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Abstract: Assessing the variability of an estimator is a key component of the process

of statistical inference. In nonparametric regression, estimating observation-error

variance is the principal ingredient needed to estimate the variance of the regres-

sion mean. Although there is an extensive literature on variance estimation in

nonparametric regression, the techniques developed in conventional settings gener-

ally cannot be applied to the problem of regression with errors in variables, where

the explanatory variables are not directly observable. In this paper we introduce

methods for estimating observation-error variance in errors-in-variables regression.

We consider cases where the variance is modelled either nonparametrically or para-

metrically. The performance of our methods is assessed both numerically and the-

oretically. We also suggest a fully data-driven bandwidth selection procedure, a

problem that is notoriously difficult in errors-in-variables contexts.
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1. Introduction

In the standard measurement error-free setting, determining the variance of
an estimator of a nonparametric regression mean consists in estimating a function
τ > 0 from data (X,Y ) that are generated by the regression model Y = g(X) +
τ(X)1/2 ε, where ε and X are independent variables, ε has zero mean and unit
variance and, apart from smoothness assumptions, g is completely unspecified.
The quantity τ(X)1/2 ε is generally referred to as observation error, and τ is the
observation-error variance. A variety of methods have been developed for treating
this problem, but simple techniques that enjoy good theoretical properties are
generally founded either on differencing values of Y that correspond to nearby
values of X, or on residual-based approaches.

In this paper we consider estimation of τ in the more complex, nonparametric
errors-in-variables setting. Here the data (W1, Y1), . . . , (Wn, Yn) are generated by
the model

W = X + U , Y = g(X) + τ(X)1/2 ε , (1.1)
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where U , ε and X are independent random variables, g and τ are smooth, un-
known functions, τ > 0, E(ε) = 0, E(ε2) = 1, and the distribution of U is known.
See Delaigle, Hall, and Meister (2008) for the case where it is unknown.

In this context, since values of X are not observable, the popular variance-
estimation methods discussed above cannot be simply modified to provide consis-
tent estimators of τ . We develop alternative approaches based on deconvolution
techniques and describe their performance. Their properties will be discussed
in cases where τ is estimated nonparametrically, as a function, and also when
τ is assumed to have a parametric form. In both settings we give convergence
rates and, in parametric cases, we show that our estimators are root-n consis-
tent provided the variance function is a sufficiently smooth functional of the
unknown parameters. Our numerical work attests to the good performance of
the suggested new methodology.

Estimation of the observation-error variance is an important tool for statisti-
cal inference. In the errors-in-variables context, as in the measurement error-free
case, knowledge of τ is essential if we are to assess the variability of nonpara-
metric estimators of g such as, for example, the deconvolution-kernel estimator
of Fan and Truong (1993). Indeed, the asymptotic variance of this estimator
depends on the densities fU and fX of U and X, respectively, and on g and τ .
Since fU is known, and a variety of methods for estimating fX and g are readily
available, then the only missing ingredient is τ . Thus, estimation of τ in (1.1) is
central to characterising empirically the accuracy of estimators of g.

Properties of nonparametric estimators of τ follow relatively easily from
known results in the problem of estimating g, whereas their counterparts in
the case of parametric models are more difficult to determine. These differences,
apparent for both methodology and theory, arise because of the nonstandard way
in which, in the parametric case, we must combine an infinite-parameter model
for g with a finite-parameter model for τ .

In the measurement error-free case, the variance estimation problem has
been addressed by many authors; see, for example, the work of Rice (1984),
Gasser, Sroka, and Jennen-Steinmetz (1986), Müller and Stadtmüller (1987),
Buckley, Eagleson, and Silverman (1988) Hall and Marron (1990), Hall, Kay, and
Titterington (1990), Müller and Stadtmüller (1992), Seifert, Gasser, and Wolf
(1993), Neumann (1994), Müller and Zhao (1995), Ruppert et al. (1997), Dette,
Munk, and Wagner (1998), Fan and Yao (1998), Lavergne and Vuong (1998),
Müller, Schick, and Wefelmeyer (2003), Munk et al. (2005), Sheehy, Gasser, and
Rousson (2005), Levine (2006), and Tong and Wang (2005). The nonparametric
estimators of g, τ , and fX that we use can be expressed in such a way that, when
U in (1.1) is identically zero, they collapse to standard kernel estimators of those
functions. In the measurement error-free setting our nonparametric estimator of
variance also reverts to techniques that have been employed before.
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There is a substantial literature on estimation of the regression mean, g, in
errors-in-variables problems. The book by Carroll et al. (2006) is an excellent en-
try point to this work. Other contributions to nonparametric or semiparametric
methodology include those of Fan (1991b), Carroll et al. (1996), Carroll, Maca
and Ruppert (1999) Kim and Gleser (2000), Lin and Carroll (2000), Stefanski
(2000), Devanarayan and Stefanski (2002), Linton and Whang (2002), Carroll
and Hall (2004), Schennach (2004b) Delaigle, Hall, and Qiu (2006), Huang, Ste-
fanski and Davidian (2006), Delaigle and Meister (2007), Hall and Meister (2007)
and Delaigle (2008).

Parametric errors-in-variables regression has also received considerable at-
tention in the literature. References include Stefanski and Carroll (1987), Hsiao
(1989) Stefanski (1989), Gleser (1990), Nakamura (1990), Cook and Stefanski
(1994), Carroll et al. (1996), Cheng and Schneeweiss (1998), Taupin (2001), Li
(2002) and Schennach (2004a). See Fuller (1987) and Carroll et al. (2006) for a
more extensive list of references.

Sections 2 and 3 introduce our nonparametric and parametric estimators,
respectively. Their theoretical properties are outlined in Section 4. In preparation
for an account of numerical properties in Section 6, Section 5 discusses bandwidth
choice. The methods proposed there are used throughout our applications to
simulated data. Finally, the appendix gives theoretical arguments behind the
results stated in Section 4.

2. Nonparametric Estimators of τ

2.1. Main estimation procedure

Known results in the problem of estimating g imply simple sufficient condi-
tions for identifiability of τ . Indeed, if (a) the distribution of ε has finite fourth
moment and zero mean, (b) the characteristic function of the distribution of U

does not vanish except at isolated points, and (c) g and τ satisfy Hölder smooth-
ness conditions, then the function g defined by g(x) = E(Y |X = x) is identifiable,
because it is consistently estimated in the model at (1.1) using, for example, the
methodology suggested by Fan and Truong (1993). Likewise, if (a)–(c) hold
then m(x) = E(Y 2|X = x) is identifiable in the model where W = X + U and
Y 2 = g(X)2 + 2 g(X) τ(X)1/2 ε + ε2, because it can be consistently estimated
using the same technique. Moreover, using the second identity in (1.1) we see
that we can write m = g2 + τ . Combining these properties we see that τ is
identifiable from data generated by (1.1), provided that conditions (a)–(c) above
hold.

Suppose we have a dataset D = {(W1, Y1), . . . , (Wn, Yn)} on (W,Y ), gen-
erated by the model (1.1). As implied by the identifiability arguments in the
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previous paragraph, to construct a nonparametric estimator of the variance func-
tion τ we can first construct nonparametric estimators ĝ and m̂ of the regression
curves g(x) = E(Y |X = x) and m(x) = E(Y 2|X = x). Then we can take our
nonparametric estimator of τ to be

τ̃ = max
(
τ̂ , 0

)
, where τ̂ = m̂ − ĝ2. (2.1)

Estimation of g and m are two nonparametric errors-in-variables (or decon-
volution) regression problems: in both cases the goal is to estimate a function
E(V |X) from data on (W,V ), where W = X + U is a contaminated version of
X. Several nonparametric estimators have been developed in the literature, but
one of the most recent methods is the local polynomial deconvolution estimator
of Delaigle, Fan, and Carroll (2009). To define their estimator, let K be a sym-
metric kernel function integrating to 1 and with compactly supported Fourier
transform φK . Also, let φU denote the characteristic function corresponding to
the density fU of U , and h > 0 be a bandwidth. The qth order local polynomial
deconvolution estimator of E(V |X = x), with q ≥ 0 an integer, is

Ê(V |X = x) = (1, 0, . . . , 0)S−1
n Tn, (2.2)

Sn ={(Sn)j,k}0≤j,k≤q, with (Sn)j,k =Sn,j+k(x), and Tn ={Tn,0(x), . . . , Tn,q(x)}T ;
here, for k = 0, . . . , 2q,

Sn,k(x) =
1

nh

n∑
j=1

Lk

(
x − Wj

h

)
, Tn,k(x) =

1
nh

n∑
j=1

Vj Lk

(
x − Wj

h

)
, (2.3)

Lk(u) = i−k 1
2π

∫
e−itxφ

(k)
K (t)

φU (−t/h)
dt. (2.4)

Replacing Vj in (2.3) by Yj and Y 2
j , respectively, (2.2) provides the local polyno-

mial deconvolution estimators ĝ and m̂ of g and m, respectively.
Note that a version of τ̂ in cases where X is observed directly, without

measurement error, was given by Yao and Tong (1994).

2.2. Correcting for negativity

The estimator τ̃ is simple and straightforward, but in cases where m̂ − ĝ2

takes negative values, τ̃ projects them to zero and this can be viewed as an
unattractive property. In such cases, an alternative, “smoother” way to correct
for negativity is to use the estimator

τ̄ = E
{

max
(
m̂† − ĝ†2, 0

) ∣∣D}
, (2.5)

where m̂† and ĝ† denote the versions of m̂ and ĝ, respectively, computed from a
resample of size n, drawn by sampling randomly, with replacement, from D. The
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estimator τ̄ , which can be thought of as being motivated by Breiman’s (1996)
bagging method, is a little more complicated, but when the true τ is bounded
away from zero it less often takes the default value zero. Indeed, it vanishes
if and only if, for all possible resamples drawn from D, m̂† ≤ ĝ†2. Note that
we introduce the alternative estimator τ̄ only as a way to correct for negativity
more smoothly than simply truncating to zero. See Figure 4 in Section 6 for
an application. In particular, there is no asymptotic gain to be expected from
τ̄ compared to τ̃ . We show in Section 4 that the two estimators are first-order
equivalent.

3. Parametric Estimator of τ

3.1. Background

Although we treat g from a nonparametric viewpoint, we may wish to use
a parametric model, say τ = τ(· | θ), for the variance, as is sometimes done
in the measurement error-free case. For example the homoscedastic context,
where τ(x) ≡ θ is a constant, is commonly assumed in nonparametric regression.
Log-linear variance and polynomial models are also in use in the measurement
error-free case. See, for example, Müller and Zhao (1995), who survey literature
on the topic, and Fan and Gijbels (1996, p.146). Other work using polynomial
(including linear) and log-linear models for the variance function includes that
of Hasbrouck (1986), Finkenstädt, Bjørnstad, and Grenfell (2002), and Meyer
(2005). Linear models are often fitted in response to either empirical evidence or
physical considerations that indicate that measurement error variance is increas-
ing or decreasing as a function of the explanatory variable. Sometimes quadratic
models are used to reflect evidence that the rate of increase or decrease is vary-
ing. The method we present below, valid in the case of models with measurement
error, is not restricted to these situations and can be used in general parametric
contexts.

3.2. Estimator

Let τ̂ = m̂−ĝ2 be the nonparametric estimator of τ defined at (2.1), using qth
order local polynomial estimators of m and g, and let θ ∈ IRp be the parameter
of interest. Our estimator of θ relies on this idea: estimate θ so as to make the
parametric estimator of τ sufficiently close to its nonparametric version τ̂ . Below,
we give the definition of our estimator which results from this idea. The details
leading to this are deferred to Section 3.3. Also, to simplify the presentation
we assume throughout that the distribution of U is symmetric, and so φU is
real-valued.

Let d̂ = det(Sn), with Sn defined below (2.2), and put r̂1 = ĝ d̂ and r̂2 = m̂ d̂.
We suggest choosing θ = θ̂ to solve the equation S(θ) = 0, where both sides are
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p-vectors and

S(θ) =
∫ {

(r̃2d)(x) − r̃1
2(x) − τ(x | θ) d̃2(x)

}
τ̇(x | θ) ω(x) dx , (3.1)

τ̇(x | θ) = (∂/∂θ) τ(x | θ) is a p-vector, ω denotes a nonnegative, compactly sup-
ported weight function, and d̃2, r̃2d, and r̃1

2 denote the diagonal-free versions
of d̂2, r̂2d̂ and r̂2

1. Here we mean that d̂2, r̂2d̂, and r̂2
1 each comprise terms of

the type
∑n

i1,...,ik=1 for some k > 0, where the summands involve the prod-
ucts Lj1

{
(x − Wi1)/h

}
. . . Ljk

{
(x − Wik)/h

}
for some j1, . . . , jk between 0 and

q, and their diagonal-free versions are those where these sums are replaced by∑
i1 6=i2 6=... 6=ik

.

Example 1. (Formula when τ̂ is based on locally constant estimators of m and
g). When nonparametric estimators of g and m are taken to be locally constant,
that is when q = 0, we have

d̂(x) =
1

nh

n∑
j=1

L0

(
x − Wj

h

)
, (3.2)

r̂1(x) =
1

nh

n∑
j=1

YjL0

(
x − Wj

h

)
, r̂2(x) =

1
nh

n∑
j=1

Y 2
j L0

(
x − Wj

h

)
, (3.3)

and S(θ) = 0 can be written as∑∑
j1 6=j2

∫ {
Y 2

j1−Yj1Yj2 − τ(x | θ)
}
L0

(x−Wj1

h

)
L0

(x−Wj2

h

)
τ̇(x | θ)ω(x)dx = 0.

Example 2. (Estimator when τ(x | θ) is a polynomial) In this case, θ = (θ1, . . .,
θp)T is a p-vector, τ(x | θ) = θ1 + θ2 x + . . . + θp xp−1, and the estimator takes a
particularly simple form. Since τ̇(x | θ) = (1, x, . . . , xp−1)T , the equation S(θ) = 0
has the form Mθ − V = 0, where M = (Mi,j)1≤i,j≤p is a p × p matrix with
components equal to Mij =

∫
d̃2(x)xi+j−2 ω(x) dx, and V = (V1, . . . , Vp)T is a

p-vector whose components are Vj =
∫ {

(r̃2d)(x) − r̃1
2(x)}xj−1 ω(x) dx. Thus,

as long as M is invertible, we can write our estimator in the familiar form θ̂ =
M−1V . Note that, although the formula does not depend explicitly on the order
q of the local polynomial estimators of m and g, the estimator θ̂ depends on q

through r̃2, d̃, and r̃1.

As in the nonparametric case, once we have obtained the estimator θ̂, we need
to correct for negativity of the variance estimator τ(x; θ̂). As in Section 2, we can
do that in at least two ways. The first, simplest way is to take max{0, τ(x; θ̂)}.
The drawback of this approach is that it projects negative values to zero in a
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rather abrupt way. An alternative and smoother way of correcting for negativity
is to use the resampling procedure of Section 2.2, that is to take

τ̄(x; θ̂) = E
[
max

{
τ(x; θ̂†), 0

} ∣∣D]
, (3.4)

where θ̂† denotes the version of θ̂ computed from a resample of size n, drawn
by sampling randomly, with replacement, from D. Although we do not study
theoretical properties of this estimator, it can be proved, as in the nonparametric
case, that it is first-order equivalent to the estimator τ(x; θ̂). For a numerical
comparison of the two ways to correct for negativity, see Figure 4 in Section 6.

3.3. Motivation of the estimator

To motivate our estimator, first consider estimating θ by the vector that
minimises the least-squares criterion

A1(θ) =
∫

{τ̂(x) − τ(x | θ)}2 v1(x) dx , (3.5)

where v1 is a weight function. In its most general form at (3.5), the least-
squares distance A1(θ) is simple to understand, but it involves the ratio of random
variables, which is not particularly attractive. To overcome this problem, take
v1 = d̂4 v2 for a function v2. Then, recalling that τ̂ = m̂ − ĝ2, where ĝ = r̂1/d̂

and m̂ = r̂2/d̂, (3.5) becomes

A2(θ) =
∫ {

r̂2(x) d̂(x) − r̂2
1(x) − τ(x | θ) d̂2(x)

}2
v2(x) dx , (3.6)

which no longer involves a ratio. Next we take the diagonal-free versions of r̂2 d̂,
r̂2
1, and d̂2 (it can be proved, employing arguments similar to those we use in our

proofs, that this improves the theoretical properties of the resulting parametric
estimator), so that (3.6) becomes

A2(θ) =
∫ {

(r̃2d)(x) − r̃1
2(x) − τ(x | θ) d̃2(x)

}2
v2(x) dx .

To find the value of θ that minimizes A2(θ), it remains to differentiate A2(θ)
with respect to the vector θ. Proceeding that way, we get∫ {

(r̃2d)(x) − r̃1
2(x) − τ(x | θ) d̃2(x)

}
d̃2(x) τ̇(x | θ) v2(x) dx = 0 .

With ω = v2 d̃2, we deduce that θ solves S(θ) = 0, where S(θ) is given by (3.1).
To appreciate why removing diagonal terms can improve performance it is

instructive to consider a much simpler problem, in which we wish to estimate
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ψ ≡ E{f(X)} (with X denoting a random variable with density f), using data
X1, . . . , Xn drawn from the distribution with density f . One approach would be
to construct a conventional kernel density estimator, f̂ , evaluate it at Xi, and
average this quantity over i = 1, . . . , n. It is readily seen that the diagonal terms
contribute an amount ψ′ ≡ K(0)/nh to this estimator, where K denotes the
kernel function and h is the bandwidth. Of course, ψ′ bears no relationship to
the value of ψ, and if this term is removed then the performance of the estimator
is improved. The same phenomenon is observed in a number of other problems,
including the one treated in our paper: to first order, diagonal terms contribute
only to bias, and their removal improves performance. In the case of our problem
we obtain root-n consistency if the diagonal terms are dropped, but not otherwise.

4. Theoretical Properties

4.1. Properties of τ̃

Properties of our nonparametric estimator τ̃ at (2.1), using qth order lo-
cal polynomial estimators of m and g, follow easily from the results of Delaigle,
Fan, and Carroll (2009). As usual in deconvolution problems, the asymptotic
behaviour of the estimator depends on the type of error that contaminates the
data. Generally a distinction is made between ordinary smooth and supersmooth
errors. The latter are such that the characteristic function φU decreases expo-
nentially fast in the tails, and for these errors it is well known that estimators
converge at slow logarithmic rates. For the sake of brevity we give only properties
of our estimator in the ordinary smooth case, where φU decreases polynomially
fast in the tails. That is, we assume that the error density fU is such that φU

satisfies
d0 (1 + |t|)−α ≤ |φU (t)| ≤ d1 (1 + |t|)−α for all t ∈ IR, (4.1)

for constants d1 ≥ d0 > 0 and α > 1/2. Properties of our estimator in the
supersmooth case can be derived easily from Delaigle, Fan, and Carroll (2009).

We assume the same regularity conditions as Delaigle, Fan, and Carroll
(2009). More precisely, let τ2(x) = var(Y 2|X = x) and φX(t) = E(eitX) and
assume the following:

Condition A:
(A1) φU (t) 6= 0 for all t;

(A2) h → 0 and nh → ∞ as n → ∞;

(A3)
∫
|φX | < ∞ and fX is twice differentiable and ‖f (j)

X ‖∞ < ∞ for j = 0, 1, 2;

(A4) τ and τ2 are bounded; m and g are q + 3 times differentiable such that,
for j = 0, . . . , q + 3, ||m(j)||∞ < ∞ and ||g(j)||∞ < ∞; for some η > 0,
E

{
|Yi − g(x)|2+η|X = u

}
and E

{
|Y 2

i − m(x)|2+η|X = u
}

are bounded for
all u;
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(A5) K is a real and symmetric kernel such that
∫

K(x) dx = 1 and has finite
moments of order 2q + 3; for k = 0, . . . , 2q + 1, ||φ(k)

K ||∞ < ∞ and
∫ {

|t|α +

|t|α−1} |φ(k)
K (t)| dt < ∞; for 0 ≤ k, k′ ≤ 2q,

∫
|t|2α|φ(k)

K (t)| · |φ(k′)
K (t)| dt < ∞

and φ
(k)
K is not identically zero.

Asymptotic properties of our estimator are given in the next theorem, the
proof of which follows from Delaigle, Fan, and Carroll (2009).

Theorem 4.1. Assume that the errors satisfy (4.1). Under Condition A, for
each x for which fX(x) > 0,

(i) if q is even and h = const. n−1/(2α+2q+5), then

τ̃(x) = τ(x) + Op

(
n−(q+2)/(2α+2q+5)

)
; (4.2)

(ii) if q is odd and h = const. n−1/(2α+2q+3), then

τ̃(x) = τ(x) + Op

(
n−(q+1)/(2α+2q+3)

)
. (4.3)

Although these asymptotic rates improve as we increase q, in practice in-
creasing q implies an increase in the variance of the estimator, and the versions
of the local polynomial estimator that work the best are the local constant and
local linear ones. In our numerical work we use the local linear version of the
estimator.

Note that Theorem 4.1 describes the behaviour of the estimator (2.1) in
the case where the design density is continuous; in this context, the rates are
the same (i.e. n−2/(2α+5)) whether we use the local constant estimator (q = 0,
corresponding to the estimator of Fan and Truong (1993)) or the local linear
estimator (q = 1) to estimate m and g. In the case where fX is compactly
supported and is not continuous at the boundary of its support, these rates
deteriorate to τ̃(x) = τ(x)+Op(n−1/(2α+3)) in the local constant case and remain
τ̃(x) = τ(x) + Op(n−2/(2α+5)) in the local linear case.

Remark 1. As already noted in Delaigle, Fan, and Carroll (2009), as is usual in
nonparametric smoothing, many variants of these theoretical results exist. For
example, in the local constant case we could use high order kernels, or even the
infinite order sinc kernel. When fX , m, and g, and their relevant derivatives,
are continuous on the real line, the sinc kernel has the advantage that it adapts
automatically to the smoothness of the curves in the sense that it produces an
estimator with bias determined by the level of smoothness of the curves rather
than by the kernel. See e.g., Diggle and Hall (1993) and Comte and Taupin
(2007). However, when the curves have boundary points, the sinc kernel loses
its theoretical advantages. In practice, the sinc kernel tends to suffer from such
problems as the Gibbs phenomenon.
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4.2. Properties of τ̄

Under sufficient assumptions, it can be proved that the estimators τ̃ and τ̄

are first-order equivalent. We give the conditions and state the result for the
case where m and g are estimated by a local constant estimator (q = 0). The
arguments can be extended to the more general version of the estimator where
τ̂ is based on qth order local polynomial estimators with q ≥ 1. Assume that

τ̄ , in (2.5), is computed as τ̄ = B−1
∑

b max(m̂†
b − ĝ†b

2, 0), where
m̂†

b and ĝ†b are both computed from D†
b for 1 ≤ b ≤ B; D†

1, . . . ,D
†
B

are resamples of size n drawn by sampling randomly, with replace-
ment, from D; the B resamples are independent, conditional on
D; and B = B(n) diverges with n at such a rate that, for all
sufficiently large n, B ≤ nC2 where 0 < C2 < ∞.

(4.4)

Assume too that
|φ′

U (t)|
|φU (t)|

≤ C1 (1 + |t|)−1 , (4.5)

where C1 denotes an arbitrarily large positive constant; this condition generalizes
condition Am,l(i) of Fan (1991a). Under these assumptions, the following theorem
holds. The proof of this theorem is given in Appendix A.2.

Theorem 4.2. Under the conditions of Theorem 4.1, if (4.4) and (4.5) hold,
then at each point x for which fX(x) τ(x) > 0, we have

τ̃(x) − τ̄(x) = op

(
n−2/(2α+5)

)
. (4.6)

Theorem 4.2 shows that the estimators τ̃ and τ̄ are first-order equivalent,
since the rate at (4.6) is faster than that at (4.2). It can also be proved that in
cases where fX(x) > 0 but τ(x) = 0, τ̄(x) generally has higher asymptotic bias
than τ̃(x), although smaller asymptotic variance. In this setting the distributions
of τ̃(x) and τ̄(x) are not asymptotically normal.

Remark 2. Condition (4.4) implies that B is no more than polynomially large
as a function of n. This restriction is imposed to ensure that very unusual
resamples, for instance resamples that consist of only a single data value, arise
only with particularly small probability. This protects against aberrations that
would affect first-order properties of τ̄ when, for example, the resample is such
that the denominator of τ̄ gets too close to zero. The condition on B could be
avoided by introducing a ridge parameter in the denominator of τ̄ .
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4.3. Theoretical properties of the parametric estimator

Under sufficient regularity conditions, the parametric estimator introduced
in Section 3 has the standard parametric root-n convergence rates, despite the
fact that some quantities involved can be estimated only nonparametrically. As
in the previous section, due to the complexity of the arguments in the general
local polynomial case, we state the conditions and results in the local constant
case, in which q = 0.

Let ‖ · ‖ denote the usual Euclidean metric on p-variate space, let θ0 be the
true value of θ, write fX for the density of the design variable X in (1.1), and
define the p × p matrix

M0 =
∫

f2
X(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx . (4.7)

Assume the following:

Condition B:
(B1) the weight function ω in (3.1) is bounded, nonnegative, and vanishes outside

a compact set;

(B2) K is bounded and symmetric, φK is compactly supported,
∫

(1+|x|κ) |K(x)|
dx < ∞, where κ is a positive integer,

∫
K = 1, and

∫
xj K(x) dx = 0 for

1 ≤ j < κ;

(B3) the variance model τ(x | θ) has d1 + 2 ≥ 4 derivatives with respect to θ,
where each derivative is bounded uniformly in x in the support of ω, and in
θ such that ‖θ − θ0‖ ≤ C, for some C > 0;

(B4) for an integer d2 ≥ 1, each of the functions fX , g, τ(· | θ0) ω, and τ̇(x | θ0) ω

has max(d2, κ) derivatives, uniformly bounded on compacts; each of the
functions fX , fX g, fX m, τ(· | θ0) ω, and τ̇(x | θ0) ω has max(d2, κ) abso-
lutely integrable derivatives, where integration is over the whole real line;

(B5) |φU (t)| ≥ const. (1 + |t|)−α for all real t, where 0 < α < d2 − 1/2, and
sup fU < ∞;

(B6) E{g4(X)} + E{τ2(X)} < ∞ and E(ε4) < ∞;

(B7) the p × p matrix M0 in (4.7) is nonsingular;

(B8) for κ as in (B2), and εn denoting a positive sequence such that n1/2εn → ∞
as n → ∞, h = h(n) → 0 as n → ∞, hκ = o(n−1/2), n−1 h−2(1+2α) → 0 as
n → ∞, and εd1

n h−(1+2α) → 0 as n → ∞.

Note that, for each α > 0 and each sequence εn, we may choose κ (the order
of the kernel, K; see (B2)) and d1 and d2 (which determine the smoothness of
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the model and of the weight function ω; see (B3) and (B4)) so large that (B8)
holds for bandwidths h that enjoy a variety of different orders of magnitude, and
such that the condition α < d2 − 1/2 in (B5) obtains. Under these assumptions,
the next theorem shows that our parametric estimator has the usual

√
n rate of

convergence. Its proof is given in Appendix A.3.

Theorem 4.3. Assume that Condition B holds. Then: (i) With probability
converging to 1 as n → ∞, there exists at least one solution θ̂ of the equation
S(θ) = 0 satisfying ‖θ̂ − θ0‖ ≤ εn, where S(θ) is as at (3.1). (ii) There exists
a positive semi-definite, symmetric matrix Σ such that, for any such solution,
n1/2 (θ̂ − θ0) is asymptotically normal N(0, Σ).

Under stronger conditions than those imposed in the theorem it can be
proved that, with probability converging to 1, a solution of S(θ) = 0 exists
and is unique. However, even with the assumptions in Theorem 4.3, any of the
solutions identified there has the same first-order properties as any other, and so
none is preferable to any other in a first-order sense.

The covariance matrix Σ is identified in Step 7 of the proof in section A.3.
In the particular case where the variance function τ is a polynomial, where (with
probability 1) the equation S(θ) = 0 has a unique solution, part (i) of the theorem
is not relevant. Part (ii), where θ̂ is taken to be the uniquely defined estimator,
holds under conditions B if (B3) is dropped and if the constraint εd1

n h−(1+2α) → 0
is removed from (B8).

5. Bandwidth Selection

As for any smoothing method, the success of our estimators relies heavily on
using an appropriate smoothing parameter. Data-driven bandwidth selection in
errors-in-variables regression is particularly challenging, and the approach sug-
gested here is based on bootstrap methods and the simulation-extrapolation al-
gorithm (Cook and Stefanski (1994); Stefanski and Cook (1995)). It has points
of contact with a method developed by Delaigle and Hall (2008a) in a different
setting. The main similarity is that we borrow the SIMEX method, but there are
more than a few dissimilarities because, in the current problem, we are estimating
a variance function rather than a regression mean.

We develop two new simulation-extrapolation type bandwidth selectors,
based on estimating the mean integrated squared error, denoted by MISE, and
the mean squared error, or MSE, of estimators at higher levels of errors. Given the
difficulty of developing bandwidth procedures in the errors-in-variables context,
our new bandwidth selectors are of independent interest; they can be applied to
other errors-in-variables problems.
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5.1. Bandwidths for the estimators in Section 2

Let hopt denote the bandwidth that minimizes weighted mean integrated
squared error, MISE = E

∫
(τ̂ − τ)2 w, where w is a weight function. Estimating

hopt by directly attempting to estimate the MISE would be very difficult, so we
develop an alternative approach. The idea is to create samples which contain
higher levels of errors, develop estimators of bandwidths associated with two
corresponding variance estimation problems, and then, using the relation that
exists among the various levels of errors, deduce an estimator of hopt. Higher-
level versions of the variance problem are created as follows.

1. Generate a sample U?
1 , . . . , U?

n from the error density fU and construct the
sample W ?

1 , . . . ,W ?
n , where W ?

j = Wj + U?
j for j = 1, . . . , n.

2. Generate a sample U??
1 , . . . , U??

n from fU and construct the sample W ??
1 , . . .,

W ??
n , where W ??

j = W ?
j + U??

j for j = 1, . . . , n.

3. Define the variance functions τ? = m? − (g?)2 and τ?? = m?? − (g??)2, corre-
sponding to the new data, where g?(x) = E(Y |W = x), m?(x) = E(Y 2 |W =
x), g??(x) = E(Y |W ? = x), and m??(x) = E(Y 2 |W ? = x). Let τ̂? and τ̂??

denote the deconvolution estimators of τ? and τ?? from the contaminated data
(W ?

j , Yj) and (W ??
j , Yj), respectively, and let h?

opt and h??
opt be the bandwidths

that minimize MISE? = E
∫

(τ̂? − τ?)2 w? and MISE?? = E
∫

(τ̂?? − τ??)2 w??,
respectively, where w? and w?? are weight functions.

Unlike the original problem, in these two problems with higher levels of
errors the “measurement error-free data” (W,Y ) and (W ?, Y ), respectively, are
available, and thus we can construct standard measurement error-free, difference-
based estimators τ̂?

D and τ̂??
D of τ? and τ??; see Section 6.1 for details, and see Rice

(1984) Buckley, Eagleson, and Silverman (1988), Hall, Kay, and Titterington
(1990), Müller and Stadtmüller (1992) and Seifert, Gasser, and Wolf (1993) for
discussion of that method. Being based on a conventional regression problem with
no errors in variables, these estimators converge to the correct values at a much
faster rate than do τ̂? and τ̂??, and so can be used, to first order, to represent the
“truth” in a model for the more difficult, errors-in-variables regression problem
for which τ̂? and τ̂?? were computed. With this in mind we estimate MISE? and
MISE?? by ÎSE

?
(h) =

∫
{τ̂?

D(x)− τ̂?(x;h)}2 w?(x) dx and ÎSE
??

(h) =
∫
{τ̂??

D (x)−
τ̂??(x; h)}2 w??(x) dx. To avoid too strong dependence of the particular resamples
generated, we repeat Steps 1 and 2 B times, to generate B resamples; we calculate
ÎSE

?
and ÎSE

??
for each of the B samples, to obtain ÎSE

?

b and ÎSE
??

b , b = 1, . . . , B;
and we take M̂ISE

?
= B−1

∑
b ISE?

b and M̂ISE
??

= B−1
∑

b ISE??
b .

From there, to obtain an estimator of hopt, the idea, which we borrow from
the simulation-extrapolation algorithm, is that W ?? measures W ? in the same
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way that W ? measures W and W measures X, so that we can expect the relation
between h??

opt and h?
opt to be similar to the relation between h?

opt and hopt, that
is h??

opt/h?
opt ≈ h?

opt/hopt. Motivated by these ideas, we propose estimating hopt

by ĥopt = (ĥ?
opt)

2/ĥ??
opt. This last step relies on the fact that ĥ?

opt and ĥ??
opt are

asymptotic to constant multiples of the order of the optimal bandwidth, and the
ratio (ĥ?

opt)
2/ĥ??

opt is also asymptotic to that order. See also Remark 3. Rigorous
theoretical justification can be obtained using arguments similar to Delaigle and
Hall (2008a,b). Practical implementation is illustrated in Section 6.

Remark 3. (Justification of bandwidth-choice rule). Note that both ĥ?
opt and

ĥ??
opt are selected to minimise mean integrated squared errors in simulated errors-

in-variables problems. Since, by construction, the latter problems share the same
values of α and q as the original one, they enjoy the same rates of convergence,
n−1/(2α+2q+3) if q is odd and n−1/(2α+2q+5) if q is even, of the optimal band-
width. Therefore, the ratio (ĥ?

opt)
2/ĥ??

opt also has this rate. This was established
by Delaigle and Hall (2008a,b) to be the case in a related setting, and indeed
the property is at the heart of the widely used SIMEX method for solving de-
convolution problems. The constant multiplier will generally not be the optimal
one and, in fact, obtaining the optimal constant seems to be an especially chal-
lenging empirical problem, perhaps without a practicable solution. However, the
constant determined by the ratio (ĥ?

opt)
2/ĥ??

opt seems to be satisfactory in many
settings.

5.2. Bandwidths for the estimator in Section 3

Using ideas similar to those in the previous section, we suggest choosing the
bandwidth required to calculate θ̂ as follows: for b = 1, . . . , B, the steps are as
follows:

1–2: same as in Section 5.1.

3. Define the variance functions τ? and τ?? as in Section 5.1. Let τ(· | θ̂?) and
τ(· | θ̂??) denote the parametric deconvolution estimators of τ? and τ?? from
the contaminated data (W ?

j , Yj) and (W ??
j , Yj), respectively.

4. Let τ(· | θ̂?
D) and τ(· | θ̂??

D ) denote measurement error-free, difference-based
parametric estimators of τ? and τ??, based on the data (Wj , Yj) and (W ?

j , Yj),
respectively.

5. Find the bandwidths ĥ?
opt and ĥ??

opt that minimise B−1
∑

b ISE?
b and B−1

∑
b

ISE??
b , where ISE? =

∫
{τ(· | θ̂?) − τ(· | θ̂?

D)}2 w? and ISE?? =
∫
{τ(· | θ̂??) −

τ(· | θ̂??
D )}2 w??, respectively, where w? and w?? are weight functions. Take

ĥopt = (ĥ?
opt)

2/ĥ??
opt.



VARIANCE ESTIMATION 1037

6. Numerical Properties

6.1. Details of implementation

For all methods, every nonparametric estimator used anywhere in the estima-
tion procedure (to calculate the bandwidth and to calculate the estimator itself,
and for our nonparametric estimator as well as for the nonparametric difference-
based estimator) was a local-linear estimator (that is, we took q = 1 everywhere).
For the bandwidth selectors of Section 5, we took w? = w?? = 1[qW

0.025,qW
0.975]

, with
qT
α denoting the αth empirical quantile of a variate T and 1[a,b] the indicator func-

tion of the interval [a, b]. For the method of Section 5.1, we used the nonpara-
metric difference-based estimator with cross-validation bandwidth, constructed
from the data (W[i], Di)1≤i≤n−1, where Di = 0.5 (Y[i] − Y[i+1])2 with [i] denoting
the index of the ith order statistic of W . We used the same approach for the ?

data. For the bandwidth selector of Section 5.2, we used the parametric version
of this difference-based estimator. To speed up calculations, all nonparametric
estimators used to calculate bandwidths were computed after binning the data.

For the kernel K in our nonparametric procedures we used the one suggested
by Delaigle, Fan, and Carroll (2009), that is, we took the kernel with Fourier
transform φK(t) = (1− t2)8 1[−1,1](t). See Delaigle and Hall (2006) for discussion
of kernels in deconvolution problems. For the parametric method of Section 3.2
we took ω(x) = σ−1L{(x − µ)/σ} /d̂(x), with L the biweight kernel L(x) =
15/16(1− x2)2 · 1[−1,1](x), µ = (qW

0.01 + qW
0.99)/2, σ = (qW

0.99 − qW
0.01)/2, and d̂ as in

Section 3.2.

6.2. Simulation settings

We applied our nonparametric estimators to several regression models. In
each case we generated 200 samples from model (1.1), using one the following
variance functions (listed in increasing order of complexity):

• τ1(x) = 1;
• τ2(x) = max(0.9x + 0.6, 0);
• τ3(x) = max(1.5x + 0.1, 0);
• τ4(x) = (1.5x + 0.1)2;
• τ5(x) = 2x2 − 2x + 0.75,

which we combined with one of the following regression curves (also listed in
increasing level of complexity):

• g1(x) = 0.75;
• g2(x) = 1/

(
1 + exp{−5(x − 1/2)}

)
;

• g3(x) = 1/
(
1 + exp{−10(x − 1/2)}

)
;

• g4(x) = 1/
(
1 + exp{−5(x − 1/2)}2

)
;
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• g5(x) = 0.45 sin(2πx) + 0.5.

In each case we took ε ∼ N(0, 1), and X ∼ N(0.5, 0.1) or X ∼ U [0, 1]. Finally,
we took U to be Laplace.

We calculated our estimators for each generated sample. To illustrate the
importance of taking the error into account we also calculated naive estimators,
that is, estimators that pretend there is no error in the data. We also calculated
ideal estimators, that is, estimators which use the non-contaminated observations
Xi. Of course, these estimators are not available in practice, but they illustrate
the impact that measurement errors can have on the quality of estimators. To
summarize, in our numerical work we calculated the following estimators:

(1) our nonparametric local linear estimator, which we denote by NPE;

(2) our parametric estimator, which we denote by PE;

(3) the local linear difference-based nonparametric estimator based on the data
(W[i], Di)1≤i≤n−1, which we denote by naive NPE;

(4) the naive parametric difference-based estimator, which is the parametric ver-
sion of the naive difference-based method and which we denote by naive
DBPE (this method is often used in practice because it has good theoretical
properties and does not need a bandwidth);

(5) the naive version of our parametric estimator, obtained by using the data
(Wi, Yi) but setting U ≡ 0 everywhere else in the formulae of our estimator;
we refer to this as the naive PE;

(6) the ideal parametric difference-based estimator, which is the same as the naive
DBPE, except that we use the measurement error-free data (X[i], Di)1≤i≤n−1;
we refer to this as the ideal DBPE;

(7) the ideal version of our parametric estimator, obtained by using the data
(Xi, Yi) and setting U ≡ 0 everywhere in the formulae of our estimator; we
refer to this as the ideal PE.

Note that, although the DBPE is widely used in the measurement error-
free case, partly because of its simplicity and also because it does not need a
bandwidth, our results showed that in a high proportion of regression models the
measurement error-free version of our estimator (i.e. ideal PE) worked better
than its difference-based counterpart (ideal DBPE). Similarly, we found that
the naive DBPE often gave better results than the naive PE. This complicates
the comparison between our estimator and the naive methods, as in practice we
would not know which of the naive DBPE and the naive PE is the best estimator.
Thus, comparing our method in each case with the best of the two naive methods
systematically biases the comparison in favour of the naive estimators.
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Figure 1. Estimation of τ2 when g = g4, X ∼ N(0.5, 0.1). Top: naive
NPE, bottom: our NPE. Left: (n, NSR) = (500, 0.2), middle: (n, NSR) =
(250, 0.2), right: (n, NSR) = (250, 0.1).

The performance of estimators, τ̂ say, was calculated via integrated squared
error, ISE =

∫ 1
0 (τ̂ −τ)2, except in the constant case τ = 1 where we used squared

error. In the figures we show the estimated curves corresponding to the quantiles
q0.1, q0.15, q0.2, . . . , q0.9 of the 200 calculated integrated squared errors. The true
function τ is always represented by the thick solid curve.

6.3. Simulation results

In each figure, the goal is to illustrate one (or more) of the properties of the
various estimators. Note that the findings discussed here were also supported
by box plots; to keep this section to a reasonable length, we discuss them only
briefly in the text, in cases where the graphs are not clear enough to compare the
performance of the methods. A summary of the important properties is given at
the end of this section.

Figure 1 illustrates the improvement one can get by taking the error into
account when calculating the nonparametric estimators. We compare our NPE
and the naive NPE, by showing the quantile curves for estimating the variance
function τ2, when the regression curve is g4, X ∼ N(0.5, 0.1), n = 250 or 500,
and the noise to signal ratio NSR ≡ var(U)/var(X) is equal to 10% or 20%.
The graphs show a clear superiority of our estimator compared to the naive one.
They also demonstrate that the estimator improves as the sample size increases
and the NSR decreases.
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Figure 2. Quantile curves for the estimation of τ3 when g = g5, X ∼
N(0.5, 0.1), n = 250, and NSR = 0.2, using the naive NPE (top left), our
NPE (top centre), our PE (top right), the naive DBPE (bottom left), the
naive PE (bottom centre), or the ideal PE (bottom right).

Figure 2 shows the quantile curves when estimating τ3, when g = g5, X ∼
N(0.5, 0.1), n = 250, and NSR = 0.2. Here the goal is to compare all the
estimators. We see that the results improve when using our NPE compared to
the naive NPE, but also that our parametric estimator (PE) improves the NPE.
The graphs also show that the naive parametric estimators (naive DBPE and
naive PE) are either much more biased or much more variable than our PE.
The quantile curves for the ideal PE shown here demonstrate that, in this case,
the impact of measurement errors on the quality of our PE is not very severe
(although it may not be clear from the graph, the ideal estimator did give smaller
ISEs than our PE).

Figure 3 illustrates the same properties as Figure 2, but this time for the
case where the variance curve is the quadratic curve τ5, and g = g1. This case
is quite difficult because of the valley in the shape of the variance curve, and
estimators have a tendency to overestimate the valley. The estimators did not
work very well for n = 250, and we show the results for n = 500 and NSR = 10%.
In this case, the naive NPE worked so poorly that, instead of showing its quantile
curves, we show those for our NPE when NSR = 20%. As above, we see that a
smaller NSR implies a better estimator, our PE substantially improves our NPE,
and ignoring the error (that is, using the naive estimators) results in estimators
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Figure 3. Quantile curves for estimation of τ5, when g = g1, X ∼ U [0, 1], and
n = 500, using our NPE when NSR = 20% (top left); or in the case when
NSR = 0.1, using our NPE (top center), our PE (top right), the naive PE
(bottom left), the naive DBPE (bottom center) and the ideal PE (bottom
right).

that are much more biased. In this difficult case, the impact of the measurement
errors is very noticeable: the ideal PE is significantly better than our PE.

Figure 4 shows results for estimating τ4 parametrically, when g = g4, X ∼
N(0.5, 0.1), and NSR = 0.2, for sample sizes n = 250 and n = 500. In this case
the variance function takes values close to zero for x close to zero and, as a result,
the estimators of τ(x) often took negative values when x was close to zero. To
correct for this problem we considered the two approaches discussed at the end
of Section 3.2. That is, we either truncated the estimator to zero or used (3.4),
where the expectation was computed as the average of values computed from
B resamples, as in (4.4). In the figure we show the results of both approaches.
When using the second approach, we took B = 100 resamples. We can see that,
overall, both approaches to correcting for negativity gave similar results, but the
resampling method did this correction in a smoother way. As usual, the figure
also illustrates the improvement of our estimator as the sample size increases,
and its superiority to the two naive parametric approaches (although the larger
bias incurred by the naive estimators is more easily seen for the larger sample
size, n = 500).

In Figure 5, we continue to consider parametric estimation of τ4 when g = g4,
X ∼ N(0.5, 0.1), and NSR = 0.2, but this time we wrongly assume that τ is a
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Figure 4. Estimation of τ4 when g = g4, X ∼ N(0.5, 0.1) and NSR = 0.2.
Quantiles curves for the our PE when n = 250 (top left) or when n = 500
(bottom left), our resampling corrected PE when n = 250 (top center) or
n = 500 (bottom center), the naive PE for n = 250 (top right) or n = 500
(middle right), the naive DBPE when n = 250 (middle left) or n = 500
(bottom right), or the resampling corrected DBPE when n = 250 (middle
center).

linear curve. Our goal is to see whether, even when the variance model is mis-
specified, using an error-corrected estimator can improve on the naive estimators.
In particular we want to see whether the line fitted by our PE will be closer to
that fitted by the naive methods. Here, to correct for negativity, we simply trun-
cated the fitted lines to zero. The plots of the quantile curves and the box plots
(not shown here) both show that in this case, too, taking the error into account
can bring significant improvement over the naive estimators, whose fitted lines
are more biased than for our estimator.

Finally, in Figure 6 we show boxplots for estimating the constant variance
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Figure 5. Estimation of τ4 when g = g4,, X ∼ N(0.5, 0.1) with NSR = 0.2,
n = 250 (top) or n = 500 (bottom), and pretending that the variance is
linear. Quantile curves for the naive DBPE (left), the naive PE (middle)
and our PE (right).

τ1 when g = g2 or g3, for various sample sizes and NSR. In most cases (except
for (n, NSR) = (250, 10%) when g = g2), our PE worked better than the naive
estimators, and we can see that it even worked better than the ideal DBPE.
As already mentioned, in other cases it is the ideal DBPE that worked better
than the ideal PE, and this makes the comparison of our method with the naive
estimators difficult. For example in this case, if we were to compare our PE
with the naive DBPE, we would find a dramatic improvement, but if we were
to compare it with the naive PE, we would find that our estimator improves the
naive one by a much smaller amount.

Of course, we could not present the results of all our simulations, and above
we only discussed partial results. In our complete set of simulations, we also found
that our estimators systematically improved as sample size increased and/or the
NSR decreased. Further, we found that our parametric method almost always
improved substantially at least one of the two naive methods, and usually im-
proved both. Depending on the case, it was either the naive DBPE that we beat
by a significant amount, or the naive PE. Thus, the comparison between our
estimator and the naive approach is not easy. Since in practice we would not
know which of the two naive methods we should use, to be fair, we should almost
choose randomly one of the two naive approaches.
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Figure 6. Boxplot for the estimation of τ1 when g = g2 (top) or g = g3

(bottom), and when (n, NSR) = (250, 10%) (left), (n, NSR) = (500, 10%)
(center) and (n,NSR) = (500, 20%) (right). In each graph, the first boxplot
is for the naive DBPE, the second is for the naive PE, the third is for our
PE, the fourth is for the ideal DBPE, and the fifth is for the ideal PE.

7. Conclusion

We have considered an important, but particularly difficult and unexplored,
problem of variance estimation in the context on nonparametric errors-in-variables
regression. We have proposed nonparametric and parametric variance estimators
and have derived their asymptotic and finite-sample properties. We have also
proposed a new bandwidth selector that is of independent interest, since it can
be used in more general errors-in-variables contexts where constructing a good
data-driven bandwidth is particularly challenging.
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Appendix

A.1. Summary

This appendix contains the proofs of Theorems 4.2 and 4.3. The proofs are
given in the case where m̂ and ĝ are local constant estimators (q = 0). In the
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proofs we use the notation r1 = fX g and r2 = fX m.

A.2. Proof of Theorem 4.2

Let D be as in section 2.2, let D† be a resample drawn from D, let f̂X have
the definition of d̂ in the special case at (3.2), write f̂ †

X and r̂†j , j = 1, 2, for the
versions of f̂X and r̂j , respectively, when the latter are computed from D† rather
than D, put ∆† = f̂ †

X − f̂X and ∆†
j = r̂†j − r̂j for j = 1, 2, and let ` = `(n) denote

a sequence of positive constants. Here and below, all estimators are understood
to be evaluated at x. The first step is to prove that, for all integers p ≥ 1,

P (|∆†| > `) = O
{(

nh2α+1 `2
)−p

}
. (A.1)

By Rosenthal’s inequality,

E
(
|∆†|2p

∣∣D)
≤ D1

(nh)2p

[{ n∑
j=1

∣∣∣∣L0

(
x − Wj

h

)∣∣∣∣2}p

+
n∑

j=1

∣∣∣∣L0

(
x − Wj

h

)∣∣∣∣2p
]

,

where D1, D2, . . . will denote generic positive constants not depending on n, and
D1 depends only on p. Hence,

E
(
|∆†|2p

)
≤ D2

(nh)2p

p∑
r=0

{ n∑
j=1

E

∣∣∣∣L0

(
x − Wj

h

)∣∣∣∣2}r n∑
j=1

E

∣∣∣∣L0

(
x − Wj

h

)∣∣∣∣2(p−r)

≤ D3

p−1∑
r=0

(
nh2α+1

)−r (nh)2(r−p) nh1−2(p−r)α + D3

(
nh2α+1

)−p

= D3

p−1∑
r=0

(nh)r+1
(
nhα+1

)−2p + D3

(
nh2α+1

)−p

≤ pD3

(
n h2α+1

)−p
. (A.2)

To obtain the second inequality in the sequence leading to (A.2), we used the
fact that (nh)−2

∑
j E|L0{(x−Wj)/h}|2 = O{(nh2α+1)−1}, this being an upper

bound to the variance of f̂X , and the property that for s ≥ 2,
∑

j E|L0{(x −
Wj)/h}|s = O(nh1−sα), the latter identity being a consequence of the bound

|L0(u)| ≤ D4 h−α (1 + |u|)−1 , (A.3)

which we shortly derive. Result (A.1) follows on combining (A.2) and Markov’s
inequality.

Let ∆†
[b] denote the version of ∆†, defined in the first paragraph of the present

section, when the dataset D is replaced by the bth resample, D†
b , drawn from
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D. (We introduce square brackets around the subscript in ∆†
[b] so as not to

confuse ∆†
[b] with ∆†

j , defined in the previous paragraph.) Since (A.1) holds for
all p > 0, and (4.4) implies that B = O(nD5) for some D5 > 0, then provided
`2 = nε (nh2α+1)−1 for some ε > 0, we have, for a positive number p that can be
taken arbitrarily large,

P
(

max
1≤b≤B

|∆†
[b]| > `

)
= O

(
nD5−pε

)
= O

(
n−D6

)
for all D6 > 0 . (A.4)

Therefore, by Taylor expansion,

m̂† =
r̂†2

f̂ †
X

=
r̂2 + ∆†

2

f̂X + ∆†
=

r̂2 + ∆†
2

f̂X

{
1 − ∆†

f̂X

+ Op

(
`2

)}
,

ĝ†2 =
r̂2
1 + 2 r̂1 ∆†

1 + ∆†
1
2

f̂2
X

{
1 − 2 ∆†

f̂X

+ Op

(
`2

)}
,

where, here and below in this paragraph, the remainders Op(·) are of the stated
order uniformly in all B of the resampled datasets D† = D†

b . (To see that the
order of the remainder terms is as stated, note that, since B is of polynomial
size in n, then (A.4) implies that the probability that either |∆†

2| or |∆†| is larger
than ` for one or more of the resamples D†, is O(n−D) for all D > 0. Therefore
the remainders, which represent quadratic terms in the two respective Taylor
expansions and so equal Op(`2), are of that size uniformly in all B simulated
values of the resample D†.) Hence, since

r̂j(x) = rj(x) + Op(`0) and f̂X(x) = fX(x) + Op(`0), (A.5)

where `2
0 = (nh2α+1)−1 < `2, and since fX(x) > 0, then

τ̂ † = m̂† − ĝ†2 = τ̃ + ∆†
3 (A.6)

uniformly in D† = D†
b for 1 ≤ b ≤ B, where

∆†
3 = ∆†

4 + Op

{(
|∆†

1| + |∆†
2| + |∆†

1|
2
)
` + `2

}
,

∆†
4 =

1
fX

(
∆†

2 −
r2

fX
∆†

)
− 2 r1

f2
X

(
∆†

1 −
r1

fX
∆†

)
.

(To derive (A.5) note that the second identity there is conventional, and follows
for example from arguments of Delaigle, Fan, and Carroll (2009), who show that
the identity gives the exact rate of convergence of f̂X(x) to fX(x). The first
identity is proved in the same way (and again gives the exact convergence rate),
since r̂j has the same construction as f̂X except that a weight Yj is incorporated
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into the series. See Example 1 in Section 3.2, where (3.2) gives a formula for
d̂(x), that is identical to f̂X(x) in that setting, and (3.3) gives formulae for r̂1(x)
and r̂2(x).)

Write ∆†
jb for the version of ∆†

j when D† = D†
b , and let E denote the event

that |τ̃ − τ | ≤ τ/2, i.e. that τ(x)/2 < τ̃(x) < (3/2)τ(x) where, by assumption,
τ(x) > 0. Since τ̃ → τ in probability then P (E) → 1. If E holds then by (A.6),

|τ̄ − τ̃ | =
∣∣∣∣ 1
B

B∑
b=1

{max(τ̂ †
b , 0) − τ̃}

∣∣∣∣ =
∣∣∣∣ 1
B

B∑
b=1

{max(τ̃ + ∆†
3b, 0) − τ̃}

∣∣∣∣
≤

∣∣∣∣ 1
B

B∑
b=1

∆†
3b

∣∣∣∣ +
4
B

B∑
b=1

|∆†
3b| I

(
|∆†

3b| > 1
2 τ

)
≤

∣∣∣∣ 1
B

B∑
b=1

∆†
4b

∣∣∣∣ + Op

{
`2 +

`

B

B∑
b=1

(
|∆†

1b| + |∆†
2b| + |∆†

1b|
2
)}

+
4
B

B∑
b=1

|∆†
3b| I

(
|∆†

3b| > 1
2 τ

)
. (A.7)

Conditional on D,
∑

b ∆†
4b is a sum of independent random variables with zero

mean (that is, E(∆†
4b | D) = 0 for each b), and from this property it can be proved

that B−1
∑

b ∆†
4b = Op(B−1/2 `0) = op(`0), since we assumed that B = B(n) →

∞. Similarly, B−1
∑

b (|∆†
1b|+|∆†

2b|+|∆†
1b|

2) = Op(`0) and B−1
∑

b |∆†
3b| I(|∆†

3b|
> τ/2) = op(`0). In relation to the last of these results, note that if s > 0 is
fixed, then

1
B

B∑
b=1

|∆†
4b| I(|∆†

4b|>s)=Op

[
E{|∆†

41| I(|∆†
41|>s)}

]
=Op

{
E|∆†

41|
2
}

=Op

(
`2
0

)
.

Combining these results with (A.7), and noting that `2 = op(`0) provided that ε,
in the definition of `, is chosen sufficiently small, we deduce that |τ̄ − τ̃ | = op(`0).
In view of our choice of h (see Theorem 6.1) the latter result is equivalent to (6.9).

It remains to prove (A.3). From Conditions (A5) and (4.1) it follows that,
uniformly in x,

2π |L0(x)| ≤ C

∫ 1

−1

∣∣φK(t)
∣∣ (1 + | t

h
|)α dt ≤ D7 h−α . (A.8)

Conditions (A5), (4.1), and (4.5), and an integration by parts, imply that

|2πxL0(x)| ≤
∫ ∣∣∣∣φ′

K(t) φU (t/h) − h−1 φK(t) φ′
U (t/h)

φU (t/h)2

∣∣∣∣ dt
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≤ D8

∫ 1

0

{∣∣φU (
t

h
)
∣∣−1 +

|φ′
U (t/h)|

h |φU (t/h)|2

}
dt

≤ D9 h

∫ 1/h

0

{
(1 + t)α +

(1 + t)α

h (1 + t)

}
dt ≤ D10 h−α . (A.9)

Result (A.3) follows from (A.8) and (A.9).

A.3. Proof of Theorem 4.3

Step 1. Approximation to S(θ).
The goal of this step is to develop an approximation to S(θ) which is simpler than
S(θ) to analyse. In the second part of this step, we illustrate our approximation
in the particular case where the variance is a polynomial. Throughout the proof
we write

L(x |w1, w2) = L0

(x − w1

h

)
L0

(x − w2

h

)
.

Also, to avoid too complicated notations in this proof, we redefine S(θ) to be
n(n− 1)h2S(θ). This has no impact on the derivation of the results, as S(θ) = 0
is equivalent to n(n−1)h2S(θ) = 0. Remember, too, that we are giving the proof
for the case q = 0 (see Example 1 in Section 3.2. With this in mind, and since
conditions (B1) and (B3) hold, we can write:

S(θ) =
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 −
d1∑

k=0

τ (k|0)(x | θ, θ0)
}

L(x |Wj1 ,Wj2)

×
{ d1∑

k=1

τ (k|1)(x | θ, θ0)
}

ω(x) dx

+ Ω1 ‖θ − θ0‖d1+1
∑ ∑

j1 6=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx ,

where ∑
k≥0

τ (k|0)(x | θ, θ0) = τ(x | θ0) + (θ − θ0)T τ̇(x | θ0)

+1
2 (θ − θ0)T τ̈(x | θ0) (θ − θ0) + . . . ,∑

k≥1

τ (k|1)(x | θ, θ0) = τ̇(x | θ0) + τ̈(x | θ0) (θ − θ0) + . . .

denote Taylor expansions of τ(x | θ) and τ̇(x | θ), respectively, in terms that are
of sizes ‖θ − θ0‖k; τ̈(x | θ0) is the p × p matrix of second derivatives of τ(x | θ)
with respect to θ; and, for ` = 1 and 2, Ω` is a random variable satisfying
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P (|Ω`| ≤ C) = 1, with C denoting a constant depending only on the bounds to
the d1 + 2 derivatives of τ(x | θ) with respect to θ. (Recall from (B3) that those
derivatives are bounded uniformly in the compact set on which ω is supported.)
Therefore,

S(θ) = S0(θ) +
d1∑

k=2

‖θ − θ0‖k
∑ ∑

j1 6=j2

∫ [{
Y 2

j1 − Yj1 Yj2 − τ(x | θ0)
}

a1k(x)

+a2k(x)
]
L(x |Wj1 ,Wj2) ω(x) dx

+Ω2 ‖θ − θ0‖d1+1
∑∑

j1 6=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx , (A.10)

where

S0(θ) =
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 − τ(x | θ0)
}
L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx

+
[ ∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1Yj2 − τ(x | θ0)
}
L(x |Wj1 ,Wj2) τ̈(x | θ0)ω(x) dx

−
∑∑

j1 6=j2

∫
L(x |Wj1 ,Wj2)τ̇(x | θ0)τ̇(x | θ0)Tω(x)dx

]
(θ − θ0), (A.11)

and the vector-valued functions a1k and a2k are uniformly bounded and have,
respectively, d1 + 1 − k and d1 + 2 − k bounded derivatives on the real line.

To understand the above calculations in a simple context, take the particular
case where the variance is polynomial, that is τ(x | θ) = θ1 + θ2 x + . . . + θp xp−1

and τ̇(x | θ) = τ̇(x | θ0) = (1, x, . . . , xp−1)T . There we find

τ(x | θ) = θ1 + θ2 x + . . . + θp xp−1 = τ(x | θ0) + (θ − θ0)Tτ̇(x | θ0).

Therefore, it follows from the definition of S(θ) at (3.1), where, as indicated
above, we redefine S(θ) to be n(n − 1)h2S(θ), that in that case,

S(θ) =
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 − τ(x | θ0) − (θ − θ0)Tτ̇(x | θ0)
}

× L(x |Wj1 ,Wj2) τ̇(x | θ0) ω(x) dx

=
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 − τ(x | θ0)
}
L(x |Wj1 ,Wj2) τ̇(x | θ0) ω(x) dx

−
∑∑

j1 6=j2

∫
L(x |Wj1 ,Wj2) τ̇(x | θ0)τ̇(x | θ0)T ω(x) dx × (θ − θ0).
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Thus, in this case, S(θ) is exactly equal to S0(θ).

Step 2. Approximation to S(θ) − S0(θ)
The calculations at the end of Step 1 show that in the polynomial case we have
exactly S(θ) = S0(θ). However, in more general cases, S0(θ) is only an approxi-
mation to S(θ), and the goal of this step is to assess the magnitude of S(θ)−S0(θ).
The approximation is given at (A.24) below.

As a prelude the derivation, let a denote a uniformly bounded function with
support equal to that of ω, and take

S1 =
∑∑

j1 6=j2

∫
a(x) L(x |Wj1 ,Wj2) dx , (A.12)

S2 =
∑∑

j1 6=j2

Y 2
j1

∫
a(x) L(x |Wj1 ,Wj2) dx , (A.13)

S3 =
∑∑

j1 6=j2

Yj1 Yj2

∫
a(x) L(x |Wj1 ,Wj2) dx . (A.14)

We develop bounds for E(S2
` ) for ` = 1, 2, and 3, giving details of the arguments

only in the relatively complex case ` = 3. Now, each S` can be decomposed into
“quadratic,” and “linear (projection)” components. (In the case ` = 3 see (A.15)
and (A.16) for quadratic and linear components, respectively, and when ` = 2
see (A.20) for the quadratic component, and (A.21) and (A.22) for the two linear
components.) We bound the quadratic and linear components separately, noting
that the method in the case of quadratic components is used again in Step 4.

Given a random variable R with finite mean, let (1−E) R denote R−E(R)
and put (1−E) S3 = S31 +2 S32, where 2 S32 is the linear projection of (1−E) S3

and S31 is defined by differencing:

S31 =
∑ ∑

j1 6=j2

∫
a(x)

[
Yj1 Yj2 L0

(
x − Wj1

h

)
L0

(
x − Wj2

h

)

−
{

Yj1 L0

(
x − Wj1

h

)
+ Yj2 L0

(
x − Wj2

h

)}
E

{
Y L0

(
x − W

h

)}
+

{
EY L0

(
x − W

h

)}2]
dx, (A.15)

S32 = (n−1)
n∑

j=1

∫
a(x)E

{
Y L0

(
x−W

h

)}
(1−E)

{
YjL0

(
x−Wj

h

)}
dx. (A.16)

Since Yj = g(Xj)+τ1/2(Xj) εj and Wj = Xj +Uj then, recalling that m = g2+τ ,
and noting from the definition of L0, that

∫
L2

0 ≤ const. h−2α for 0 < h ≤ 1, where
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α is as in (B5), we have:

n−2 E
(
S2

31

)
≤ 4E

{
Y1 Y2

∫
a(x) L0

(
x − W1

h

)
L0

(
x − W2

h

)
dx

}2

= E

(
m(X1) m(X2) E

[{∫
a(x)L0

(
x − W1

h

)
L0

(
x − W2

h

)
dx

}2 ∣∣∣∣ X1, X2

])

≤ h2
(
sup a2

)
E

{
m2(X)

}(∫
L2

0

)2

≤ const. h2−4α. (A.17)

Also, since the function |fX g| is bounded (see (B4)) then |E[g(X1) K{(x −
X1)/h}]| ≤ const. h, whence it follows that

n−3 E
(
S2

32

)
≤ E

(
m(X2)

[ ∫
a(x)E

{
g(X1) K

(
x − X1

h

)}
L0

(
x − W2

h

)}
dx

]2
)

≤ const. h2 E

{
m(X2)

(∫
a2

)∫
L2

0

(
x − W2

h

)
dx

}
≤ const. h3

(
1 + h−2α

)
. (A.18)

Therefore, in the case ` = 3,

(nh)−4 var(S`) = O
(
n−2 h−2(1+2α) + n−1 h−(1+2α)

)
. (A.19)

Write S2 = S21 + S22 + S23 where

S21 =
∑∑

j1 6=j2

∫
a(x)

[
Y 2

j1L0

(
x − Wj1

h

)
L0

(
x − Wj2

h

)

−Y 2
j1L0

(
x − Wj1

h

)
E

{
L0

(
x − W1

h

)}
−L0

(
x − Wj2

h

)
E

{
Y 2

1 L0

(
x − W1

h

)}
+E

{
Y 2

1 L0

(
x − W1

h

)}
E

{
L0

(
x − W1

h

)}]
dx, (A.20)

S22 = (n − 1)
n∑

j=1

∫
a(x)E

{
L0

(
x − W1

h

)}
(1 − E)

{
Y 2

j L0

(
x − Wj

h

)}
dx,

(A.21)

S23 = (n − 1)
n∑

j=1

∫
a(x)E

{
Y 2

1 L0

(
x − W1

h

)}
(1 − E)

{
L0

(
x − Wj

h

)}
dx.

(A.22)
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Provided that E(ε4) < ∞ and E{m2(X)} < ∞ (see (B6)) the arguments leading
to (A.17) and (A.18) give n−2 E(S2

21) = O(h2−4α) and n−3 maxj=2,3 E(S2
2j) =

O(h3−2α). This leads quickly to (A.19) in the case ` = 2, and a similar approach
implies that result when ` = 1. Note too that, for ` = 1, 2, 3, E(S`) = O

{
(nh)2

}
,

and therefore (nh)−2 E(S`) = O(1). Combining this result with the versions of
(A.19) for ` = 1, 2, 3, we deduce that

the coefficient of Ω2 in (A.10), multiplied by (nh)−2, is Op{‖θ−
θ0‖2 (n−1 h−(1+2α) + n−1/2 h−(1+2α)/2 + 1)}, uniformly in θ satis-
fying ‖θ − θ0‖ ≤ C, where C > 0 is as in (B3).

(A.23)

Observe too that∑∑
j1 6=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx

≤ const.
∑∑

j1 6=j2

(
1 + Y 2

j1

){ ∫
L2

0

(
x − Wj1

h

)
dx

}1/2{ ∫
L2

0

(
x − Wj2

h

)
dx

}1/2

≤ const.
∑∑

j1 6=j2

(
1 + Y 2

j1

)
h
(
1 + h−2α

)
= Op

(
n2h1−2α

)
.

Therefore the coefficient of Ω3 in (A.10), multiplied by (nh)−2, is Op(‖θ −
θ0‖d1+1 h−(1+2α)), uniformly in θ satisfying ‖θ − θ0‖ ≤ C. Combining this result
with (A.10) and (A.23) we deduce that

S(θ) = S0(θ) + (nh)2 ∆(θ) where, uniformly in θ satisfying ‖θ −
θ0‖ ≤ C, ∆(θ) = Op(‖θ − θ0‖2 λn + ‖θ − θ0‖d1+1 h−(1+2α)), C > 0
is as in (B3), and λn = n−1 h−(1+2α) + n−1/2 h−(1+2α)/2 + 1.

(A.24)

As mentioned earlier, in the particular case where the variance is polynomial
we have S(θ) = S0(θ) and therefore ∆(θ) = 0.

Step 3. Solving the equation S(θ) = 0.
Here we show that the equation S(θ) = 0 can be written in a simpler form,
specifically (A.30), provided that the bandwidth satisfies (A.29).

Recalling the definition of S0(θ) at (A.11) we deduce that

(nh)−2 S0(θ) = V − (M − N) (θ − θ0) , (A.25)

where M and N are p × p matrices, V is a p-vector,

M =
1

(nh)2
∑∑

j1 6=j2

∫
L(x |Wj1 ,Wj2) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx ,
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N =
1

(nh)2
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 − τ(x | θ0)
}

L(x |Wj1 ,Wj2) τ̈(x | θ0) ω(x) dx ,

V =
1

(nh)2
∑∑

j1 6=j2

∫ {
Y 2

j1 − Yj1 Yj2 − τ(x | θ0)
}

L(x |Wj1 ,Wj2) τ̇(x | θ0) ω(x) dx .

We show in three stages, respectively in Steps 4–6 below, that n1/2 (V − EV ) is
asymptotically normally distributed with zero mean and finite variance. Similar
arguments can be used to prove that

M − E(M) = op(1) , N − E(N) = op(1) . (A.26)

Define

φ0(x) =
∫

K(u) fX(x − hu) du , φ1(x) =
∫

K(u) (gfX)(x − hu) du ,

φ2(x) =
∫

K(u) (mfX)(x − hu) du . (A.27)

Since the kernel K is of order κ (see (B2)) then, in view of the smoothness
assumptions (B4), φ0(x) = fX(x) + O(hκ), and so(

1 − n−1
)−1

E(M) =
∫

φ2
0(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx

=
∫

f2
X(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx + O

(
hκ

)
.

Similarly, since φ1(x) = (fX g)(x) + O(hκ) and φ2(x) = (fX m)(x) + O(hκ), we
have(

1 − n−1
)−1

E(N) =
∫ {

φ2(x) φ0(x) − φ2
1(x) − τ(x | θ0) φ2

0(x)
}

τ̈(x | θ0) ω(x) dx

= O
(
hκ

)
,

and (1 − n−1)−1 E(V ) = O(hκ). Combining the results from (A.26) down, and
assuming that h = h(n) converges to zero sufficiently fast to ensure that hκ =
o(n−1/2) (see (B8)), we deduce that M = M0 + op(1), where M0 is as at (4.7),
N = op(1) and E(V ) = o(n−1/2). Hence, by (A.25), the equation S0(θ) = 0 can
be written as

V − EV − {M0 + op(1)} (θ − θ0) = op

(
n−1/2

)
, (A.28)

uniformly in θ satisfying ‖θ − θ0‖ ≤ C. From (A.24) and (A.28) we deduce that
if εn denotes a sequence decreasing to zero, then, provided that

h = h(n) converges to zero sufficiently fast to ensure that hκ =
o(n−1/2), but so slowly that εn (n−1 h−(1+2α) +n−1/2 h−(1+2α)/2)+
εd1
n h−(1+2α) → 0,

(A.29)
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we have

the equation S(θ) = 0 can be written as V −EV −{M0+op(1)} (θ−
θ0) = op(n−1/2), uniformly in θ satisfying ‖θ − θ0‖ ≤ εn.

(A.30)

Step 4. Decomposing n1/2 (V −EV ) into its projection plus a negligible
remainder.
Put V − E(V ) = V1 + V2 where, defining

V (j1, j2) =
∫ {

Y 2
j1 − Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̇(x | θ0) ω(x) dx,

and writing Fj for the sigma-field generated by (Uj , Xj , Yj), we have:

V1 =
1

(nh)2
∑∑

j1 6=j2

[
V (j1, j2)

−E{V (j1, j2) | Fj1} − E{V (j1, j2) | Fj2} + E{V (j1, j2)}
]
,

V2 =
n − 1
(nh)2

n∑
j=1

[
E{V (j, j′) | Fj} + E{V (j′, j) | Fj} − 2E{V (1, 2)}

]
, (A.31)

and j′ is taken to be any integer not equal to j. We show in the present step
that

E
(
V 2

1

)
= o

(
n−1

)
. (A.32)

It follows that V1 = op(n−1/2), and thence that

V − E(V ) = V2 + op

(
n−1/2

)
. (A.33)

To derive (A.32), note that(
1 − n−1

)−1
E

(
V 2

1

)
=

(
n2h4

)−1
E

[
V (1, 2)

−E{V (1, 2) | F1} − E{V (1, 2) | F2} + E{V (1, 2)}
]2

≤ 4
(
n2h4

)−1
E

{
V (1, 2)2

}
.

At this point we recall the arguments used to bound the quadratic components
in expansions of S1, S2 and S3 during Step 2. The quantities S` are defined
at (A.12)–(A.14), the quadratic components of S2 and S3 are given at (A.20)
and (A.15), respectively, and the arguments used to bound the mean squares of
those components can be employed here to prove that (n2h4)−1 E{V (1, 2)2} =
O(n−2 h−2(1+2α)). (Compare (A.17), which implies that (nh)−4 E(S2

31) = O(n−2
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h−2(1+2α)), and note that an almost identical argument gives (nh)−4 E(S2
21) =

O(n−2 h−2(1+2α)); see the paragraph below (A.19).) Therefore, provided that

h = h(n) converges to zero so slowly that n−1 h−2(1+2α) → 0 , (A.34)

(A.32) and hence (A.33) hold.
Assumption (B8) is included in the intersection of (A.29) and (A.34). There-

fore, combining (A.30) (which is implied by (A.29)) and (A.33), which follows
from (A.34), we deduce that if (B8) holds then

the equation S(θ) = 0 can be written as V2−{M0+op(1)} (θ−θ0) =
op(n−1/2), uniformly in θ satisfying ‖θ − θ0‖ ≤ εn.

(A.35)

Step 5. Asymptotic variance of n1/2 V2.
Recall the definitions of φ0, φ1, and φ2 at (A.27), and that V2 is given by (A.31).
In this notation,

E{L(x |Wj ,Wj′) | Fj} = L0

(
x − Wj

h

)
E

{
K

(
x − X

h

)}
= hφ0(x) L0

(
x − Wj

h

)
,

E
{
Y 2

j L(x |Wj ,Wj′) | Fj

}
= Y 2

j E{L(x |Wj ,Wj′) | Fj}

= hY 2
j φ0(x) L0

(
x − Wj

h

)
,

E
{
Y 2

j′ L(x |Wj ,Wj′) | Fj

}
= L0

(
x − Wj

h

)
E

{
m(X) K

(
x − X

h

)}
= hφ2(x) L0

(
x − Wj

h

)
,

E
{
Yj Yj′ L(x |Wj ,Wj′) | Fj

}
= Yj L0

(
x − Wj

h

)
E

{
g(X) K

(
x − X

h

)}
= hφ1(x) Yj L0

(
x − Wj

h

)
,

whence

Qj ≡ E{V (j, j′) | Fj} + E{V (j′, j) | Fj}

= h

∫ {
φ2(x) + Y 2

j φ0(x) − 2Yj φ1(x) − 2τ(x | θ0) φ0(x)
}

×L0

(
x − Wj

h

)
τ̇(x | θ0) ω(x) dx . (A.36)
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Note too that, by (B4),

the functions φ0, φ1, and φ2 are absolutely integrable, where the
integrals are bounded uniformly in h, and φ0 = fX + o(1), φ1 =
fX g + o(1), and φ2 = fX m + o(1) as h → 0; moreover, these
properties continue to hold if φ0, φ1, and φ2, and the functions on
the right-hand sides of each of the equations, are replaced by their
jth derivatives, for 1 ≤ j ≤ d2, where d2 is as in (B4).

(A.37)

(Here we have used the fact that
∫
|K| < ∞; see (B2).) Therefore,

E(Qj) = hE

[ ∫ {
φ2(x) + m(X) φ0(x) − 2 g(X) φ1(x) − 2 τ(x | θ0) φ0(x)

}
×K

(
x − X

h

)
τ̇(x | θ0) ω(x) dx

]
= 2 h2

∫ {
φ0(x) φ2(x) − φ2

1(x) − τ(x | θ0) φ2
0(x)

}
τ̇(x | θ0) ω(x) dx

= 2 h2

∫ {
m(x) − g2(x) − τ(x | θ0)

}
f2

X(x) τ̇(x | θ0) ω(x) dx + o
(
h2

)
= o

(
h2

)
, (A.38)

since τ = m + g2.
The definition of V2 at (A.31) implies that(

1 − n−1
)−1

V2 =
1

nh2

n∑
j=1

(Qj − EQj) . (A.39)

We use this formula to develop an approximation to E(V2V
T
2 ). By (A.38),

nE
(
V2V

T
2

)
+ o(1) = h−4 E

(
Q1Q

T
1

)
= h−2 E

([∫ {
φ2(x) + Y 2 φ0(x) − 2 Y φ1(x) − 2 τ(x | θ0) φ0(x)

}
×L0

(
x − W

h

)
τ̇(x | θ0) ω(x) dx

]
×

[ ∫ {
φ2(x) + Y 2 φ0(x) − 2Y φ1(x) − 2 τ(x | θ0) φ0(x)

}
×L0

(
x − W

h

)
τ̇(x | θ0) ω(x) dx

]T
)

= h−2

∫ ∫
E

{
ψ(x1, x2, X) L0

(
x1 − W

h

)
L0

(
x2 − W

h

)}
dx1 dx2
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= h−2

∫ ∫ ∫ ∫
ψ(x1, x2, x) L0

(
x1 − x − u

h

)
L0

(
x2 − x − u

h

)
×fX(x) fU (u) dx1 dx2 dx du

=
∫ ∫ ∫ ∫

ψ(w + hv1, w + hv2, x) L0(v1) L0(v2)

×fX(x) fU (w − x) dv1 dv2 dx dw , (A.40)

where the p × p matrix of functions ψ is given by

ψ(x1, x2, x) = E

{([
φ2(x1) + {g(x) + τ1/2(x) ε}2 φ0(x1)

−2 {g(x) + τ1/2(x) ε}φ1(x1) − 2 τ(x) φ0(x1)
]
τ̇(x | θ0) ω(x)

)
×

([
φ2(x2) + {g(x) + τ1/2(x) ε}2 φ0(x2)

−2 {g(x) + τ1/2(x) ε}φ1(x2) − 2 τ(x) φ0(x2)
]
τ̇(x | θ0) ω(x)

)T
}

=
(( `0∑

`=1

ψ`1(x1) ψ`2(x2) ψ`3(x)
))

, (A.41)

the notation ((ρ)) refers to a p× p matrix for which a general component has the
same form as ρ, and the quantities ψ`k are functions. (To obtain the last line
in (A.40) we changed variable as follows: xj = x + u + hvj for j = 1, 2, and
u = w − x.)

To establish that each component of the p×p matrix represented by the four-
fold integral on the right-hand side of (A.40) is uniformly bounded, we replace
ψ(x1, x2, x) there by any one of the components ψ`1(x1) ψ`2(x2) ψ`3(x) at (A.41).
For notational simplicity we write the latter product as ψ1(x1) ψ2(x2) ψ3(x), and
note that the respective component of the matrix of integrals at (A.40) then
becomes

I(ψ1, ψ2, ψ3) =
∫ ∫

ψ3(x) fX(x) fU (w − x)
{ ∫

ψ1(w + hv1) L0(v1) dv1

}
×

{ ∫
ψ2(w + hv2) L0(v2) dv2

}
dx dw , (A.42)

the absolute value of which is bounded by∫ ∫
|ψ3(x)| fX(x) fU (w − x)

∣∣∣∣ ∫
ψ1(w + hv1) L0(v1) dv1

∣∣∣∣
×

∣∣∣∣ ∫
ψ2(w + hv2) L0(v2) dv2

∣∣∣∣ dx dw
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=
∫

χ(w)
∣∣∣∣ ∫

ψ1(w + hv) L0(v) dv

∣∣∣∣ ∣∣∣∣ ∫
ψ2(w + hv) L0(v) dv

∣∣∣∣ dw

≤ (sup χ)
2∏

k=1

[∫ { ∫
ψk(w + hv) L0(v) dv

}2

dw

]1/2

,

where χ(w) =
∫
|ψ3(x)| fX(x) fU (w−x) dx. It follows from (B3)–(B4) that sup χ

is bounded, uniformly in n (note that χ depends on h = h(n)) and in all forms
of ψ3 = ψ`3 in the representation (A.41).

By Plancherel’s identity,

2π

∫ { ∫
ψk(w + hv) L0(v) dv

}2

dw =
∫ ∣∣ξFt

k (t)
∣∣2 dt ,

where ξFt
k denotes the Fourier transform of ξk and ξk(w) =

∫
ψk(w+hv) L0(v) dv.

Also,

ξFt
k (t) =

∫ ∫
exp(itw) ψk(w + hv) L0(v) dv dw

=
∫ ∫

exp{it (w + hv) − ihtv}ψk(w + hv) L0(v) dv dw

=
∫

exp(itx) ψk(x) dx ·
∫

exp(−ihtv) L0(v) dv

= ψFt
k (t) LFt

0 (−ht) = ψFt
k (t) φ−1

U (t) φK(ht) ,

where ψFt
k denotes the Fourier transform of ψk. Combining the bounds from

(A.42) down, we deduce that

|I(ψ1, ψ2, ψ3)| ≤ (sup χ)
(
sup

∣∣φK

∣∣) (2π)−1
2∏

k=1

{ ∫ ∣∣ψFt
k (t) φ−1

U (t)
∣∣2 dt

}1/2

.

(A.43)
If each component of each of fX , g, τ(· | θ0) ω, and τ̇(· | θ0) ω has d2 absolutely
integrable derivatives (see (B4)) then the same is true of each function ψ`k ap-
pearing in (A.41), and it remains true in the limit, as n → ∞ (meaning here that
h → 0), in the sense that the integrals of the absolute values of each of the first
d2 derivatives of each component of each of fX , g, τ(· | θ0) ω, and τ̇(· | θ0) ω are
bounded as h decreases. (The functions ψ0, ψ1, and ψ2 at (A.27) depend on h,
but they and their derivatives also satisfy (A.37) as n → ∞.) In consequence,
the respective characteristic functions ψFt

`k of ψ`k all satisfy∣∣ψFt
`k

∣∣ ≤ const. (1 + |t|)−d2 . (A.44)

If d2 > α + 1/2, which is ensured by (B5), then it follows from (A.44) and
the inequality |φU (t)| ≥ const. (1 + |t|)−α (this too is guaranteed by (B5)) that
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|ψFt

`k (t) φ−1
U (t)|2 dt is bounded uniformly in k, `, and h. Hence, by (A.43),

|I(ψ`1, ψ`2, ψ`3)| is bounded uniformly in 1 ≤ ` ≤ `0, where `0 is as in (A.41),
and so, by (A.40) and (A.42),

each component of h−4 E(Q1Q
T
1 ), or equivalently of nE(V2V

T
2 ),

is bounded as n → ∞.
(A.45)

Calculating the limit of n E(V2V
T
2 ), as n → ∞, requires only minor mod-

ification of the argument above, as follows. For k = 1, 2, replace
∫

ψ`k(w +
hvk)L0(vk) dvk by the limit of that quantity as n → ∞ which, for almost all w,
is given by

lim
h→0

1
2π

∫
e−itwψFt

`k (t)
{L0(vk/h)

h

}Ft
dt = lim

h→0

1
2π

∫
e−itwψFt

`k (t)
φK(ht)
φU (t)

dt

=
1
2π

∫
e−itw ψ̄

Ft

`k(t)
φU (t)

dt,

where ψ̄`k(t) = limh→0 ψ`k(t). Write ψ̄ for the version of ψ at (A.41) when
each

∫
ψ`k(w + hvk)L0(vk) dvk in (A.42) is replaced by its limit. Then, arguing

as above, we deduce that the limit (as n → ∞) of I(ψ1, ψ2, ψ3) is finite and
therefore,

n E(V2V
T
2 ) = h−4 E

(
Q1Q

T
1

)
+ o(1)

→ Σ1 ≡
∫ ∫

ψ̄(w,w, x) fX(x) fU (w − x) dx dw , (A.46)

where ψ̄(w,w, x) = E(SST ), with

S =
[ 1
2π

∫
e−itw(fX m)Ft(t)

φU (t)
dt + {g(x) + τ1/2(x | θ0)ε}2 1

2π

∫
e−itwφX(t)

φU (t)
dt

−2 {g(x) + τ1/2(x | θ0)ε}
1
2π

∫
e−itw(fX g)Ft(t)

φU (t)
dt

−2 τ(x | θ0)
1
2π

∫
e−itwφX(t)

φU (t)
dt

]
τ̇(x | θ0) ω(x). (A.47)

Step 6. Central limit theorem for n1/2 V2

In view of the representation (A.39) of V2, and of the property that n−1 E{h−2∑
j (Qj − EQj)}2 converges to a finite limit as n → ∞ (see Step 5), it suffices

to establish a version of Lindeberg’s condition here, i.e., to show that, for each
ε > 0,

E
{∥∥h−2 Q1

∥∥2
I
(∥∥h−2 Q1

∥∥ > n1/2 ε
)}

→ 0 (A.48)

as n → ∞. We prove that (A.48) holds if h satisfies (B8).
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Using the representation (A.36) of Qj we deduce that ‖Q1‖ ≤ C1 (1 +
Y 2

1 ) h1−α, where C1 > 0 is a constant. Therefore the left-hand side of (A.48)
is bounded above by

E
{∥∥h−2 Q1

∥∥2
I
(
1 + Y 2

1 > C2 n1/2 h1+α
)}

,

where C2 = ε/C1. If h satisfies (B8) then n1/2 h1+2α → ∞, implying that
n1/2 h1+α → ∞. Therefore it suffices to prove that

E[‖h−2 Q1‖2 I{m(X1) > c or ε2 > c}] can be made arbitrarily
small, uniformly in n, by choosing the constant c > 0 sufficiently
large.

(A.49)

Since Y and U in the model at (1.1) are independent random variables then
this can be done using the method in Step 5. Specifically, in all stages in the
derivation of bounds to the components of the p×p matrix E(Q1Q

T
1 ), multiply the

argument of the expectation by the random variable J = I{m(X1) > c}+ I(ε2 >

c) , so that we bound instead the components of E(Q1Q
T
1 J). In the string of

identities leading to (A.40), multiply the arguments of the expectations by J ,
leading to a version of (A.41) in which each component of the p × p matrix of
functions ψ has the same general form, representable as a sum of products of three
functions of the individual variables x1, x2, and x, as at (A.41). The argument
leading to (A.43) produces the same bound as before, except that now the factor
(supχ) (sup |φK |) (2π)−1 on the right-hand side of (A.43) can be replaced by
a positive number a(c) that decreases to zero as c increases. Therefore (A.45)
continues to hold, except that h−4 E(Q1Q

T
1 ) is replaced by h−4 E(Q1Q

T
1 J), and

the bound is multiplied by a(c). In particular, our bound for each component of
h−4 E(Q1Q

T
1 J) is multiplied by the factor a(c). This leads quickly to (A.49).

Step 7. Conclusion
Condition (B8) prescribes the range of values θ in which we search for a solution
of the equation S(θ) = 0. Provided we confine attention to that region, (A.35)
and (A.45) imply that, with probability converging to 1, a solution exists in
the range. This establishes part (i) of the theorem. Result (A.35) connects the
vector V2 directly to a solution θ̂ of the equation S(θ) = 0, and through this
linkage, and the asymptotic normality derived in Step 6, part (ii) of the theorem
follows directly. The limiting covariance matrix Σ is identified by (A.35), (A.46),
and (A.47), and is given by Σ = M−1

0 Σ1 M−1
0 , where M0 is as at (4.7) (see also

(B7)) and Σ1 is as in (A.46).
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