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Abstract: The coset pattern matrix contains more detailed information about effect

aliasing in a factorial design than the commonly used wordlength pattern. More

flexible and elaborate design criteria can be proposed using the coset pattern matrix.

In this article, we establish an identity that relates the coset pattern matrix of

a design to that of its complement. As an application, the identity is used to

characterize minimum M -aberration designs through their complements.
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1. Introduction

The 2n−p fractional factorial designs are among the most popular experi-
mental plans in practice. For given n and p, a 2n−p design is determined by
p independent defining relations or words. These defining words generate the
so-called defining contrasts subgroup, commonly denoted by G, which contains
the p defining words, other relations induced by the p defining words, and the
identity. Factorial effects in a 2n−p design are either orthogonal to each other
or completely aliased with each other. The aliasing property of a 2n−p design
is completely determined by its defining contrasts subgroup G. The wordlength
pattern of G, given by W0 = (A01, . . . , A0n), where A0i (1 ≤ i ≤ n) is the number
of defining words of length i in G, is used to quantify the aliasing property of
a design. The resolution of a design, denoted by R, is the smallest i such that
A0i > 0. Designs that sequentially minimize the A0i’s are said to have minimum
aberration (MA). MA designs are considered optimal and recommended for use in
practice when no additional information is available regarding the experimental
factors and their effects (Wu and Hamada (2000)).

Although W0 is able to capture the aliasing property of a design to a degree,
it does not give the whole picture. For example, the number of clear effects (Wu
and Chen (1992)) is an important quantity that, in general, does not have a clear
relationship with W0. Then too, W0 is not able to take into account possible prior
information regarding a design’s structural properties and factorial effects as, for
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example, when experimental factors are grouped into control and noise factors
that wordlength pattern fails to distinguish (Wu and Zhu (2003)). The defining
contrasts subgroup G contains factorial effects aliased with the grand mean, but
W0 reports only the frequencies of effects of various lengths in G. When two
effects are of the same length in G, they are counted as the same in W0; if an
effect is not included in G, W0 does not provide information about how it is
aliased with other effects. The complete picture of effect aliasing is given by
the so-called alias structure that consists of all the cosets of G. Each coset is a
collection of the effects that are aliased with each other, and G itself is a coset. If
two effects belong to two different cosets, then they are orthogonal to each other.
For each coset, a frequency vector similar to W0 can be defined that records the
frequencies of effects of various lengths. These frequency vectors can be stacked
to form a matrix that is referred to as the coset pattern matrix (Zhu and Zeng
(2005)). The coset pattern matrix can be used to develop sensitive and flexible
criteria for constructing and selecting optimal designs. One such example is the
minimum M -aberration criterion proposed by Zhu and Zeng (2005).

When the number of factors under consideration is relatively large, choosing
and comparing designs is difficult. Chen and Hedayat (1996) and Tang and Wu
(1996) proposed a complementary approach that characterizes designs through
their complements. In particular, the wordlength pattern W0 of a design can be
related to that of its complement through a certain identity. The complementary
approach has been further generalized to qn−p designs by Suen, Chen, and Wu
(1997) to 2n−p designs with multiple groups of factors by Zhu (2003), and to
nonregular designs by Xu and Wu (2001). Because of the one-to-one correspon-
dence between a design and its complement, it is to be expected that the coset
pattern matrices of a design and its complement are also related. The purpose
of this article is to establish this relationship explicitly. Furthermore, we show
how the relationship can be used to identify minimum M -aberration designs.

The rest of the article is organized as follows. Section 2 introduces notation
and some concepts. Section 3 explores the correspondence between the cosets of
a design and its complement and further derives the explicit relationship between
their coset pattern matrices. Section 4 demonstrates how these relations can be
used to select minimum M -aberration designs when the number of factors is
large. The proofs of the theorems, propositions, and corollaries are included in
the Appendix. All designs discussed in this article are regular two-level fractional
factorial designs with resolution at least III.

2. Notation and Definitions

We use letters 1, . . . , n to denote n factors in an experiment. Factorial effects
are represented by words that juxtapose the involved letters (or factors) from
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the smallest to the largest. For example, 1 represents the main effect of factor 1,
and 12 represents the interaction between factor 1 and factor 2. Following the
convention, we use I to denote the grand mean. Including I, there are in total
2n factorial effects, which form an Abelian group denoted by S. We introduce
an order between these factorial effects. One effect i1 · · · ik is said to be smaller
than another effect j1 · · · jl, written as i1 · · · ik C j1 · · · jl, if k < l or if k = l and
i1 · · · ik should be listed ahead of j1 · · · jl lexicographically. The defining contrast
subgroup G of a 2n−p design is a subgroup of S, and it can generate 2n−p cosets
that form a partition of S. Each coset contains 2p effects that are aliased with
each other. The smallest effect (under C) in a coset is defined to be the coset
leader. If a coset has i1 · · · ik as its coset leader, it is represented by i1 · · · ikG.
It is clear that C can also be applied to the coset leaders, so the cosets can
be rank-ordered, according to their coset leaders, from the coset of the lowest
rank (i.e., 0) to the coset of the highest rank (i.e., 2n−p − 1). The rank of the
coset i1 · · · ikG is denoted by r(i1 · · · ikG). The coset of rank 0 is IG, which is
the defining contrast subgroup itself. The next n cosets are 1G, 2G, . . ., nG

with rank 1, . . ., n, respectively, followed by cosets with higher ranks. A coset
is said to be of order d if its coset leader is an effect of order d (i.e., a d-factor
interaction). For example, i1G is a coset of order 1 and i1i2G is a coset of order
2. We use F to denote the collection of all the cosets of a design.

Suppose i1 · · · ilG is the coset of rank r, that is, r(i1 · · · ilG) = r, with
0 ≤ r ≤ 2n−p − 1. Let Arj be the number of words of length j in i1 · · · ilG.
The vector Wr = (Ar1, Ar2, . . . Arn) is called the coset pattern of i1 · · · ilG. Note
that when k = 0, W0 is exactly the wordlength pattern of G. The 2n−p × n

matrix A = (W T
0 ,W T

1 , . . . ,W T
2n−p−1)

T = (Arj) is called the coset pattern matrix.
Compared to the wordlength pattern W0, the coset pattern A contains more
comprehensive information about the effect aliasing of a design. For example,
the number of clear two-factor interactions can be directly calculated from A as∑2n−p−1

i=1 I(Ai1 = 0)I(Ai2 = 1), where I(·) is the indicator function. As men-
tioned in the introduction, using coset pattern matrices, more elaborate criteria
can be proposed to discriminate and select useful designs. The minimum M -
aberration criterion proposed by Zhu and Zeng (2005) is such an example and
will be discussed in Section 4.

Example 1. Consider a 28−4 design D with independent defining relations
{125, 136, 147, 2348}. There are in total 256 factorial effects in D, which are
partitioned into 16 distinct cosets IG, 1G, 2G, 3G, 4G, 5G, 6G, 7G, 8G, 18G,
23G, 24G, 26G, 27G, 28G, and 37G, arranged from rank 0 to rank 15. Because
some cosets share the same coset pattern, D has only six distinct coset patterns;
see Table 1. The coset pattern of IG is the wordlength pattern of D. The coset
pattern matrix A is a 16 × 8 matrix formed by the 16 coset patterns.
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Table 1. The Six Distinct Coset Patterns of D in Example 1.

coset coset pattern
IG 0 0 3 7 4 0 1 0
1G 1 3 0 4 7 1 0 0
2G, 3G, 4G, 5G, 6G, 7G 1 1 4 4 3 3 0 0
8G 1 0 4 7 3 0 0 1
18G 0 1 7 4 0 3 1 0
23G, 24G, 26G, 27G, 28G, 37G 0 3 3 4 4 1 1 0

3. Main Result

The main purpose of this section is to derive the relationship between the
coset pattern matrix of a design and that of its complement. To facilitate the
derivation, some commonly used concepts and tools for fractional factorial de-
signs are needed. Let F2 be the Galois field {0, 1}, Let PG(k − 1, 2) = {x =
(x1, . . . , xk)T : xi ∈ F2 for 1 ≤ i ≤ k and at least one xi 6= 0}. Note that T

means transpose. In the literature on finite geometries, PG(k− 1, 2) is known as
the (k − 1)-dimensional projective geometry over F2. There are 2k − 1 distinct
points in PG(k−1, 2). Letting m = 2k−1, we denote the points in PG(k−1, 2) as
p1, . . ., pm. Let 0k = (0, 0, . . . , 0)T and EG(k, 2) = {0k}∪PG(k−1, 2). EG(k, 2)
is known as the k-dimensional finite Euclidean geometry on F2, and it is also a
linear space over F2. There exists a natural connection between PG(k − 1, 2),
the Sylvester-type Hadamard matrix Hk(2), and 2n−p fractional factorial designs.
Note that the entries of the Sylvester-type Hadamard matrix are commonly repre-
sented by 0 and 1 instead of −1 and 1 as used in general Hadamard matrices and,
furthermore, we remove the all 0 column of the usual Sylvester-type Hadamard
matrix. Therefore, in this article, Hk(2) is a 2k × (2k − 1) matrix with 0 and 1
as its entries. Let P = (p1, . . . , pm) be a k ×m matrix whose columns are the m

points from PG(k − 1, 2). The k rows of P are m-dimensional vectors over F2

and can generate 2k distinct linear combinations that are also m-dimensional row
vectors. These linear combinations or vectors form the Sylvester-type Hadamard
matrix Hk(2). Note that the columns of Hk(2) correspond to the columns of
P and further to the points of PG(k − 1, 2). Therefore, the relationship be-
tween the columns of Hk(2) is exactly the same as the relationship between the
points of PG(k − 1, 2). Hereafter we use the columns of Hk(2) and the points of
PG(k − 1, 2) interchangeably.

A 2n−p design is a collection of n columns of Hk(2) with rank k or, equiva-
lently, a collection of n points of PG(k − 1, 2) with rank k, where k = n− p and
the ranks are the maximum numbers of linearly independent columns of Hk(2)
or points of PG(k − 1, 2) over F2, respectively. We take a 2n−p design and a
collection of n points of rank k in PG(k − 1, 2) as interchangeable. For more
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discussions on the connection between finite projective geometries and factorial
designs, refer to Bose (1947), Cameron and van Lint (1991), Chen and Hedayat
(1996), and Mukerjee and Wu (2006).

Let D be a 2n−p design, equivalently a collection of n points from PG(k −
1, 2). Because PG(k− 1, 2) consists of 2k − 1 points, there are 2k − 1−n remain-
ing points in PG(k − 1, 2) that are not chosen by D. These remaining points
form another fractional factorial design, denoted by D̄ and referred to as the
complementary design of D. Recall that G, F , and A are the defining contrasts
subgroup, the collection of cosets, and the coset pattern matrix of D, respec-
tively. Let Ḡ, F̄ , and Ā be those of D̄, respectively. Because D and D̄ are
complementary to each other, an intrinsic correspondence exists between their
cosets, i.e., between F and F̄ . We use two examples to first demonstrate this
correspondence.

Example 2. Let k = 4. Then PG(4 − 1, 2) consists of 15 points, denoted by

{a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd},

where a = (1, 0, 0, 0)T , b = (0, 1, 0, 0)T , c = (0, 0, 1, 0)T and d = (0, 0, 0, 1)T are
linearly independent and the remaining points are their linear combinations. The
design D in Example 1 can be obtained by associating the factors with the points
of PG(4 − 1, 2), as follows.

1 = a, 2 = b, 3 = c, 4 = d, 5 = ab, 6 = ac, 7 = ad, 8 = bcd.

The defining contrasts subgroup G is

IG = {I, 125, 136, 147, 2348, 2356, 2457, 2678, 3467, 3578, 4568,

12378, 12468, 13458, 15678, 1234567},

and the coset including the main effect 1 is

1G = {1, 25, 36, 47, 2378, 2468, 3458, 5678,

12348, 12356, 12457, 12678, 13467, 13578, 14568, 234567}.

Any effect in IG corresponds to 04 in EG(4, 2) because the sum of the involved
factors is 04. For example, consider the effect 2348 ∈ IG. 2 + 3 + 4 + 8 =
b + c + d + bcd = 04. Therefore, as a coset, IG corresponds to one point (i.e, 04)
in EG(4, 2). Similarly, it can be verified that all the effects in 1G correspond to
a in EG(4, 2); therefore, the coset 1G corresponds to a of EG(4, 2). In general,
two effects are aliased with each other if and only they correspond to the same
point in EG(4, 2). This leads to a correspondence between the cosets of D and
the points of EG(4, 2), as demonstrated in Table 2.
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Table 2. The mapping τ∗ from F to F̄ .

EG(4, 2) 04 a b c d ab ac ad
i1 . . . ilG IG 1G 2G 3G 4G 5G 6G 7G

τ∗(i1 · · · ilG) IḠ 1̄4̄Ḡ 6̄7̄Ḡ 5̄7̄Ḡ 4̄7̄Ḡ 3̄7̄Ḡ 2̄7̄Ḡ 1̄7̄Ḡ
EG(4, 2) bcd abcd bc bd abc abd cd acd
i1 . . . ilG 8G 18G 23G 24G 26G 27G 28G 37G

τ∗(i1 · · · ilG) 1̄4̄7̄Ḡ 7̄Ḡ 1̄Ḡ 2̄Ḡ 4̄Ḡ 5̄Ḡ 3̄Ḡ 6̄Ḡ

The remaining seven points of PG(4− 1, 2) form the complementary design
of D, denoted by D̄. Let

1̄ = bc, 2̄ = bd, 3̄ = cd, 4̄ = abc, 5̄ = abd, 6̄ = acd, 7̄ = abcd.

Then D̄ is a 27−3 design with independent defining relations {1̄2̄3̄, 1̄5̄6̄, 3̄4̄5̄}.
Similar to D, D̄ also has 16 different cosets, which are IḠ, 1̄Ḡ, 2̄Ḡ, 3̄Ḡ, 4̄Ḡ, 5̄Ḡ,
6̄Ḡ, 7̄Ḡ, 1̄4̄Ḡ, 1̄7̄Ḡ, 2̄7̄Ḡ, 3̄7̄Ḡ, 4̄7̄Ḡ, 5̄7̄Ḡ, 6̄7̄Ḡ, 1̄4̄7̄Ḡ, arranged from rank 0 to
rank 15. Following similar arguments, the correspondence between the cosets of
D̄ and the points in EG(4, 2) can be established as shown in Table 2.

Through the points in EG(4, 2), the cosets of D and D̄ match with each
other. We introduce a mapping τ∗ from F to F̄ to pair the matching cosets.
Let i1 · · · ilG be an arbitrary coset of D, τ∗(i1 · · · ilG) = j̄1 · · · j̄hḠ if and only if
the cosets i1 · · · ilG and j̄1 · · · j̄hḠ correspond to the same point in EG(4, 2). For
example, τ∗(1G) = 1̄4̄Ḡ, because 1G and 1̄4̄Ḡ match each other through a. See
Table 2 for the other matching pairs.

Example 3. Consider a 213−9 design D with independent defining relations

{125, 136, 237, 1238, 149, 24t0, 124t1, 34t2, 134t3},

where t0, . . . , t3 represent factors 10, . . . , 13, respectively. This design can be
obtained by associating the factors to the points of PG(4 − 1, 2), as follows.

1 = a, 2 = b, 3 = c, 4 = d, 5 = ab, 6 = ac, 7 = bc, 8 = abc, 9 = ad,

t0 = bd, t1 = abd, t2 = cd, t3 = acd.

The correspondence between the cosets of D and the points of EG(4, 2) is given
in Table 3.

There are two remaining points {bcd, abcd} in PG(4 − 1, 2) that form a full
22 factorial design. In terms of H4(2), the remaining columns bcd and abcd

consist of four replicated 22 designs. In this example, the complementary design
D̄ of D is not of rank 4; instead, it is of rank 2 and is a replicated 22 full
factorial design. We refer to D̄ as a degenerate complementary design. The
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Table 3. The mapping τ∗ from F to F̄∗.

EG(4, 2) 04 a b c d ab ac bc
i1 · · · ilG IG 1G 2G 3G 4G 5G 6G 7G

τ∗(i1 · · · ilG) IḠ 1̄2̄Ḡ ∅ ∅ ∅ ∅ ∅ ∅
EG(4, 2) abc ad bd abd cd acd bcd abcd
i1 · · · ilG 8G 9G t0G t1G t2G t3G 2t2G 2t3G

τ∗(i1 · · · ilG) ∅ ∅ ∅ ∅ ∅ ∅ 1̄Ḡ 2̄Ḡ

defining contrasts subgroup of D̄ is Ḡ = {I}, and D̄ has only four cosets IḠ,
1̄Ḡ, 2̄Ḡ, and 1̄2̄Ḡ corresponding to the points 04, bcd, abcd, and a of EG(4, 2),
respectively. Therefore, only four cosets of D have corresponding cosets of D̄,
whereas the remaining 12 cosets of D do not have corresponding cosets of D̄.
This phenomenon occurs because the complementary design D̄ is degenerate.
For convenience, we expand the collection of cosets of D̄ to include the empty
set ∅. Let F̄∗ = {∅} ∪ F . We define a mapping τ∗ from F to F∗ as follows. A
coset of D is mapped to a coset of D̄ by τ∗ if the two cosets correspond to the
same point in EG(4, 2); if a coset of D does not have a corresponding coset of
D̄, it is mapped to ∅. The mapping τ∗ is shown in Table 3.

The mapping between F and F̄ (or F̄∗) illustrated in the previous two ex-
amples hold in general. We state it in the following proposition, and give a proof
in the Appendix.

Proposition 1. Suppose D is a 2n−p fractional factorial design with rank k

(= n − p) and D̄ is its complementary design with rank k̄. Let F and F̄ be the
collections of cosets of D and D̄, respectively. Let ∅ be the empty set.

(i) If k = k̄, then both F and F̄ contain 2k cosets, and there exists a one-to-one
mapping τ∗ from F to F̄ such that, for an arbitrary coset C ∈ F , C and
τ∗(C) correspond to the same point in EG(k, 2). In particular, τ∗(IG) = IḠ,
cosets of D of order 1 are mapped to cosets of D̄ of order 2 or higher, and
cosets of D of order 2 or higher are mapped to cosets of D̄ of order 1.

(ii) If k > k̄, then F contains 2k cosets and F̄ contains 2k̄ cosets, and there exists
a mapping τ∗ from F to F̄ ∪ {∅} such that, for an arbitrary coset C ∈ F ,
τ∗(C) either is ∅ or corresponds to the same point in EG(k, 2) as C. In
particular, τ∗(IG) = IḠ, 2k − 2k̄ cosets of D of order 1 are mapped to ∅,
the remaining n − (2k − 2k̄) cosets of D of order 1 are mapped to cosets of
D̄ of order 2 or higher, and cosets of D of order 2 or higher are mapped to
cosets of D̄ of order 1.

Under (ii) of Proposition 1, the coset pattern matrix Ā of D̄ has 2k̄ rows, less
than the number of rows of the coset pattern matrix A of D. In order to treat
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the two cases uniformly in the rest of the article, we append 2k −2k̄ rows of zeros
to Ā to make it have the same number of rows as A. From Proposition 1, the
first row of A and the first row of Ā correspond to each other, because they are
patterns of IG and IḠ satisfying τ∗(IG) = IḠ. The next n rows of A, which are
the patterns of the cosets of D of order 1 (i.e., Ar1 = 1 for 1 ≤ r ≤ n) correspond
to the last n rows of Ā, which are either the rows of zeros or the patterns of the
cosets of D̄ of order 2 or higher, due to the mapping τ∗ between the cosets of D
of order 1 and ∅ or the cosets of D̄ of order 2 or higher. The last 2n−p − n − 1
rows of A, which are the patterns of the cosets of D of order 2 or higher (i.e.
Ar1 = 0 for n + 1 ≤ r ≤ 2n−p − 1), correspond to the rows of Ā that are the
patterns of the cosets of D of order 1, again due to the mapping τ∗ between
the involved cosets. Therefore the rows of A and Ā are paired with each other
through τ∗. For ease of presentation, we introduce a mapping τ that maps the
rows of A to the rows of Ā. For row i of A (0 ≤ i ≤ 2n−p − 1), τ(i) is the row of
Ā such that the coset corresponding to row i of A is mapped by τ∗ to ∅ or the
coset corresponding to row τ(i) of Ā. Therefore, τ is essentially a mapping from
{0, 1, . . . , 2n−p − 1} to itself and we refer to it as the complementary mapping.
The properties of τ is summarized as a proposition given below.

Proposition 2. Let τ be the mapping from {0, 1, . . . , 2n−p − 1} to itself induced
by the pairing of rows of A and Ā. Then
(i) τ(0) = 0;
(ii) 2n−p − n ≤ τ(r) ≤ 2n−p − 1 for 1 ≤ r ≤ n;
(iii) 1 ≤ τ(r) ≤ 2n−p − 1 − n for n + 1 ≤ r ≤ 2n−p − 1.

When proposing the complementary approach, Tang and Wu (1996) estab-
lished the relationship between W0 = (A0j) and W̄0 = (Ā0j), the worldlength
patterns of D and D̄, iteratively. As a matter of fact, a similar relationship holds
for the coset patterns of any two paired cosets of D and D̄, that is, between
Wr = (Arj) and Wτ(r) = (Aτ(r)j). The next theorem states an explicit identity
that relates A and Ā; we call it the the coset pattern identity between D and
D̄. The proof of the theorem uses the identity for any three-way partition of
PG(k − 1, 2) as derived in Zhu (2003), and is given in the Appendix.

Theorem 1. Suppose that D is a 2n−p design with coset pattern matrix A =
(Ai,j) and its complementary design D̄ has coset pattern matrix Ā = (Āi,j). Let
τ be the complementary mapping between A and Ā. Then

Ai,j =
1
m

(
n

j

)
− 1

m

∑
j1+j2=j

(−1)j2

(
n − m

2

j1

)(m
2

j2

)

+(−1)j
∑

t1+t2=j

(−1)[t2/2]

(
n − m

2

[ t22 ]

)
Āτ(i),t1 , (3.1)
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where m = 2n−p and [x] denotes the largest integer that is less than or equal to
x.

The notation
(
n
k

)
in (3.1) is, formally,

(
n

k

)
=


0, if k < 0 or k is not an integer;

1, if k = 0;
n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 2 · 1 , otherwise.

When k̄ < k, there may not exist a coset of D̄ corresponding to a coset of
D with a main effect as its leader. According to Theorem 1, the coset pattern of
such coset can be explicitly calculated as

Ai,j =
1
m

(
n

j

)
− 1

m

∑
j1+j2=j

(−1)j2

(
n − m

2

j1

)(m
2

j2

)
,

because this coset pattern is mapped to a row of zeroes.
In practice, effects of lower orders such as 1, 2, 3, and 4 are of particular

interest, because effects of order higher than 4 are unlikely to be important. In
other words, coset patterns Aij with j ≤ 4 are usually sufficient in practice.
Working out (3.1) for 1 ≤ j ≤ 4, we derive the explicit relations between (Aij)
and (Āτ(i)j) (1 ≤ j ≤ 4). In the rest of the article, we assume m = 2n−p.

Corollary 1. Let i′ = τ(i). For any 0 ≤ i ≤ 2n−p − 1,

Ai,1 = 1 − Āi′,1 − Āi′,0,

Ai,2 = b + Āi′,2 + Āi′,1 − bĀi′,0,

Ai,3 =
(

n

2

)
− nm

2
+

m2

6
+

1
3
− Āi′,3 − Āi′,2 + bĀi′,1 + bĀi,0,

Ai,4 =
(

n

3

)
− m

2

(
n

2

)
+

nm2

6
− m3

24
− m

3
+

n

3

+Āi′,4 + Āi′,3 − bĀi′,2 − bĀi′,1 +
(

b

2

)
Āi′,0,

where b = n − m/2, Āi′,0 = 1 when i′ = 0, and = 0 otherwise.

The equations for A0,3 and A0,4 were also reported in Chen and Hedayat
(1996). If a coset of rank i contains a clear two-factor interaction, then Ai,1 = 0
and Ai,2 = 1. Applying Corollary 1, we have Āi′,1 = 1 and Āi′,2 = m/2 −
n. Because Āi′,2 ≥ 0, we have n ≤ m/2, which implies that clear two-factor
interactions exist only when n ≤ m/2.
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Table 4. The coset patterns of D̄.

Coset of D̄ rows of Ā
Ḡ 0 0 4 3 0 0 0
1̄Ḡ, 2̄Ḡ, 3̄Ḡ, 4̄Ḡ, 5̄Ḡ, 6̄Ḡ 1 2 2 2 1 0 0
7̄Ḡ 1 0 0 4 3 0 0
1̄4̄Ḡ 0 3 4 0 0 1 0
1̄7̄Ḡ, 2̄7̄Ḡ, 3̄7̄Ḡ, 4̄7̄Ḡ, 5̄7̄Ḡ, 6̄7̄Ḡ 0 1 2 2 2 1 0
1̄4̄7̄Ḡ 0 0 3 4 0 0 1

Table 5. The paired distinct rows of the coset pattern matrices.

rows of A rows of Ā
0 0 3 7 4 0 1 0 0 0 4 3 0 0 0
1 3 0 4 7 1 0 0 0 3 4 0 0 1 0
1 1 4 4 3 3 0 0 0 1 2 2 2 1 0
1 0 4 7 3 0 0 1 0 0 3 4 0 0 1
0 1 7 4 0 3 1 0 1 0 0 4 3 0 0
0 3 3 4 4 1 1 0 1 2 2 2 1 0 0

Example 4. The design D in Example 1 has six distinct coset patterns and so
does its complement D̄. The cosets and coset patterns of D̄ are listed in Table 4.

We place the paired coset patterns of D and D̄ in the same row in Table 5.
As an illustration of Theorem 1, we apply (3.1) to obtain an explicit expression
for A in terms of Ā,

Ai,j =
1 − (−1)j

16

(
8
j

)
+ (−1)jĀi′,j + (−1)jĀi′,j−1,

where i′ = τ(i). This can be further simplified by specifying j. For example,
when j = 4, Ai,4 = Āi′,4 +Āi′,3. We can also expresses Ā in terms of A as follows.

Āi′,j =
1
16

(
7
j

)
− 1

16

∑
j1+j2=j

(−1)j2

(
−1
j1

)(
8
j2

)

+(−1)j
∑

t1+t2=j

(−1)[t2/2]

(
−1
[ t2

2 ]

)
Ai,t1 .

Again, when j = 4, Āi′,4 = −8 + Ai,4 + Ai,3 + Ai,2 + Ai,1 + Ai,0. Readers
can verify that the paired coset patterns in Table 5 satisfy the simple equations
derived above.

Example 5. The 213−9 design discussed in Example has 16 cosets and 4 dis-
tinct coset patterns, its complementary design has 4 cosets and 3 distinct coset
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Table 6. The paired distinct rows of the coset pattern matrices.

rows of A rows of Ā
0 0 22 55 72 96 116 87 40 16 6 1 0 0 0
1 6 16 40 87 116 96 72 55 22 0 0 1 0 1
1 5 17 45 82 106 106 82 45 17 5 1 0 0 0
0 6 22 40 72 116 116 72 40 22 6 0 0 1 0

patterns. In order to match the number of distinct coset patterns for the designs,
we include an additional row of zeros for the complementary design, so that the
coset patterns of the two designs have the one-to-one correspondence listed in
Table 6. Although the first and third rows in Table 6 for Ā appear to be the
same, they are in fact different. In fact, the first row is essentially the wordlength
pattern, while the third row is the added row of zeros.

Applying Theorem 1, we obtain an explicit expression for A in terms of Ā,

Ai,j =
1
16

(
13
j

)
− 1

16

∑
j1+j2=j

(−1)j2

(
5
j1

)(
8
j2

)

+(−1)j
∑

t1+t2=j

(−1)[t2/2]

(
5

[ t2
2 ]

)
Āi′,t1 ,

where i′ = τ(i). For example, when j = 4, we have Ai,4 = 45 − 5Āi′,2 − 5Āi′,1 +
10Āi′,0. We can also express Ā in terms of A using Corollary 1:

Āi′,1 = 1 − Ai,1 − Ai,0 Āi′,2 = −6 + Ai,2 + Ai,1 + 6Ai,0.

Readers can verify that the paired coset patterns in Table 6 satisfy the equations
given above.

4. Application to Minimum M-Aberration Design

The coset pattern matrix can be used to define more elaborate criteria for
discriminating and selecting designs. The minimum M -aberration criterion is
such an example. In this section, we first introduce the minimum M -aberration
and then apply the coset pattern identity to construct minimum M -aberration
designs.

If an effect of order i is aliased with another effect of order j and both effects
belong to a coset of order k, then we say that these two effects form a pair of
aliased effects of type (i, j)k. Let M(i,j)k

be the number of pairs of aliased effects
of type (i, j)k. It is clear that k ≤ min{i, j}. For convenience, we always take
i ≤ j. M(i,j)k

can be calculated from the coset pattern matrix A as follows.
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When i = j,

M(i,i)k
=

∑
h∈Rk

Ahi(Ahi − 1)
2

=
m−1∑
h=1

I(Ah1 = · · · = Ah,k−1 = 0)
Ahi(Ahi − 1)

2
,

and when i 6= j,

M(i,j)k
=

∑
h∈Rk

AhiAhj =
m−1∑
h=1

I(Ah1 = · · · = Ah,k−1 = 0)AhiAhj ,

where Rk is the collection of the ranks of the cosets of order k. We arrange
the M(i,j)k

’s into a sequence, denoted by M , according to the following order:
M(i,j)k

is placed ahead of M(i′,j′)k′
if (i) i + j < i′ + j′; or (ii) i + j = i′ + j′ and

|i − j| < |i′ − j′|; or (iii) i = i′, j = j′ and k > k′. We refer to M as the aliasing
type pattern of a design. The first 10 entries of M are given below.

M = (M(1,2)1 ,M(2,2)2 ,M(2,2)1 ,M(1,3)1 ,M(2,3)2 ,M(2,3)1 , M(1,4)1 ,M(3,3)3 ,M(3,3)2 ,

M(3,3)1 , . . .).

Although the aliasing type pattern M cannot be determined by W0 alone, there
does exist a relation between M and W0:

i∑
k=1

M(i,j)k
=

i∑
k=0

(
n − i − j + 2k

k

)(
i + j − 2k

i − k

)
A0,i+j−2k. (4.1)

A proof of (4.1) is given in the Appendix. Applying (4.1) for the first few entries
of M , we have

M(1,2)1 = 3A0,3, M(2,2)2 + M(2,2)1 = 3A0,4, M(1,3)1 = 4A0,4,

M(2,3)2 + M(2,3)1 = 3(n − 3)A0,3 + 10A0,5, M(1,4)1 = (n − 3)A0,3 + 5A0,5.

Clearly the aliasing type pattern is more elaborate than the wordlength pattern
when used to discriminate designs. Designs that sequentially minimize the entries
of M are said to have minimum M -aberration. For further discussion about M -
aberration, refer to Zhu and Zeng (2005).

When n ≥ 2n−p−1, the number of factors in D is larger than the number of
factors in D̄ and the complementary approach becomes appealing. The following
proposition asserts that the order of a coset of D cannot be higher than two when
n ≥ 2n−p−1.

Proposition 3. When n ≥ 2n−p−1, then every coset of D except the coset with
rank 0 has either a main effect or a two-factor interaction as its coset leader.
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According to Proposition 3, when n ≥ 2n−p−1, M(i,j)k
’s with k ≥ 3 are

all zero. Therefore, the aliasing type pattern M can be simplified by removing
M(i,j)k

’s with k ≥ 3. For convenience, we still use M to denote the simplified
aliasing type pattern. Similarly, M̄(i,j)k

can be defined for the complementary
design D̄. Because M(i,j)k

and M̄(i,j)k
are, respectively, functions of Ai,j and Āi,j ,

related to each other by the coset pattern identity (3.1), we expect that M(i,j)k

can be expressed in terms of M̄(i,j)k
. This turns out to be true as stated in the

following theorem.

Theorem 2. When n ≥ 2n−p−1,

M(i,j)k
= c0,0,0 +

∑
ci,j,kM̄(i,j)k

, (4.2)

where ci,j,k’s are constants depending on n, p, i, j, and k only.

General expressions of ci,j,k’s are fairly involved and thus are omitted. The
first seven entries of M are of particular interest because they involve at least a
main effect or a two-factor interaction and both effects are of order lower than
four. Therefore, we work out (4.2) explicitly.

Corollary 2.

M(1,2)1 = constant − M̄(1,2)1 ,

M(2,2)2 = constant + M̄(2,2)1 + (b + 1)M̄(1,2)1 ,

M(2,2)1 = constant + M̄(2,2)2 − bM̄(1,2)1 ,

M(1,3)1 = constant + M̄(1,3)1 +
4
3
M̄(1,2)1 ,

M(2,3)2 = constant − M̄(2,3)1 − 2M̄(2,2)1 − (b + 1)M̄(1,3)1 + (a − 2)M̄(1,2)1 ,

M(2,3)1 = constant − M̄(2,3)2 − 2M̄(2,2)2 + bM̄(1,3)1 + (
4b

3
− a + 1)M̄(1,2)1 ,

M(1,4)1 = constant − M̄(1,4)1 −
5
4
M̄(1,3)1 + (b − 1

3
)M̄(1,2)1 ,

where “constant” means a constant only depending on n, m = 2n−p, a = n(n −
1)/2 − nm/2 + m2/6 + 1/3, and b = n − m/2.

Corollary 2 implies that sequentially minimizing

M(1,2)1 , M(2,2)2 , M(2,2)1 , M(1,3)1 , M(2,3)2 , M(2,3)1 , and M(1,4)1

is equivalent to sequentially minimizing

(−1)M̄(1,2)1 , M̄(2,2)1 , M̄(2,2)2 , M̄(1,3)1 , (−1)M̄(2,3)1 , (−1)M̄(2,3)2 , and (−1)M̄(1,4)1 .
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Based on this fact, we can establish some general rules to identify minimum
M -aberration designs with n factors and m = 2n−p runs.

Rule 1. Find D̄1, the collection of designs with m − 1 − n factors that maximize
M̄(1,2)1 . If D̄1 contains exactly one design, then the complement of the
design has minimum M -aberration.

Rule 2. If D̄1 contains more than one design, find D̄2 ⊂ D̄1, the collection of
designs that minimize M̄(2,2)1 in D̄1. If D̄2 contains exactly one design,
the complement of the design has minimum M -aberration.

Rule 3. If D̄2 contains more than one design, find D̄3 ⊂ D̄2, the collection of
designs that minimize M̄(2,2)2 in D̄2. If D̄3 contains exactly one design,
the complement of the design has minimum M -aberration.

Similar rules involving M̄(1,3)1 , (−1)M̄(2,3)1 , (−1)M̄(2,3)2 , and (−1)M̄(1,4)1 respec-
tively, can be stated as Rules 1-3. When m − 1 − n is not large, Rules 1-3 are
usually sufficient to identify minimum M -aberration designs.
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Appendix

Proof of Proposition 1. Denote the 2k−1 points in PG(k−1, 2) by p1, . . . , pm,
where m = 2k − 1. Then EG(k, 2) = {0k} ∪ PG(k − 1, 2). Because D is a 2n−p

fractional factorial design with rank k, it is equivalent to a collection of n points
from PG(k−1, 2) of rank k. Without loss of generality, assume D = {p1, . . . , pn}.
Then the remaining m−n points of PG(k−1, 2) form the complementary design,
that is, D̄ = {pn+1, . . . , pm}.

D involves n factors (or equivalently n points) and has in total 2n effects
including the grand mean. Because the rank of D is k, the points or factors p1,
p2, . . . , pn are linearly dependent. Without loss of generality, we assume that
p1, p2, . . ., pk are linearly independent. Then, the remaining points pk+1, . . .,
pn can be generated from p1, . . ., pk via linear combination. These generating
relations are the so-called defining relations for D, which further generate the
defining contrasts subgroup G. G consists of 2p effects that are aliased with the
grand mean I. Using G, the 2n effects of D are partitioned into 2k cosets, each
of which contains 2n−k effects aliased with each other.

Similarly, D̄ involves m−n factors (or points) and has in total 2m−n effects.
Because the rank of D̄ is k̄, only k̄ points are linearly independent. The defining
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contrasts subgroup Ḡ of D̄ consists of 2m−n−k̄ effects aliased with the grand
mean, and the 2m−n effects are partitioned into 2k̄ cosets, each of which contains
2m−n−k̄ effects aliased with each other.

Let C be an arbitrary coset of D, and let i1 · · · ih and j1 · · · jl be two arbitrary
effects in C. In terms of the points in PG(k − 1, 2), the two effects are pi1 · · · pih

and pj1 · · · pjl
and they are aliased with each other if and only if

pi1 + · · · + pih = pj1 + · · · + pjl
.

Because all the points involved in these sums are in PG(k− 1, 2), the sums must
be the same point in EG(k, 2). We denote the point by s. It is not difficult to see
that every effect in C sums to s. Thus the coset C corresponds to s. Furthermore,
if two cosets C1 and C2 correspond to a same point in PG(k− 1, 2), then C1 and
C2 must be identical. Therefore, every coset of D corresponds to a unique point
of EG(k, 2). Similarly, we can show that every coset of D̄ corresponds to a unique
point of EG(k, 2). Now we are ready to prove (i) and (ii) of the proposition.

We first prove (i). When k = k̄, the number of cosets of D, the number of
cosets of D̄, and the number of points in EG(k, 2) are all equal to 2k. Since the
correspondence from the cosets of D or D̄ to EG(k, 2) is unique, a one-to-one
mapping τ∗ from the cosets of D to the cosets of D̄ follows. For any coset C ∈ F ,
τ∗(C) is the coset in F̄ such that C and τ∗(C) correspond to the same point in
EG(k, 2). Because IG and IḠ correspond to 0k in EG(k, 2), τ∗(IG) = IḠ. For
any coset of D of order 2 or higher (e.g., C = i1i2 · · · ihG, where i1i2 · · · ih is the
coset leader with h ≥ 2), consider s = pi1 + · · · + pih . We claim that s cannot
be a point in D = {p1, . . . , pn}, because if s = pi for some i between 1 and n,
then the main effect i must be in the coset and the coset’s order is 1 instead
of 2 or higher, which is a contradiction. Moreover, s cannot be 0k, because
otherwise the coset is IG and of order zero. Since s must be a point in EG(k, 2),
it must be in D̄ = {pn+1, . . . , pm}. Assume s = pj where n + 1 ≤ j ≤ m. Then
τ∗(i1 · · · ihG) = jḠ, which is a coset of order 1. Similarly, for any coset of D̄ of
order 2 or higher, its inverse under τ∗ is a coset of D of order 1. Because τ∗ is
one to one, (i) is proved.

Next we prove (ii). When k > k̄, the number of cosets of D is 2k and
the number of cosets of D̄ is 2k̄ (< 2k). The cosets of D have a one-to-one
correspondence with the points of EG(k, 2), but the cosets of D̄ now only have
a one-to-one correspondence with a subset of points of EG(k, 2) with cardinality
2k̄. For a coset C of D and a coset C̄ of D̄ that correspond to the same point,
C is mapped to C̄, that is, τ∗(C) = C̄. Under this mapping, 2k − 2k̄ cosets of D

do not have corresponding cosets of D̄. We simply map them to the empty set
∅. For cosets of D that are not mapped to ∅, similar to the proof of (i), we can
show that cosets of D of order 1 are mapped to cosets of D̄ of order 2 or higher,



1468 PENG ZENG, HONG WAN AND YU ZHU

and cosets of D of order 2 or higher are mapped to cosets of D̄ of order 1. What
remains to be shown is that the cosets that are mapped to ∅ must be cosets of
order 1. This immediately follows from the fact that the cosets of D of order 2
or higher must correspond to a point in D̄.

The proof of Theorem 1 uses a result in Zhu (2003), restated below as
Lemma 1. A general word of PG(k − 1, 2) is defined to be a collection of points
that sum to 0 in F2.

Lemma 1. [Equation (35) in Zhu (2003)] Suppose that S1, S2, and S3 form a
three-way partition of PG(k − 1, 2). Let the number of points in S1, S2, and S3

be l1, l2, l3, respectively. Let Ni,j,k be the number of general words that contain
i points of S1, j points of S2, and k points of S3. Then

Ni,j,0 =
1
m

(
l1
i

)(
l2
j

)
− 1

m

∑
i1+i2=i

(−1)i2

(
l1 − m

2

i1

)(m
2

i2

)(
l2
j

)

+
∑

t1+t2=i

∑
s2+s3=t1

l2∑
u=0

(−1)[t2/2]+t2

(
l1 − m

2

[ t22 ]

)
(−1)u+s3N0,u,s3Ql2,u(s2, j),

(A.1)

where m = 2k and

Qn,k(s, t) = (−1)t

(
k

t−s+k
2

)(
n − k
t+s−k

2

)
.

Remark 1. According to the definition of Ni,j,k, the subscripts i, j, k are all
nonnegative and Ni,j,k = 0 if i > l1, or j > l2, or k > l3.

Proof of Theorem 1. We consider three cases separately.

(i) When i = 0, then τ(i) = 0. Let S1 = D, S2 = {ā}, and S3 = D̄\{ā}, where
ā is an arbitrary point in D̄. The equation (3.1) is obtained by applying
Lemma 1 with l1 = n and l2 = 1, noticing that A0,j = Nj,0,0 and Ā0,j =
N0,0,j + N0,1,j−1.

(ii) When 1 ≤ i ≤ n, then 2n−p − n ≤ τ(i) ≤ 2n−p − 1. Suppose the coset leader
of the corresponding coset for D is a ∈ D. Let S1 = D\{a}, S2 = {a}, and
S3 = D̄. The equation (3.1) is obtained by applying Lemma 1 with l1 = n−1
and l2 = 1, noticing that Ai,j = Nj−1,0,0 + Nj,1,0 and Āτ(i),j = N0,1,j .

(iii)When n + 1 ≤ i ≤ 2n−p − 1, then 1 ≤ τ(i) ≤ 2n−p − 1 − n. Suppose the
coset leader of the corresponding coset for D̄ is ā. Let S1 = D, S2 = {ā},
and S3 = D̄\{ā}. The equation (3.1) is obtained by applying Lemma 1 with
l1 = n and l2 = 1, noticing that Ai,j = Nj,1,0 and Āτ(i),j = N0,0,j−1 + N0,1,j .
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When D̄ is degenerate, the same proof still applies.

Proof of Equation (4.1). The two sides of the equation provide different ways
to count the number of pairs of an i-factor interaction and a j-factor interaction
that are aliased with each other. When the pairs are classified according to which
coset they belong to, the total number of pairs is

∑i
k=1 M(i,j)k

, the left-hand side
of the equation. When the pairs are classified according to whether two effects
share common factors, it yields the right-hand side of the equation. In fact,
when they do not share any common factors, this type of aliasing pair can be
derived from a word of length i + j, and the total count is

(
i+j
i

)
A0,i+j . When

they share exactly one common factor, this type of aliasing pair can be derived
from a word of length i + j − 2, and the total count is

(
n−i−j+2

1

)(
i+j−2
i−1

)
A0,i+j−2.

Following similar arguments, we can obtain other items on the right-hand side
of the equation.

Proof of Proposition 3. Suppose that one coset of rank i has order larger
than two. This implies Ai,1 = Ai,2 = 0. Therefore, let i′ = τ(i) and, noticing
that Āi′,0 = 0, we have

0 = Ai,1 = 1 − Āi′,1 − Āi′,0,

0 = Ai,2 = (n − 2n−p−1) + Āi′,2 + Āi′,1 − (n − 2n−p−1)Āi′,0,

which yields Āi′,1 = 1 and Āi′,2 = −(n−2n−p−1)−1. When n ≥ 2n−p−1, Āi′,2 < 0,
which is impossible. Hence the proposition holds.

Alternative Proof of Proposition 3. This proof was provided to the authors
by private communication. For any point in D̄, there are exactly 2n−p−1−1 lines
passing through it. Those lines can be categorized into three types according to
whether the other two points are (i) both in D, (ii) one in D and one in D̄, (iii)
both in D̄. Let r, s, and t denote the number of lines of these three types. Then
r+s+t = 2n−p−1−1 and 2r+s = n. Hence t = 2n−p−1−1−n+r. If n ≥ 2n−p−1

then r > 0 because t cannot be negative. So every alias set given by a point of
D has a main effect and every alias set given by a point of D̄ has a 2fi.

Proof of Theorem 2. When n ≥ 2n−p−1, there are only four different types of
patterns in M : M(i,j)1 , M(i,i)1 , M(i,j)2 , and M(i,i)2 . In what follows, we prove the
theorem for the pattern M(i,j)1 only. The proof for the other patterns are similar
and thus omitted. Let

ck =
1
m

(
n

k

)
− 1

m

∑
j1+j2=k

(−1)j2

(
n − m

2

j1

)(m
2

j2

)
.
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Then we can write M(i,j)1 as

M(i,j)1 =
∑

h∈R1

AhiAhj

=
∑

h̄∈∪k≥2R̄k

{
ci + (−1)i

∑
t1+t2=i

(−1)[t2/2]

(
n − m

2

[ t22 ]

)
Āh̄,t1

}
{

cj + (−1)j
∑

t1+t2=j

(−1)[t2/2]

(
n − m

2

[ t2
2 ]

)
Āh̄,t1

}
= cicjn + cj(−1)i

∑
t1+t2=i

(−1)[t2/2]

(
n − m

2

[ t22 ]

) ∑
h̄∈∪k≥2R̄k

Āh̄,t1

+ ci(−1)j
∑

t1+t2=j

(−1)[t2/2]

(
n − m

2

[ t22 ]

) ∑
h̄∈∪k≥2R̄k

Āh̄,t1

+ (−1)i+j
∑

t1+t2=i

∑
t3+t4=j

(−1)[t2/2]+[t4/2]

(
n−m

2

[ t22 ]

)(
n−m

2

[ t4
2 ]

) ∑
h̄∈∪k≥2R̄k

Āh̄,t1
Āh̄,t3

.

Note that when t1 6= t3 ∑
h̄∈∪k≥2R̄k

Āh̄,t1
Āh̄,t3

=
∑
k≥2

M̄(t1,t3)k
,

and when t1 = t3∑
h̄∈∪k≥2R̄k

Āh̄,t1
Āh̄,t3

= 2
∑
k≥2

M̄(t1,t3)k
+

∑
h̄∈∪k≥2R̄k

Āh̄,t1
.

We also have ∑
h̄∈∪k≥2R̄k

Āh̄,t1
=

(
m − 1 − n

t1

)
− Ā0,t1 −

∑
h̄∈R̄1

Āh̄,t1

=
(

m − 1 − n

t1

)
− Ā0,t1 − M̄(1,t1)1 .

Applying (4.1) to D̄ yields M̄(1,j)1 = (j + 1)Ā0,j+1 + (m − 1 − n − j + 1)Ā0,j−1,

which implies Ā0,j+1 = M̄(1,j)1/(j + 1)− (m− n− j)Ā0,j−1/(j + 1). Since Ā0,3 =
(1/3)M̄(1,2)1 , Ā0,4 = (1/4)M̄(1,3)1 , we can express all the remaining Ā0,j in terms
of M̄(1,j)1 . Therefore, all terms involving Āi,j on the right-hand side of the
expression for M(i,j)1 can be expressed in terms of M̄(i,j)k

, and so can M(i,j)1 .

Proof of Corollary 2. The proof of this corollary follows the general strategy
discussed in the proof of Theorem 2. We only verify one equation as a demon-
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stration, others can be done similarly.

M(2,2)2 =
∑

h∈R2

Ah,2(Ah,2 − 1)
2

=
∑

h̄∈R̄1

(b + Āh̄,2 + Āh̄,1)(b + Āh̄,2 +
Āh̄,1 − 1)

2

= constant + (b + 1)
∑

h̄∈R̄1

Āh̄,2 +
∑

h̄∈R̄1

Āh̄,2(Āh̄,2 − 1)
2

= constant + (b + 1)M̄(1,2)1 + M̄(2,2)1 .
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