ J ⊆ {1, . . . , p}. Let
U(0) = µ, j̃1 = arg max1≤j≤p |(U(0))>Xj |/ ‖Xj‖ and U(1) = (I − H{j̃1})µ.
Proceeding inductively yields

j̃m = arg max
1≤j≤p

|(U(m−1))>Xj |
‖Xj‖

, U(m) = (I − H{j̃1,...,j̃m})µ.

When the procedure stops after m iterations, the noiseless OGA determines an
index set J̃m = {j̃1, . . . , j̃m} and approximates µ by HJ̃m

µ. A generalization of
noiseless OGA takes 0 < ξ ≤ 1 and replaces j̃i by j̃i,ξ, where j̃i,ξ is any 1 ≤ l ≤ p
satisfying

|(U(i−1))>Xl|
‖Xl‖

≥ ξ max
1≤j≤p

|(U(i−1))>Xj |
‖Xj‖

. (B.1)

We first prove an inequality for the generalization (B.1) of noiseless OGA.

Lemma B.1. Let 0 < ξ ≤ 1, m ≥ 1, J̃m,ξ = {j̃1,ξ, . . . , j̃m,ξ} and σ̂2
j =

n−1
∑n

t=1 x2
tj. Then

‖(I − HJ̃m,ξ
)µ‖2 ≤ n( inf

b∈B

p∑
j=1

|bj σ̂j |)2(1 + mξ2)−1.

Proof. For J ⊆ {1, . . . , p}, i ∈ {1, . . . , p} and m ≥ 1, define νJ,i = (Xi)>(I −
HJ)µ/(n1/2‖Xi‖). Note that

‖(I − HJ̃m,ξ
)µ‖2

≤ ‖(I − HJ̃m−1,ξ
)µ −

µ>(I − HJ̃m−1,ξ
)Xj̃m,ξ

‖Xj̃m,ξ
‖2

Xj̃m,ξ
‖2

≤ ‖(I − HJ̃m−1,ξ
)µ‖2 − nν2

J̃m−1,ξ,j̃m,ξ
≤ ‖(I − HJ̃m−1,ξ

)µ‖2 − nξ2 max
1≤j≤p

ν2
J̃m−1,ξ,j

,

(B.2)
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in which HJ̃0,ξ
= 0. Moreover, for any b = (b1, . . . , bp)> ∈ B,

‖(I − HJ̃m−1,ξ
)µ‖2 = n1/2

p∑
j=1

bj‖Xj‖νJ̃m−1,ξ,j ≤ ( max
1≤j≤p

|νJ̃m−1,ξ,j |)n
p∑

j=1

|bj σ̂j |.

(B.3)
Let S = n(

∑p
j=1 |bj σ̂j |)2. It follows from (B.2) and (B.3) that

‖(I − HJ̃m,ξ
)µ‖2 ≤ ‖(I − HJ̃m−1,ξ

)µ‖2{1 − ξ2

S
‖(I − HJ̃m−1,ξ

)µ‖2}. (B.4)

By Minkowski’s inequality, ‖(I − HJ̃0,ξ
)µ‖2 = ‖µ‖2 ≤ S. Combining this with

(B.4) and Temlyakov’s (2000) Lemma 3.1 yields the desired conclusion.

Proof of Theorem 2. For the given 0 < ξ < 1, let ξ̃ = 2/(1 − ξ),

A = { max
(J,i):](J)≤m−1,i/∈J

|µ̂J,i − νJ,i| ≤ Cσ(n−1 log p)1/2},

B = { min
0≤i≤m−1

max
1≤j≤p

|νĴi,j
| > ξ̃Cσ(n−1 log p)1/2},

recalling that µ̂J,i is defined in (3.4) and that νJ,i is introduced in the proof of
Lemma B.1. Note that νJ,i, A and B play the same roles as those of µJ,i, An(m),
and Bn(m) in the proof of Theorem 1. By an argument similar to that used to
prove (3.10), we have for all 1 ≤ q ≤ m,

|νĴq−1,ĵq
| ≥ ξ max

1≤j≤p
|νĴq−1,j | on A

∩
B, (B.5)

which implies that on the set A
∩

B, Ĵm is the index set chosen by the general-
ization (B.1) of the noiseless OGA. Therefore, it follows from Lemma B.1 that

‖(I − HĴm
)µ‖2IA

T

B ≤ n( inf
b∈B

‖b‖1)2(1 + mξ2)−1. (B.6)

Moreover, for 0 ≤ i ≤ m − 1, ‖(I − HĴm
)µ‖2 ≤ ‖(I − HĴi

)µ‖2, and therefore

‖(I − HĴm
)µ‖2 ≤ min

0≤i≤m−1

p∑
j=1

bjX>
j (I − HĴi

)µ

≤ ( min
0≤i≤m−1

max
1≤j≤p

|νĴi,j
|)n‖b‖1

≤ ξ̃Cσ(n log p)1/2‖b‖1 on Bc. (B.7)

Since A decreases as m increases, it follows from (3.18), (B.6), and (B.7) that

n−1‖(I − HĴm
)µ‖2IA ≤ ωm,n for all 1 ≤ m ≤ b n

log p
c, (B.8)
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where A denotes the set A with m = bn/ log pc. Moreover, as is shown below,

P (Ac) ≤ a∗ := p exp
{−2−1C2(log p)

(1 + M)2
}

, (B.9)

P (Ec) ≤ b∗ :=
r̃
1/2
p p−(srp−1)

1 − r̃
1/2
p p−(srp−1)

, (B.10)

where rp and r̃p are defined in (3.16) and

E = {ε>HĴm
ε ≤ sσ2m log p for all 1 ≤ m ≤ b n

log p
c}.

By (B.8)−(B.10) and that ‖ŷm(·) − y(·)‖2
n = n−1(‖(I − HĴm

)µ‖2 + ε>HĴm
ε),

(3.19) holds on the set A
∩

E , whose probability is at least 1 − a∗ − b∗, proving
the desired conclusion.

Proof of (B.9). Since µ̂J,i = (Xi)>(I−HJ)Y/(n1/2‖Xi‖) and n−1
∑n

t=1 x2
tj = 1

for all 1 ≤ j ≤ p, we have for any J ⊆ {1, . . . , p}, 1 ≤ i ≤ p and i /∈ J ,

|µ̂J,i − νJ,i| ≤ max
1≤i≤p

|n−1
n∑

t=1

xtiεt|(1 + inf
θJ,i∈BJ,i

‖θi,J‖1),

setting ‖θJ,i‖1 = 0 if J = ∅. This and (3.17) yield

max
](J)≤bn/ log pc−1,i/∈J

|µ̂J,i − νJ,i| ≤ max
1≤i≤p

|n−1
n∑

t=1

xtiεt|(1 + M). (B.11)

By (B.11) and the Gaussian assumption on εt,

P (Ac) ≤ P{max
1≤i≤p

|n−1/2
n∑

t=1

xtiεt/σ| > C(log p)1/2(1 + M)−1}

≤ p exp(−{C2 log p/[2(1 + M)2]}).

Proof of (B.10). Clearly P (Ec) ≤
∑bn/ log pc

m=1 pm max](J)=m P (ε>HJε > sσ2m

log p). Moreover, we can make use of the χ2-distribution to obtain the bound

max
](J)=m

P (ε>HJε > sσ2m log p) ≤ (1 − 2r)−m/2exp(−rsm log p) (B.12)

for any 0 < r < 1/2. With r = rp and s > {1 + (2 log p)−1 log r̃p} /rp in
(B.12), we can use (B.12) to bound P (Ec) by

∑bn/ log pc
m=1 gm ≤ g/(1 − g), where

g = r̃
1/2
p p−(srp−1) < 1.
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