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TAIL BEHAVIOR AND OLS ESTIMATION

IN AR-GARCH MODELS
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Abstract: The scope of this paper is twofold. We first describe the tail behavior for

general AR-GARCH processes and hence extend the results of Basrak, Davis, and

Mikosch (2002b) to another empirical relevant model class. Second, and primarily,

we study properties for the OLS estimator in general AR-GARCH model. Specif-

ically it is shown that the OLS estimator of the autoregressive parameter in the

AR-GARCH model has a non-standard limiting distribution with a non-standard

rate of convergence when the innovations have non-finite fourth order moment.

Key words and phrases: ARMA-GARCH, heavy tails, tail behavior.

1. Introduction

The most important univariate model in econometrics is arguably the ARMA
model. Countless studies have exploited the flexibility and simplicity of this
model in many areas of economics. In addition during the 1980’s the presence of
non-constant volatility in macroeconomic and especially financial time series was
recognized. The seminal papers of Engle (1982) and Bollerslev (1986) introduced
the linear autoregressive conditional heteroscedastic (ARCH) and the generalized
autoregressive conditional heteroscedastic (GARCH) models. The latter is by
now so widely used that it is referred to as the ”workhorse of the industry”, Lee
and Hansen (1994).

After the introduction of the GARCH model a number of papers studied
its theoretical properties. It was established that, depending on the parameters
of the model, processes generated by the GARCH model could exhibit vastly
different behavior ranging from degenerating to zero, to having non-finite uncon-
ditional variance, or indeed be explosive, e.g., Nelson (1990). However, it was not
until recently, Basrak, Davis, and Mikosch (2002b), the literature moved from
”simply” stating whether a given moments was finite or not to instead providing
a precise mathematical description of the tail behavior for processes generated
by the GARCH model.

Combining the ARMA model with the GARCH model for the innovations,
yielding the so-called ARMA-GARCH model, provides the econometrician with
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a flexible yet tractable model that allows one to model both mean and variance.
However, estimating the full ARMA-GARCH model by quasi maximum likeli-
hood is still somewhat more tedious than doing simple ordinary least squares
(OLS). Hence if one is interested in estimating the AR parameters of an AR-
GARCH model it can be attractive to use OLS estimation, which provides closed
form expressions for the estimators. Generally the presence of GARCH-type in-
novations does not compromise the consistency of the OLS estimators (the precise
requirements for this to hold are discussed later), but it does make standard in-
ference invalid. The severity of the departure from standard inference depends
critically on the tail behavior of the underlying GARCH process. When fitting
GARCH models to typical log-return data, it is often found that the estimated
parameters imply a finite second order moment, but a non-finite fourth order
moment, see e.g., the discussion on integrated GARCH in Engle and Bollerslev
(1986), Andersen and Bollerslev (1997), and Engle and Patton (2001).

In this paper we initially establish that ARMA processes based on GARCH
innovations have the same tail behavior as the GARCH innovations themselves.
Hence we extend the results of Basrak, Davis, and Mikosch (2002b) to another
empirically important class of models. Second, we establish that the OLS estima-
tor of the AR parameters in an AR-GARCH model remains consistent as long as
the innovations have finite second order moment, but with a non-standard rate of
convergence and a stable limiting distribution if the innovations have non-finite
fourth order moment. The paper proceeds as follows. Section 2 contains the
results. All proofs are deferred to the Appendix.

2. The Results

The AR(s)-GARCH(1, 1) model can be stated as

yt = ρ1yt−1 + · · · + ρsyt−s + εt(θ), (2.1)

εt(θ) =
√

ht(θ)zt =
√

ω + αε2
t−1(θ) + βht−1(θ)zt, (2.2)

with t = 1, . . . , T and zt an i.i.d.(0,1) sequence of random variables. The param-
eter vector is denoted by θ = (ρ1, . . . , ρs, α, β, ω)′ and the true parameter by θ0.
Define in addition ȳt = (yt, . . . , yt−s+1)′ and ρ = (ρ1, . . . , ρs)′. In order to ease
notation we adopt the convention εt = εt(θ0), etc., for expressions evaluated at
the true parameter values.

An important aspect of tail heaviness is summarized by the so-called tail
index, denoted λ, for a further discussion see Resnick (1987). Under very general
conditions the tail index of a GARCH(1,1) process (e.g., given by (2.2)) can be
found as the unique strictly positive solution to the equation E[(β+αz2

t )λ/2] = 1,
as shown in Basrak, Davis, and Mikosch (2002b). A tail index of λ has the
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interpretation that the GARCH process has finite moments of all orders below λ,
but E[|εt|λ] = ∞. Techniques to estimate the tail index directly from a realization
of a GARCH(1,1) process are discussed in Berkes, Horvath, and Kokoszka (2003).

Assumption 1.
(i) zt has a density with respect to the Lebesgue measure on R that is bounded

away from zero and infinity on compact sets,
(ii) E[log(β + αz2

t )] < 0, and
(iii) the maximal eigenvalue of the companion form matrix corresponding to the

AR part of the model is smaller than one.

Remark 1. By Theorem 1 in Meitz and Saikkonen (2008) and Meitz and
Saikkonen (2006), Assumption 1 is sufficient for the process xt = (ȳt−1, εt, ht)′

generated by the AR-GARCH model to be geometrically ergodic. Hence As-
sumption 1 is also sufficient for the model to have a stationary distribution.

Theorem 1. In addition to Assumption 1 let

(i) the initial values be distributed according to the stationary distribution,

(ii) the GARCH parameters be such that the GARCH process has finite second
order moment, but non-finite fourth order moment,

(iii)and zt’s distribution be symmetric.

Then all finite-dimensional vectors (yt, . . . , yt+k) have regularly varying tails as
defined in Resnick (1987) with the same tail index λ as the GARCH process.

Remark 2. The theorem can easily be extended to ARMA(s, r)-GARCH(p, q)
models at the price of a somewhat more cumbersome notation and less explicit
conditions for stationarity, see e.g., Ling and Li (1998) and Basrak, Davis, and
Mikosch (2002b).

Theorem 2. Under the assumptions of Theorem 1, T 1−2/λ(ρ̂OLS−ρ0)
D→ Σ−1S1,

where S1 is a λ/2 stable random vector on Rs and Σ = E[ȳtȳ
′
t] > 0.

Remark 3. By symmetry of the distributions of both εt and ȳt−1 it can be con-
cluded that the location and skewness parameters of the elements of S1 are zero.
However, at present we do not have an expression for the dispersion parameter
or for the dependence structure within S1.
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Appendix

Lemma 1. Assume (ξt)t∈Z is a stationary sequence of regular varying symmetric
random variables with tail index γ ∈]0, 1[. Then for any K > 0 and φ ∈]0, 1[, it
holds that limm→∞ lim supx→∞ P

(
K

∑∞
i=m φi|ξ−i| > x

)
P (|ξ0| > x)−1 = 0.

Proof. In the following, assume without lose of generality that m is so large
that Kφm < 1. Rewrite the numerator of the fraction as

P
(
K

∞∑
i=m

φi|ξ−i| > x
)

≤ P
( ∞⋃

i=m

(
Kφi|ξ−i| > x

))
+ P

(
K

∞∑
i=m

φi|ξ−i|1{Kφi|ξ−i|≤x}>x,K

∞∨
i=m

φi|ξ−i|≤x
)

≤
∞∑

i=m

P (|ξ−i| > xφ−iK−1) + P
(
K

∞∑
i=m

φi|ξ−i|1{Kφi|ξ−i|≤x} > x
)
.

Hence by Markov’s inequality,

P
(
K

∑∞
i=m φi|ξ−i| > x

)
P (|ξ0| > x)

≤
∞∑

i=m

P (|ξ0| > xφ−iK−1)
P (|ξ0| > x)

+ x−1K
∞∑

i=m

φiE[|ξ0|1{|ξ0|≤xφ−iK−1}]
P (|ξ0| > x)

= Im,x + IIm,x.

As ξ0 has regular varying tails, by Proposition 0.8(ii) of Resnick (1987) it holds
for all τ > 0 that there exists a x0 such that for all x > x0, P (|ξ0| > xφ−iK−1)/
P (|ξ0| > x) ≤ (1+τ)φi(γ−τ)Kγ−τ . For τ adequately small this bound is summable
and hence by dominated convergence, one has

lim
m→∞

lim sup
x→∞

Im,x ≤ lim
m→∞

(1 + τ)
∞∑

i=m

φi(γ−τ)Kγ−τ = 0.

Before considering IIm,x, note that from an integration by parts that

E[|ξ0|1{|ξ0|≤x}]
xP (|ξ0| > x)

≤
∫ x
0 P (|ξ0| > u)du

xP (|ξ0| > x)

and, applying Karamata’s Theorem (from e.g., Resnick (1987)), this converges
to (1 − γ)−1 as x tends to infinity. Thus the function x 7→ E[|ξ0|1{|ξ0|≤xφ−iK−1}]
is regular varying with tail index 1 − γ. Applying Proposition 0.8(ii), we have
that for any τ > 0, some constant C1, and x sufficiently large,

K
φiE[|ξ0|1{|ξ0|≤xφ−iK−1}]

xP (|ξ0| > x)
= Kφi

(E[|ξ0|1{|ξ0|≤xφ−iK−1}]
E[|ξ0|1{|ξ0|≤x}]

)E[|ξ0|1{|ξ0|≤x}]
xP (|ξ0| > x)

≤ C1Kφi(φ−iK−1)1−γ+τ = C1K
γ−τφi(γ−τ),
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which is summable for τ adequately small. Hence we conclude

lim
m→∞

lim sup
x→∞

IIm,x ≤ lim
m→∞

∞∑
i=m

C1K
γ−τφi(γ−τ) = 0,

which establishes the lemma.

Proof of Theorem 1. We begin by showing a tamer result, namely that yt

is regularly varying with tail index λ. Since regular variation is a property of
the marginal distribution, the subscript t on yt is omitted. In addition due to
symmetry of the distribution of yt and εt, all arguments are given using the
absolute values only.

Since the GARCH process has finite second order moment, y has the rep-
resentation y =

∑∞
i=0 φ̃iε−i for a deterministic sequence (φ̃)∞i=0. In addition

there exists constants C ≤ 0 and φ ∈]0, 1[ such that |φ̃i| ≤ Cφi for all i. De-
fine Am =

∑m−1
i=0 φ̃iε−i and Bm =

∑∞
i=m φ̃iε−i for any m ≥ 1, and note that

y = Am+Bm. Direct considerations (as in e.g., Lemma 3.6 of Jessen and Mikosch
(2006)) establish that y is regularly varying with tail index λ if the following two
conditions are met.

(C.1) limm→∞ lim supx→∞ P (|Bm| > x)/P (|ε0| > x) = 0.

(C.2) There exists a sequence of constants (cm)m∈N and c0 > 0 such that P (Am >

x) ∼ cmP (|ε0| > x) as x → ∞, and cm → c0 as m → ∞.

To establish (C.1) note that for any x > 0 it holds that P (|Bm| > x) ≤
P (

∑∞
i=m Cφi|ε−i| > x). In the following we therefore show

lim
m→∞

lim sup
x→∞

P
(∑∞

i=m φi|ε−i| > x
)

P (|ε0| > x)
= 0. (A.1)

By Basrak, Davis, and Mikosch (2002b) the random variable ε0 has regular
varying tails and we therefore wish to use Lemma 1 to establish (A.1). This
lemma requires that the tail index of the sequence belongs to the unit interval,
which is not the case for ε0. Choose therefore η > λ and set Km =

∑∞
i=m φi and

pi = φi/Km; then by Jensen’s inequality we get

( ∞∑
i=m

φi|ε−i|
)η = Kη

m

( ∞∑
i=m

pi|ε−i|
)η ≤ Kη

m

∞∑
i=m

pi|ε−i|η ≤ C2

∞∑
i=m

φi|ε−i|η

for some constant C2 > 0. Thus

P
(∑∞

i=m φi|ε−i| > x
)

P (|ε0| > x)
≤

P
(
C2

∑∞
i=m φi|ε−i|η > xη

)
P (|ε0|η > xη)

,
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and by Bingham, Goldie, and Teugels (1987), Proposition 1.5.7(i), the random
variable |ε0|η is regularly varying with tail index η−1λ ∈]0, 1[. Hence by Lemma 1

lim
m→∞

lim sup
x→∞

P
(∑∞

i=m φi|ε−i| > x
)

P (|ε0| > x)
≤ lim

m→∞
lim sup

x→∞

P
(
C2

∑∞
i=m φi|ε−i|η > xη

)
P (|ε0|η > xη)

= 0,

which proves (A.1), and hence (C.1).
For any fixed integer m, the process εt can be thought of as a GARCH(m,m)

process with αi = βi = 0 for i = 2, . . . ,m. Hence by Basrak, Davis, and Mikosch
(2002b), Theorem 3.1 there only requires that not all the GARCH parameters
are zero, the vector (ε0, . . . , εm)′ is regular varying with tail index λ. Since a
linear combination of a regular varying vector is itself regular varying with the
same tail index, it can be concluded that Am is regular varying with tail index λ.
Thus there exists constants cm such that limx→∞ P (Am > x)/P (|ε0| > x) = cm.

Next we prove that (cm)∞m=1 is a Cauchy sequence with a strictly positive
limit c0. Note first that there exists a constant c̄ such that cm ≤ c̄ for all m ≥ 1,
as can be seen by replacing m with 1 in the arguments leading to (A.1). Assume
without loss of generality that cn > cm. For any ε > 0, δ ∈]0, 1[, and n > m, it
holds that.

cn − cm = lim
x→∞

P (Am > (1 − δ)x) + P (|
∑n−1

i=m φ̃iε−i| > δx) − P (Am > x)
P (|ε0| > x)

≤ cm((1 − δ)−λ − 1) + lim sup
x→∞

P (C
∑∞

i=m φi|ε−i| > δx)
P (|ε0| > x)

≤ c̄((1 − δ)−λ − 1) + f(m).

Now by choosing δ so small that c̄((1 − δ)−λ − 1) < ε/2, and m so large that
f(m) < ε/2, it has been established that (cm)∞m=1 is a Cauchy sequence. By
simple symmetry arguments, cm is bounded away from zero and hence cm must
converge to a strictly positive limit c0, which establishes (C.2).

Finally we wish to extent the result to all vectors of the form (y1, . . . , yk)′.
By Basrak, Davis, and Mikosch (2002a), Theorem 1.1(ii), it suffices to show
that all linear combinations are regular varying. However, for all v ∈ Rk \ {0},
v′(y1, . . . , yk)′ =

∑∞
i=0 aiε−i, where the coefficients tend to zero at a geomet-

ric rate. Regular variation of the vector is therefore guaranteed by the same
arguments as for yt.

Proof of Theorem 2. Note initially that

T 1−2/λ(ρ̂OLS − ρ0) =
(
T−1

T∑
t=1

ȳt−1ȳ
′
t−1

)−1(
T−2/λ

T∑
t=1

ȳt−1εt

)
.
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By Remark 1 it holds that T−1
∑T

t=1 ȳt−1ȳ
′
t−1

a.s.→ Σ, which establishes the first
part of the claimed convergence. In order to establish the second part of the
theorem take yt(k) = (εt, yt−1, . . . , yt−k)′ and let aT be a sequence such that
TP (|yt| > aT ) → 1 (due to the regular variation of yt, one can choose aT to be
proportional to the 1 − 1/T quantile of the distribution function of |yt|, e.g., by
setting aT = T 1/λ). The convergence of T−2/λ

∑T
t=1 ȳt−1εt follows from Davis

and Mikosch (1998), Proposition 3.3, if we can establish the following.

(A.1) yt(k) is regularly varying for all k ≥ 1.

(A.2) The mild mixing condition A(aT ) from Davis and Mikosch (1998), p. 2052.

(A.3) Condition (2.10) of Davis and Mikosch (1998).

(A.4) Condition (3.3) of Davis and Mikosch (1998).

(A.1) follows by a trivial extension of Theorem 1. Furthermore, Remark 1 estab-
lishes that the Markov chain (ȳt−1, εt, ht)′ is geometrically ergodic, which implies
that the stationary version is strongly mixing with geometrically decreasing rate
function. Since the condition A(aT ) is implied by strong mixing, (A.2) is satis-
fied.

The two remaining conditions require a bit more work. Recall that the yt has
the representation yt =

∑∞
i=0 φ̃iεt−i and that there exists constants C > 0 and

φ ∈]α+β, 1[ such that |φ̃i| ≤ Cφi for all i ∈ N0. For later use define the auxiliary
process y̆t = C

∑∞
i=0 φi|εt−i|, which is clearly positive. Inspecting the proof of

Theorem 1 reveals that y̆t is regularly varying with tail index λ. In addition one
has the relations y̆t ≥ |yt| and (y̆2

t +1)C0 ≥ ht for some constant C0 and for all t.
With |·| denoting the max norm, Davis and Mikosch (1998), condition (2.10),

has

lim
m→∞

lim sup
T→∞

P
( ∨

m≤|t|≤rT

|yt(k)| > aT x
∣∣|y0(k)| > aT x

)
= 0, x > 0, (A.2)

where rT is an integer sequence such that rT → ∞ and rT /T → 0 as T → ∞. By
the definition of conditional probabilities, Markov’s inequality, and the symmetry
of the distributions, it holds for t > 0 that

P (|yt| > aT x | |y0| > aT x) ≤
E[1{|y0|2>a2

T x2}y
2
t ]

a2
T x2P (|y0|2 > a2

T x2)

=
E[1{|y0|2>a2

T x2}(
∑t−1

i=0 φ̃2
i ε

2
t−i + (

∑∞
i=t φ̃iεt−i)2)]

a2
T x2P (|y0|2 > a2

T x2)

≤ C2
0

E[1{|y0|2>a2
T x2}(

∑t−1
i=0 φ2iε2

t−i + φ2ty2
0)]

a2
T x2P (|y0|2 > a2

T x2)
= It,T .
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In order to bound It,T , note that for t > 0 the recursion of Nelson (1990) gives

E[ε2
t | h0] =

t−1∑
i=0

ω(α + β)i + (α + β)th0 ≤ C1 + φth0

for some positive constant C1 independent of t. Direct calculations provide the
relation

∑t−1
i=0 φ2iφt−i ≤ φt/(1−φ), which converges to zero as t tends to infinity.

In addition it holds that

E[1{|y0|>aT x}y̆
2
0]

a2
T x2P (|y0| > aT x)

≤
E[1{|y̆0|2>a2

T x2}y̆
2
0]

a2
T x2P (|y̆2

0| > a2
T x2)

P (|y̆0| > aT x)
P (|y0| > aT x)

,

and hence by Karamata’s Theorem,

lim sup
T→∞

E[1{|y0|>aT x}y̆
2
0]

a2
T x2P (|y0| > aT x)

≤ C2

λ − 2

for some constant C2. Applying Karamata’s Theorem again it can be concluded
that there exists T0 such that, for all T > T0,

It,T ≤ C0

E
[
1{y2

0>a2
T x2}

(
φ2ty2

0 + y̆2
0φ

t/(1 − φ) + C1

)]
a2

T x2P (y2
0 > a2

T x2)

≤ C3φ
2t + C3φ

t +
C3

a2
T x2

≤ 2C3φ
t +

C3

a2
T x2

for some positive constant C3 independent of t. We are now ready to verify (A.2).

lim
m→∞

lim sup
T→∞

P
( ∨

m≤|t|≤rT

|yt(k)| > aT x
∣∣|y0(0)| > aT x

)
(A.3)

≤ lim
m→∞

lim sup
T→∞

2(k + 1)
rT +k∑
t=m

P (|yt| > aT x | |y0| > aT x)
P (|y0| > aT x)

P (|y0(k)| > aT x)

+ lim
m→∞

lim sup
T→∞

2(k + 1)
rT +k∑
t=m

P (|yt| > aT x | |ε0| > aT x)
P (|ε0| > aT x)

P (|y0(k)| > aT x)

+ lim
m→∞

lim sup
T→∞

2(k + 1)
rT +k∑
t=m

P (|εt| > aT x | |y0| > aT x)
P (|y0| > aT x)

P (|y0(k)| > aT x)

+ lim
m→∞

lim sup
T→∞

2(k + 1)
rT +k∑
t=m

P (|εt| > aT x | |ε0| > aT x)
P (|ε0| > aT x)

P (|y0(k)| > aT x)
.
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For the first term on the right hand side, the preceding arguments show that

lim
m→∞

lim sup
T→∞

2(k + 1)
rT +k∑
t=m

P (|yt| > aT x | |y0| > aT x)
P (|y0| > aT x)

P (|y0(k)| > aT x)︸ ︷︷ ︸
≤1

≤ lim
m→∞

4(k + 1)
∞∑

t=m

C3φ
t + lim

m→∞
lim sup
T→∞

2(k + 1)(rT + k)/(a2
T x2) = 0,

by choosing rT such that rT /a2
T → 0. Note that negative values of t are dealt

with since, by stationarity, for t > 0,

P (|y−t| > aT x | |y0| > aT x) =
P (|y−t| > aT x, |y0| > aT x)

P (|y−t| > aT x)
= P (|yt| > aT x | |y0| > aT x).

The other terms of (A.3) are zero by identical arguments. Using the geometric
ergodicity of (εt, ȳt−1), it is easily shown that the extremal index γ, which appears
in (2.10) of Davis and Mikosch (1998) and in Mikosch and Straumann (2006), is
strictly positive as required. This completes the verification of (A.3).

Finally (A.4) is considered. In the setup of the AR-GARCH model condition
(3.3) of Davis and Mikosch (1998) is

lim
x→0

lim sup
T→∞

P
(∣∣ T∑

t=1

εtyt−h

a2
T

1{|εtyt−h|≤a2
T x} −E

[ T∑
t=1

εtyt−h

a2
T

1{|εtyt−h|≤a2
T x}

]
︸ ︷︷ ︸

=0

∣∣ > δ
)
=0,

for all δ > 0 and h = 1, . . . , s. Markov’s inequality and Kamarata’s Theorem
(the required regular variation of εtyt−h can be verified by the same arguments
as for yt) now give, for any h = 1, . . . , s, that

P (|a−2
T

T∑
t=1

εtyt−h1{|εtyt−h|≤a2
T x}| > δ) ≤ 1

δ2
a−4

T

T∑
t=1

E[ε2
t y

2
t−h1{|εtyt−h|2≤a4

T x2}]

=
1
δ2

a−4
T TE[ε2

hy2
01{|εhy0|2≤a4

T x2}]

∼ C4x
2TP (|εhy0|2 > a4

T x2) for large T
T→∞→ C5x

2 x→0→ 0.

Hence (A.4) holds. Due to (A.1) - (A.4), Proposition 3.3 of Davis and Mikosch
(1998) is applicable and a−2

T

∑T
t=1 ȳt−1εt

D→ S1, where S1 is a λ/2-stable random
vector in Rs.
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