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Abstract: With modern technology development, functional responses are observed

frequently in fields such as biology, meteorology, and ergonomics, among others.

Consider statistical inferences for functional linear models in which the response

functions depend on a few time-independent covariates, but the covariate effects

are functions of time. Of interest is a test of a general linear hypothesis about the

covariate effects. Existing test procedures include the L2-norm based test proposed

by Zhang and Chen (2007) and the F -type test proposed by Shen and Faraway

(2004), among others. However, the asymptotic powers of these testing procedures

have not been studied, and the null distributions of the test statistics are approx-

imated using a naive method. In this paper, we investigate the F -type test for

the general linear hypothesis and derive its asymptotic power. We show that the

F -type test is root-n consistent. In addition, we propose a bias-reduced method to

approximate the null distribution of the F -type test. A simulation study demon-

strates that the bias-reduced method and the naive method perform similarly when

the data are highly or moderately correlated, but the former outperforms the latter

significantly when the data are nearly uncorrelated. The F -type test with the bias-

reduced method is illustrated via applications to a functional data set collected in

ergonomics.

Key words and phrases: Functional data, functional hypothesis test, F-type test,

Gaussian process, root-n consistency, χ2-type mixtures, χ2-approximation.

1. Introduction

Functional data consist of functions that are often smooth and usually cor-
rupted with noise. With modern technology development, such functional data
are observed frequently in fields such as biology, meteorology, and ergonomics,
among others; see Besse and Ramsay (1986), Ramsay (1995), and Ramsay and
Dalzell (1991) among others for good examples and analyses. Comprehensive
surveys about functional data analysis (FDA) can be found in Ramsay and
Silverman (1997, 2002).

This paper is motivated by the ergonomics data downloaded from the website
of the second author of Shen and Faraway (2004). To study the motion of drivers
of automobiles, the researchers at the Center for Ergonomics in the University of
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Michigan collected data on the motion of a single subject to 20 locations within
a test car. Among others, the researchers measured 3 times the angle formed
at the right elbow between the upper and lower arms. The data recorded for
each motion were observed on an equally spaced grid of points over a period of
time, that was rescaled to [0, 1] for convenience, but the number of such time
points varied from observation to observation. See Faraway (1997) and Shen and
Faraway (2004) for a detailed description of the data and Figure 1 of Shen and
Faraway (2004) for smoothed right elbow curves. To find a model for predicting
the right elbow angle curve y(t), t ∈ [0, 1] given the coordinates (a, b, c) of the
target, where a represents the “left to right” direction, b represents the “close to
far” direction, and c represents the “down to up” direction, Shen and Faraway
(2004) compared a linear model, a quadratic model and a one-way ANOVA model
and found the quadratic model adequate to fit the data. The quadratic model
they considered may be written as

yi(t) = β0(t) + aiβ1(t) + biβ2(t) + ciβ3(t) + a2
i β4(t)

+b2
i β5(t) + c2

i β6(t) + aibiβ7(t) + aiciβ8(t)

+biciβ9(t) + vi(t), i = 1, . . . , 60, (1.1)

where yi(t) and vi(t) denote the i-th response and location-effect curves over time,
respectively, (ai, bi, ci) denotes the coordinates of the target associated with the i-
th angle curve, and βr(t), r = 0, 1, . . . , 9, are unknown coefficient functions. Some
questions then arise naturally. Is each of the coefficient functions significant?
Can the quadratic model (1.1) be further reduced? These two and other similar
questions can be answered easily after we study the general linear hypothesis
testing problem given below.

Consider a functional linear model (FLM) with functional responses:

yi(t) = xT
i β(t) + vi(t), vi(t)

i.i.d.∼ GP(0, γ), t ∈ T, i = 1, . . . , n, (1.2)

where yi(t), i = 1, . . . , n, are the response functions, xi, i = 1, . . . , n, are the
time-independent (p + 1)-dimensional covariates, β(t) = [β0(t), β1(t), . . . , βp(t)]T

is the (p + 1)-dimensional vector of coefficient functions, vi(t), i = 1, . . . , n,
are the subject-effect curves, T = [a, b],−∞ < a < b < ∞, is the support of
the design time points, and here and throughout GP(η, γ) denotes a Gaussian
process with mean function η(t) and covariance function γ(s, t). It is clear that
the FLM (1.1) is a special case of (1.2). Based on the FLM (1.2), a general linear
hypothesis testing (GLHT) problem is

H0 : Cβ(t) = c(t), vs H1 : Cβ(t) 6= c(t), (1.3)
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where C is a given q × (p + 1) full rank matrix, and c(t) = [c1(t), . . . , cq(t)]T a
vector of given functions. This testing problem includes a lot of useful testing
problems as special cases; the testing procedure proposed here works in general.
For the GLHT problem (1.3), we adopt the F -type test proposed by Shen and
Faraway (2004) for an important special case of (1.3) in which two nested FLMs
are compared. The F -type test has two advantages: (1) it is scale-invariant and
(2) its null distribution can be approximated by a usual F -statistic with degrees
of freedom proportional to a constant κ that depends on the covariance function
of the FLM only. This allows easy and fast implementation of the F -type test
provided κ is properly estimated. The F -type test for the GLHT problem (1.3)
warrants attention as Shen and Faraway (2004) did not study its asymptotic
power. By studying asymptotic power, we show that the F -type test is root-n
consistent. Shen and Faraway (2004) also adopted a naive method for estimating
κ. That may not work well in some situations, and can be improved.

The major contributions of the paper include: (1) we establish the asymp-
totic power of the F -type test and show that under some mild conditions, the
F -type test is root-n consistent; and (2) we propose a bias-reduced method to
estimate κ, which helps improve the performance of the F -type test.

Significance tests for functional data have gotten attention recently. Among
others, Faraway (1997) discussed the difficulties of extending multivariate hy-
pothesis testing procedures to the context of functional data analysis and pointed
out that the likelihood-based testing procedures might be less powerful. He pro-
posed an L2-norm based test and approximated the null distribution of the test
statistic with the bootstrap. Ramsay and Silverman (1997) suggested a pointwise
t-test or F -test but they did not discuss global tests. For curve data from station-
ary Gaussian processes, Fan and Lin (1998) developed some adaptive Neyman
tests. Some other testing procedures, such as the Cramer-von Mises type test for
two-sample problems for functional data, can be found in Hall and van Keilegom
(2007) and reference therein.

In practice, functional data are observed discretely and with noise. When
the noise variances over time are relatively small, and the functional responses of
all the subjects are observed on a grid of evenly spaced design time points, say,
t1, . . . , tM with a reasonably large M , the F -type test may be directly applied to
the raw data as in Shen and Faraway (2004), Shen and Xu (2007) and Yang et al.
(2007), among others. In other cases, individual functions can be reconstructed
based on the observed discrete functional data set via such smoothing techniques
as regression splines (Eubank (1999)), smoothing splines (Wahba (1990), Green
and Silverman (1994)), P-splines (Ruppert, Wand, and Carroll (2003)), local
polynomial smoothing (Wand and Jones (1995), Fan and Gijbels (1996)), and
reproducing kernel Hilbert space decomposition (Wahba (1990), Ramsay and
Dalzell (1991)) among others. Smoothing can remove most of the noise to allow
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the evaluation of individual functions at any resolution, and to generally im-
prove the power of the F -type test. Zhang and Chen (2007) demonstrated how
to reconstruct individual functions from a discrete functional data set using lo-
cal polynomial smoothing. They showed that, under some mild conditions, the
effects of substitutions of the functions with their local polynomial reconstruc-
tions can be ignored asymptotically. In this paper, we assume model (1.2) is true
to ease presentation, while in practice, statistical inferences for functional linear
models are based on the raw data or the reconstructed individual functions from
the functional data set.

The rest of the paper is organized as follows. In Section 2, we describe the
F -type test and derive its asymptotic power under a sequence of local alterna-
tives. The naive method and the bias-reduced method for approximating the null
distribution of the test statistic are also discussed in this section. Applications
to the ergonomics data are presented in Section 3.1, and a simulation study is
given in Section 3.2. Technical proofs of the main theoretical results are outlined
in the Appendix.

2. The F-type Test

2.1. The test statistic

Let X =[x1, . . . , xn]T , y(t)=[y1(t), . . . , yn(t)]T , and v(t)=[v1(t), . . . , vn(t)]T

denote the design matrix, the response vector, and the subject-effect vector,
respectively. Then the GLHT problem (1.3) can be written in a full-reduced
model comparison format as

H0 : y(t) = Xβ(t) + v(t), subject to Cβ(t) = c(t),
H1 : y(t) = Xβ(t) + v(t).

(2.1)

As in classical linear models, the models defined by H0 and H1 are referred to
as the reduced model (RM) and the full model (FM) respectively. The RM is
obtained from the FM by an additional linear constraint; here and throughout, we
indicate a linear constraint with the subscript “c”. Following Shen and Faraway
(2004), who considered a special case of (2.1), we define the F -type test statistic

Fn =
(ISEc − ISE)/q

ISE/(n − p − 1)
, (2.2)

where ISEc and ISE denote the integrated squared errors under the RM and FM,
respectively. Here, q and n − p − 1 are related to, but no longer the degrees of
freedom of ISEc − ISE and ISE, respectively.

Throughout, we assume that X has full rank. Then the least squares esti-
mator of β(t) under the FM is β̂(t) = (XT X)−1XT y(t), which minimizes the
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integrated squared error

Q(β) =
∫

T
‖y(t) − Xβ(t)‖2dt, (2.3)

where ‖ · ‖ denotes the usual L2-norm of a vector. We take

ISE =
∫

T
‖y(t) − Xβ̂(t)‖2dt =

∫
T
‖y(t) − ŷ(t)‖2dt, (2.4)

where ŷ(t) = Xβ̂(t) denotes the fitted response vector under the FM. It follows
that ISE =

∫
T y(t)T (In−PX)y(t)dt, where In denotes the identity matrix of size

n and PX = X(XT X)−1XT denotes the projection matrix of the functional
linear model regression. Similarly, we take ISEc =

∫
T ‖y(t) − Xβ̂c(t)‖2dt =∫

T ‖y(t) − ŷc(t)‖2dt, where ŷc(t) = Xβ̂c(t) denotes the fitted response vector
under the RM, with β̂c(t) being the least squares estimator of β(t) under the
RM. By applying the Lagrangian multiplier method pointwisely, β̂c(t) can be
obtained by minimizing the integrated squared errors (2.3) subject to the linear
constraint Cβ(t) = c(t). Hence, it can be expressed as β̂c(t) = β̂(t)+h(t), where
h(t) = (XT X)−1CT [C(XT X)CT ]−1(Cβ̂(t) − c(t)). Then we have ŷc(t) =
ŷ(t) + Xh(t) or, equivalently, v̂c(t) = v̂(t) − Xh(t), where v̂c(t) = y(t) − ŷc(t)
and v̂(t) = y(t)−ŷ(t) = (In−PX)y(t) denote the estimators of the subject-effect
vector v(t) under the RM and FM, respectively. Since (In−PX)X = 0, v̂(t) and
Xh(t) are independent with their cross-product being 0. It follows that ‖y(t)−
ŷc(t)‖2 = ‖y(t) − ŷ(t)‖2 + ‖Xh(t)‖2. Therefore, we have the decomposition of
the integrated squares ISEc = ISE+ISH, where ISH denotes the extra integrated
squares explained by the FM against the RM, and ISH and ISE are independent.
It is seen that

ISH = ISEc − ISE =
∫

T
‖Xh(t)‖2dt

=
∫

T

[
Cβ̂(t) − c(t)

]T [
C(XT X)−1CT

]−1
[
Cβ̂(t) − c(t)

]
dt

=
∫

T
‖w(t)‖2dt, (2.5)

where w(t) =
[
C(XT X)−1CT

]−1/2
[
Cβ̂(t) − c(t)

]
. Notice that the above ISH

is the test statistic of the L2-norm based test of Zhang and Chen (2007), and

w(t) ∼ GP(ηw, γw), (2.6)

where ηw(t) =
[
C(XT X)−1CT

]−1/2 [Cβ(t) − c(t)] and γw(s, t) = γ(s, t)Iq.
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We introduce some notation. By W
d= Z, we mean that W and Z have the

same distribution; when W ∼ χ2
d(w

2), we mean that W is a chi-squared random
variable with d degrees of freedom and a noncentrality parameter w2; tr(γ) =∫
T γ(t, t)dt denotes the trace of γ(s, t). We collect two regularity assumptions.

Assumption A. (1) 0 < tr(γ) < ∞, and (2) as n → ∞, n−1XT X → Ω with Ω
invertible.

Under A(1) γ(s, t) has finite trace, hence (see Wahba (1990))

γ(s, t) =
m∑

r=1

λrφr(s)φr(t), (2.7)

where λ1, λ2, · · · , λm are the decreasingly-ordered positive eigenvalues of γ(s, t),
and φ1(t), φ2(t), . . . , φm(t) are the associated orthonormal eigenfunctions. Set
m = ∞ when all the eigenvalues are positive. By (2.7), it is easy to show that

tr(γ) =
m∑

r=1

λr, tr(γ⊗2) =
m∑

r=1

λ2
r ≤ tr2(γ) < ∞, (2.8)

where γ⊗2(s, t) =
∫
T γ(s, u)γ(u, t)du. The inequality in (2.8) is obvious when one

notices that
∑m

r=1 λ2
r ≤ (

∑m
r=1 λr)2.

Theorem 1. Under Assumption A, we have

ISH d=
m∑

r=1

λrAr +
∞∑

r=m+1

π2
r , ISE d=

m∑
r=1

λrBr, (2.9)

where Ar, Br are independent with Ar ∼ χ2
q(λ

−1
r π2

r ), Br ∼ χ2
n−p−1, and π2

r =
‖

∫
T ηw(t)φr(t)dt‖2, r = 1, . . . ,m. It follows that

Fn
d=

(∑m
r=1 λrAr +

∑∞
r=m+1 π2

r

)
/q∑m

r=1 λrBr/(n − p − 1)
. (2.10)

Notice that as n → ∞, the denominator of Fn tends to tr(γ) almost surely.
Let F ∗

n denote Fn under H0. Then by Theorem 1 it is easy to see that, as n → ∞,
we have

F ∗
n

d=
∑m

r=1 λrAr/q∑m
r=1 λrBr/(n − p − 1)

d=
T ∗

q tr(γ)
+ op(1), (2.11)

where T ∗ =
∑m

r=1 λrAr, Ar
i.i.d.∼ χ2

q . Thus, under Assumption A(1), T ∗ has finite
mean q tr(γ) and finite variance 2q tr(γ⊗2).
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2.2. Asymptotic power under local alternatives

In this subsection, we investigate the asymptotic power of Fn. When an
alternative is fixed, it is easy to show that the associated power tends to 1 as n →
∞. We study the power of Fn when alternatives tend to the null hypothesis at a
rate slightly slower than root-n. For this purpose, a sequence of local alternatives
is

H1n : Cβ(t) − c(t) = n−τ/2d(t), (2.12)

where τ is some constant and d(t) is any fixed real vector of functions satisfying
the following.

Assumption B. 0 ≤ τ < 1, and 0 <
∫
T ‖d(t)‖2dt < ∞.

Under Assumption A, H1n, and by Theorem 1, we have π2
r = n1−τδ2

r where
δ2
r = ‖

∫
T

(
CΩ−1CT

)−1/2
d(t)φr(t)dt‖2[1+o(1)], r = 1, . . . . Notice that there are

only two cases for us to consider: (1) δ2
r = 0 for all r ∈ {1, . . . ,m}, and (2) δ2

r 6= 0
for at least one r ∈ {1, . . . ,m}. Case (1) implies that m is finite and describes
a case of no information about the violation of H0 projected onto the subspace
spanned by all the m eigenfunctions with positive eigenvalues. We show that the
asymptotic power of Fn under H1n tends to 1 as n → ∞ in both cases. Therefore,
the F -type test is root n-consistent. That is, the F -type test can effectively detect
departures from the null hypothesis of size n−1/2 in the direction of any given
vector of functions satisfying Assumption B. This shows that the F -type test is
reasonably powerful for general functional linear hypothesis testing problems.

We consider the asymptotic power of Fn under Case (1). Here we can
see that Fn

d= {
[∑m

r=1 λrAr + n1−τδ2
]
/q}/{

∑m
r=1 λrBr/(n − p − 1)} d= {T ∗ +

n1−τδ2}/{q tr(γ)} + op(1), where T ∗ is as defined in (2.11) and

δ2 =
∞∑

r=1

δ2
r =

∫
T

d(t)T
(
CΩ−1CT

)−1
d(t)dt > 0, (2.13)

since CΩ−1CT is positive definite. For any α ∈ (0, 1), let F ∗
n,α and T ∗

α be the
upper 100α percentiles of F ∗

n and T ∗, respectively. Then by (2.11), we have
F ∗

n,α = {T ∗
α}/{q tr(γ)} + op(1).

Theorem 2. For Case (1) under Assumptions A and B, the asymptotic power
of Fn is

P
(
Fn ≥ F ∗

n,α|H1n

)
= P

(
T ∗ > T ∗

α − n1−τδ2
)

+ o(1),

which tends to 1 as n → ∞.

We now investigate the asymptotic power of Fn under Case (2). Here we
have δ2

λ =
∑m

r=1 λrδ
2
r > 0. Let Φ(·) denote the cumulative distribution function

of the standard normal distribution N(0, 1).
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Theorem 3. For Case (2) under Assumptions A and B, as n → ∞, we have{
Fn − n1−τδ2

q tr(γ)

} / {
2n(1−τ)/2δλ

q tr(γ)

}
L−→ N(0, 1). (2.14)

In addition, the asymptotic power of Fn is

P
(
Fn ≥ F ∗

n,α|H1n

)
= Φ

(
n(1−τ)/2δ2

2δλ

)
+ o(1), (2.15)

which tends to 1 as n → ∞.

Theorem 2 shows that under Case (1), the F -type test is still powerful in
detecting the violation of the null hypothesis; dimension-reduction based testing
procedures may be less powerful. Moreover, it, together with Theorem 3, shows
that the asymptotic power of Fn increases to 1 at a rate O(n1−τ ) under Case
(1), much faster than the rate O(n(1−τ)/2) under Case (2), as n → ∞. This is
reasonable since, from Theorem 3, it is seen that the asymptotic variance of Fn

under Case (2) is also increasing at a rate O(n(1−τ)/2) as n increases, while this
is not the case under Case (1). Notice that it is easy to show that Theorems 2
and 3 still hold when the critical value F ∗

n,α is replaced with some estimated
critical value.

2.3. Null distribution approximation

In this subsection, we point out that the null distribution of the F -type test
statistic Fn in (2.2) can be well-approximated by that of an F -distribution with
qκ and (n− p− 1)κ degrees of freedom, where κ is a constant purely determined
by the underlying covariance function γ(s, t). That is to say, under H0 we have

Fn =
(ISEc − ISE)/q

ISE/(n − p − 1)
=

ISH/(qκ)
ISE/[(n − p − 1)κ]

approx.∼ Fqκ,(n−p−1)κ. (2.16)

Therefore the F -type test can be easily conducted if κ is properly estimated.
First notice that by Theorem 1, ISH and ISE are independent and, under H0,

they are central χ2-type mixtures whose distributions can be well-approximated
by the χ2-approximation that matches two or three cumulants (Shen and Faraway
(2004), Zhang (2005)). Here, due to its simplicity, the two-cumulant matched
χ2-approximation method of Shen and Faraway (2004) is adopted to approx-
imate the null distributions of ISH and ISE, respectively, so that we get (2.16)
straightforwardly with

κ =
(
∑m

r=1 λr)
2∑m

r=1 λ2
r

=
tr2(γ)
tr(γ⊗2)

, (2.17)
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where λr, r = 1, . . . ,m are the nonzero eigenvalues of γ(s, t) as defined before.
It is clear that the constant κ is important. Shen and Faraway (2004) called

κ as the “degrees of freedom adjustment factor”. Notice that κ may not always
be an integer, hence the same for qκ and (n−p−1)κ. This is not a problem since
popular statistical software such as Matlab allow non-integer degrees of freedom
for the F -distribution. It may be a problem for those users who conduct the
F -type test by looking at the F -table for proper critical values, but Shen and
Faraway (2004) proposed truncating the approximate degrees of freedoms d1 and
d2 to arrive at F[d1],[d2] where [a] denotes the closest integer to a. When both d1

and d2 are large, this method works well, but may be misleading otherwise.
From (2.17), we can see that to estimate κ, we do not need to estimate m and

the m nonzero eigenvalues λ1, · · · , λm of γ(s, t), a difficult task, especially when
γ(s, t) is evaluated with very high resolution. Rather, we need first to estimate
γ(s, t). By Lemma 2 and the proof of Theorem 1 in the Appendix, γ(s, t) can be
unbiasedly estimated by

γ̂(s, t) =
n∑

i=1

(yi(s) − ŷi(s))
(yi(t) − ŷi(t))

n − p − 1
. (2.18)

Shen and Faraway (2004) proposed estimating κ by replacing the eigenvalues
λr, r = 1, . . . of γ(s, t) in the expression of κ with the eigenvalues λ̂r, r = 1, . . . of
γ̂(s, t). The resulting estimator is κ̂0 = tr2(γ̂)/tr(γ̂⊗2). By some simple algebra,
one can show that

1 ≤ κ̂0 ≤ m̂ ≤ n − p − 1, (2.19)

where m̂ is the number of nonzero eigenvalues of γ̂(s, t). When m̂ = 1, the
first equality holds, and when all the nonzero eigenvalues are equal the second
equality holds. Note that κ̂0 is biased since we can show that tr2(γ̂) and tr(γ̂⊗2)
are biased for tr2(γ) and tr(γ⊗2) respectively; see Lemma 1 in the Appendix for
more details. We propose a bias-reduced method that replaces tr2(γ) and tr(γ⊗2)
with their unbiased estimators.

The unbiased estimators of tr2(γ) and tr(γ⊗2) can be obtained by applying
Lemma 2 given in the Appendix. Using γ̂(s, t) defined in (2.18), the unbiased
estimators are, respectively,

t̂r2(γ) =
(n − p − 1)(n − p)

(n − p − 2)(n − p + 1)

[
tr2(γ̂) − 2

n − p
tr(γ̂⊗2)

]
,

̂tr(γ⊗2) =
(n − p − 1)2

(n − p − 2)(n − p + 1)

[
tr(γ̂⊗2) − 1

n − p − 1
tr2(γ̂)

]
.

(2.20)

It follows that the bias-reduced estimator of κ is

κ̂ =
(n − p)

[
tr2(γ̂) − 2 tr(γ̂⊗2)/(n − p)

]
(n − p − 1) [tr(γ̂⊗2) − tr2(γ̂)/(n − p − 1)]

=
(n − p)κ̂0 − 2

(n − p − 1) − κ̂0
. (2.21)
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Since γ(s, t) has at least one nonzero eigenvalue, tr(γ⊗2) > 0. It follows from the
second expression in (2.20) that κ̂0 < n − p − 1 almost surely. In fact, in data
analysis we always have κ̂0 < n − p − 1. Were κ̂0 = n − p − 1, we would have
m̂ = n− p− 1, and all the n− p− 1 nonzero eigenvalues would be equal; in data
analysis, the nonzero eigenvalues of γ̂(s, t) are not the same even if the nonzero
eigenvalues of γ(s, t) are equal. Thus, without loss of generality, we assume that
κ̂0 < n − p − 1. This, together with (2.19), leads to

κ̂ − κ̂0 =
(κ̂0 + 2)(κ̂0 − 1)
(n − p − 1) − κ̂0

≥ 0,

with the equality holding when m̂ = 1. Then the difference between κ̂ and κ̂0

decreases with increasing n.
The bias-reduced method can be regarded as a generalization of the bias-

reduced method used by Huynh and Feldt (1976) in the randomized block and
split-plot designs for repeated measurements. Both methods aim to reduce the
biases of the degrees of freedom adjustment factors for their associated F-type
tests.

While κ̂ is still biased, its bias is largely reduced. A simulation study
presented in Section 3.2 indicates that the bias-reduced method and the naive
method perform similarly when the data are highly or moderately correlated and
the former is preferred when the data are nearly uncorrelated. This simulation
result is similar to the one obtained by Huynh and Feldt (1976).

3. Numerical Results

3.1. Applications to the ergonomics data

For convenience, we refer to the F -type test with the bias-reduced method
as the bias-reduced F -type test. In this subsection, we illustrate the bias-reduced
F -type test using the ergonomics data introduced in Section 1. Following Shen
and Faraway (2004), we first removed Curve 37 since the subject changed his
mind about the target location in mind-reach so that the associated motion to
the left rear shifter location was clearly wrong. We then fit the angle curves using
a quadratic regression spline with 7 equally spaced inner knots. The number of
knots was selected by GCV (Zhang and Chen (2007)). For practical computation,
we evaluated the individual curves at a grid of M equally spaced time points over
the support of the design time points, e.g., [0, 1], for the ergonomics data. The
number M must be large enough to give good approximations to the integrals
involved in the ISE and ISEc of Section 2. For all the numerical results presented
in this section, we took M =1,000; use of larger M increased the computation
time substantially, but generally did not give more precise results. By the bias-
reduced method, we found that κ̂ = 1.81 based on the full quadratic model (1.1)
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of Section 1 for the ergonomics data. This estimate of κ is used in all the tests
below.

We first conducted an overall test to check if the quadratic model (1.1) was
statistically significant. We took C = [0, Ip] and c(t) = 0 to calculate the F -
type test statistic Fn defined in (2.2), to get F̂n = 31.40. Since n = 60 − 1 =
59, p = 10, and q = p − 1 = 9, the approximated degrees of freedom of the
numerator and denominator of the test statistic Fn were df1 = qκ̂ = 16.29 and
df2 = (n − p − 1)κ̂ = 86.88. The associated P-value was 0, indicating that the
overall test was highly significant.

We then tested whether each of the coefficient functions was statistically
significant. For this end, we took C = eT

j,p+1 and c(t) = 0 for j = 0, . . . , p,
respectively. The calculated Fn are listed in the second column of Table 1. Since
q = 1, we found df1 = κ̂ = 1.81 and df2 = (n − p − 1)κ̂ = 86.88. The associated
P-values are listed in the third column of Table 1. It is seen that all the coefficient
functions are significant or highly significant except the coefficient function β8(t).
Figure 1 displays the four estimated coefficient functions (solid curves) with their
95% pointwise confidence bands (dashed curves). From the left lower panel, it
is seen that the pointwise confidence band for β8(t) indeed contains “0” most
of time, indicating that one may delete β8(t) from the model so that a more
parsimonious model can be obtained.

Should we remove the insignificant coefficient function β8(t) from the full
quadratic model (1.1)? Or generally speaking, should we delete those insignif-
icant coefficient functions in a functional linear model? Unfortunately, there is
no simple answer. Some believe that, for a functional linear model, it makes
more sense to keep all or none of a set of terms of the same order, while others
believe that one should delete those insignificant coefficient functions and just
retain those significant coefficient functions to yield a parsimonious and efficient
model in order, to improve the prediction performance of the predictors, and to
obtain a better understanding of the underlying process that generates the data.
Although this problem warrants further study, we present an illustration of how
to do variable selection in functional linear models, as follows.

Various variable selection methods, e.g., forward, backward, and stepwise
procedures in classical linear regression models can be naturally adopted for
functional linear models with the usual F -test replaced by our bias-reduced F -
type test. Here, as an illustration, we adopted the backward selection method
for the quadratic model (1.1). That is, we deleted one least significant coefficient
function step by step until all the coefficient functions were significant. The
significance of a variable is usually determined by the significant level specified
for variable selection, and this is usually larger than the significant level, e.g.,
5%, specified for hypothesis testing. Here for simplicity, we took the significant
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Table 1. Coefficient significance table for the quadratic model (1.1) for the
ergonomics data.

Estimated Coef. function F P-value
β̂0(t) 2177.8 0
β̂1(t) 12.64 2.86×10−5

β̂2(t) 24.86 8.92×10−9

β̂3(t) 7.44 1.48×10−3

β̂4(t) 7.30 1.65×10−3

β̂5(t) 10.63 1.26×10−4

β̂6(t) 3.37 4.32×10−2

β̂7(t) 8.08 8.88×10−4

β̂8(t) 1.45 2.40 × 10−1

β̂9(t) 4.88 1.20×10−2

Figure 1. Four estimated coefficient functions (solid curves) with 95% point-
wise confidence bands (dashed curves) under the full quadratic model (1.1).

level for variable selection as 5% for illustrative purpose only. Table 2 shows
that the P-values for each step. The second column shows the P-values for the
coefficient functions in Step 1, that led us to delete the term aici (i.e., β8(t))
from the quadratic model (1.1). The P-values in the third and fourth columns
for Steps 2 and 3 led us to delete the terms c2

i (i.e., β6(t)) and bici (i.e., β9(t)),
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Table 2. P-values for variable selection based on the quadratic model (1.1)
for the ergonomics data.

Estimated Coef. P-values for Step
function 1 2 3 4

β̂0(t) 0 0 0 0
β̂1(t) 2.86×10−5 4.58×10−5 4.90×10−5 7.44×10−5

β̂2(t) 8.92×10−9 1.64×10−8 1.48×10−11 0
β̂3(t) 1.48×10−3 2.60×10−3 2.71×10−3 1.37×10−5

β̂4(t) 1.65×10−3 3.99×10−3 1.26×10−2 1.88×10−2

β̂5(t) 1.26×10−4 3.13×10−4 9.30×10−6 3.63×10−8

β̂6(t) 4.32×10−2 6.85 × 10−2

β̂7(t) 8.88×10−4 2.40×10−3 2.94×10−3 4.66×10−3

β̂8(t) 2.40 × 10−1

β̂9(t) 1.20×10−2 1.72×10−2 1.36 × 10−1

respectively. As shown by the P-values in the fifth column, we did not delete any
further coefficient function. We then obtained the final reduced model

yi(t) = β0(t) + aiβ1(t) + biβ2(t) + ciβ3(t) + a2
i β4(t) + b2

i β5(t)

+aibiβ7(t) + vi(t), i = 1, . . . , 60. (3.1)

From (3.1), we can see that the angle curve y(t) has a significant quadratic
relationship with the “left to right” direction a and the “close to far” direction
b, but only has a significant linear relationship with the “down to up” direction
c.

To test if the final reduced model (3.1) is adequate against the quadratic
model (1.1), we conducted a bias-reduced F -type test taking

C =

 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 , and c(t) =

0
0
0

 ,

to test if β6(t), β8(t) and β9(t) were significant. The resulting P-value was 0.0609,
indicating that the final reduced model (3.1) is nearly adequate.

3.2. A Simulation study

For simplicity, we denote the L2-norm based test of Zhang and Chen (2007),
the F -type test of Shen and Faraway (2004), and the bias-reduced F -type test
by L2

0, F0, and F1, respectively. In this subsection, we present a simulation study
to investigate the finite-sample performance of these testing procedures. We first
compare F1 and F0 and then F0 and L2

0.
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We generated samples from the FLM (1.2) described in Section 1. For sim-
plicity we adopted the design time points xi, i = 1, . . . , n, of the ergonomics data
and took the estimated β̂(t) as the underlying β(t) except for letting

[β6(t), β8(t), β9(t)]
T = ∆ ×

[
β̂6(t), β̂8(t), β̂9(t)

]T
, where ∆ ∈ [0, ∆0].

This allows us to compare the powers of the three testing procedures for testing
H0 : [β6(t), β8(t), β9(t)]T = 0. Notice that when ∆ = 0, H0 holds and when ∆ in-
creases, the powers of the testing procedures also increase. For easy presentation,
we chose ∆0 so that the powers of the testing procedures at ∆0 were about 1.
Let m0 be an odd positive integer. To control the correlation of the subject-effect
functions, we generated vi(t) using vi(t) =

∑m0
r=1 ξirψr(t), i = 1, . . . , n, where the

basis functions ψr(t), r = 1, . . . ,m0 were orthonormal and smooth over the sup-
port of the ergonomics data, and the coefficients ξir ∼ N(0, λr), r = 1, . . . ,m0,
independent of each other, so that the associated covariance function of vi(t)
was γ(s, t) =

∑m0
r=1 λrψr(s)ψr(t). For simplicity, we used ψ1(t) = 1, ψ2r(t) =√

2 sin(2πrt), ψ2r+1(t) =
√

2 cos(2πrt), t ∈ [0, 1], r = 1, . . . , (m0 − 1)/2. We also
specified λr = aρr, r = 1, . . . ,m0, for some a > 0 and 0 < ρ < 1. Notice that ρ

not only determines the decay rate of λr, r = 1, . . . ,m0, but also determines how
the resulting subject-effect functions vi(t), i = 1, . . . , n are correlated: when ρ is
close to 0 (resp. 1), the subject-effect functions are highly correlated (resp. nearly
uncorrelated). We took a = 1,m0 = 21, and ρ = 0.100, 0.272, 0.444, 0.616, 0.788
and 0.960, representing correlations from high to low. For each fixed ρ, we let ∆
take a grid of equally spaced values in [0, ∆0]. For each pair (ρ, ∆), N =10,000
samples were generated. For each sample, the test statistics of the testing pro-
cedures were computed and the associated P-values were calculated using the
testing procedures under consideration. When the P-values were smaller than
the nominal significance level α (5% here), the null hypothesis was rejected. The
power of a testing procedure is the proportion of the number of rejections based
on the calculated P-value using the associated testing procedure.

We first compare the bias-reduced method and the naive method. Figure 2
displays the power functions of the three testing procedures: L2

0 (dotted), F0

(dashed), and F1 (solid). From Panels (a), (b), (c), and (d), it is seen that when
the data were highly or moderately correlated (ρ = 0.100, 0.272, 0.444 and 0.616),
the powers of F1 and F0 are about the same, and their Type-I errors (powers
at ∆ = 0) are close to 5%, the nominal significance level, with the powers of
F1 slightly larger than those of F0. Therefore, in these four cases, the difference
between F1 and F0 is quite small. However, from Panels (e) and (f), it is seen
that when the data were nearly uncorrelated (ρ = 0.788 and 0.960), the powers
of F1 were larger than those of F0. In addition, the Type-I errors of F1 were close
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Figure 2. Power functions of L2
0 (dotted), F0 (dashed) and F1 (solid) for

various values of ρ.

to 5% while the Type-I errors of F0 were lower than 5%. Thus, F1 is preferred
to F0. That is, the bias-reduced method is preferred to the naive method here,
especially when the data are nearly uncorrelated. This conclusion can be seen
more clearly from Figure 3 below.

Figure 3 displays the absolute relative error (ARE) curves of the three testing
procedures: L2

0 (dotted), F0 (dashed), and F1 (solid). The ARE of a testing
procedure is defined as {|power − simulated power|}/{simulated power} × 100.
The simulated power of a testing procedure is defined as the proportion of the
number of rejections (out of N replications) based on the simulated critical values
which are the upper 100α-percentiles of the N test statistics, computed based
on the N samples generated with ∆ = 0 and the same ρ. The true underlying
power of a testing procedure is not available but is estimated by the simulated
power of the testing procedure when N is large.

From Panels (a), (b), (c), and (d), it is seen that although the AREs of F0

are generally smaller than those of F1 especially when the data are moderately
correlated, the AREs of F1 and F0 are quite close to each other. Moreover, from
Panels (e) and (f), it is seen that the AREs of F1 are much smaller than those
of F0. It seems that the bias-reduced method is preferred to the naive method,
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Figure 3. ARE curves of L2
0 (dotted), F0 (dashed) and F1 (solid) for various

values of ρ.

Table 3. Means (standard deviations) of ASRE(κ̂) over the values of ∆ for
the six cases.

ρ 0.100 0.272 0.444 0.616 0.788 0.960

Naive 0.0026(0.0000) 0.0090(0.0001) 0.0111(0.0002) 0.0125(0.0002) 0.0253(0.0002) 0.0880(0.0001)

Bias-reduced 0.0032(0.0001) 0.0116(0.0002) 0.0140(0.0003) 0.0117(0.0001) 0.0075(0.0001) 0.0021(0.0000)

especially when data are nearly uncorrelated. This result may be partially ex-
plained by the fact that the bias-reduced method generally resulted in better
estimates for κ in the simulation study than did the naive method as shown in
Table 3 below.

The accuracy of κ̂ can be measured by its average squared relative error:
ASRE(κ̂) = N−1

∑N
i=1(κ̂i/κi−1)2, where N is the number of replications in the

simulation study, and κ̂i and κi are the estimates and true values of κ in the i-th
replication. The true values of κ can be calculated using (2.17) with the true
values of γ(s, t). Table 3 lists the means (standard deviations) of ASRE(κ̂) over
the values of ∆ (values of ASRE(κ̂) are slightly different for different ∆) for the
six cases under consideration. It is seen that, for the first four cases, the means
of ASRE(κ̂) for the bias-reduced method and the naive method are of the same
magnitude, although the means of ASRE(κ̂) for the naive method in the first
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three cases are slightly smaller than those for the bias-reduced method. It is also
seen that, for the last two cases, the means of ASRE(κ̂) for the naive method
are much larger than those for the bias-reduced method. In addition, the means
of ASRE(κ̂) for the naive method increased with larger ρ, while the means of
ASRE(κ̂) for the bias-reduced method were similar.

We now compare the F -type test and the L2-norm based test. From Figure 2,
it is seen that the powers of L2

0 (dotted) and F0 (dashed) are about the same,
with the former slightly larger than the latter. From Figure 3, it is seen that the
AREs of L2

0 (dotted) are larger than those of F0 (dashed) except in Panels (e)
and (f) where the AREs of L2

0 are slightly smaller than those of F0. We might
conclude that F0 is slightly preferred to L2

0, especially when the data are highly
or moderately correlated. From Panel (f) of Figure 2, the Type-I errors of both
F0 and L2

0 are lower than 5%, simply due to the fact that both F0 and L2
0 adopt

the naive method.

Acknowledgements

The work was supported by the National University of Singapore Academic
Research Grant R-155-000-085-112. The author thanks the co-Editor, an asso-
ciate editor, and two reviewers for their constructive comments and invaluable
suggestions that helped improve the paper substantially. He also thanks his
research assistant Ms Jing Han for editing the tables used in this paper.

Appendix: Proofs

In this appendix, we first present two lemmas about Wishart processes and
then give the technical proofs of Theorems 1 and 3.

A. Two lemmas about Wishart processes

Wishart processes are natural generalizations of Wishart random variables.
Throughout, we use WP(n, γ) to denote a Wishart process with n degrees of
freedom and a covariance function γ(s, t). A Wishart process W (s, t) ∼ WP(n, γ)
can be written as

W (s, t) =
n∑

i=1

ui(s)ui(t), (A.1)

where ui(t), i = 1, . . . , n are i.i.d. GP(0, γ).
Notice that when γ(s, t) has finite trace, it has the singular value decom-

position (2.7). It follows that the ui(t)’s in (A.1) have the Karhunen-Loeve
expansions

ui(t) =
∞∑

r=1

ξirφr(t), i = 1, . . . , n, (A.2)
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where ξir are independent, ξir ∼ N(0, λr), and λr, φr(t) are the r-th eigenvalue
and eigen-function of γ(s, t) as defined in (2.7).

Lemma 1. Assume W (s, t) ∼ WP(n, γ) with tr(γ) < ∞. Then we have

(a) EW (s, t) = nγ(s, t),

(b) tr(W ) d=
∑∞

r=1 λrAr, Ar
i.i.d.∼ χ2

n,

(c) E tr(W ) = n tr(γ) and Etr2(W ) = 2n tr(γ⊗2) + n2tr2(γ),

(d) E tr(W⊗2) = n(n + 1) tr(γ⊗2) + ntr2(γ).

Proof of Lemma 1. Let Wi(s, t) = ui(s)ui(t), i = 1, . . . , n. Then W (s, t) =∑n
i=1 Wi(s, t) and Wi(s, t)

i.i.d.∼ WP(1, γ). Since EW1(s, t) = γ(s, t), (a) follows.
By (A.2), we have

tr(Wi) =
∫

T
u2

i (t)dt =
∞∑

r=1

ξ2
ir

d=
∞∑

r=1

λrAir, (A.3)

where Air are i.i.d., following χ2
1 for all i and r. Since tr(W )=

∑n
i=1tr(Wi), (b) fol-

lows. (c) follows directly from (b). Noticing that E tr(W⊗2)=
∫
T

∫
T EW 2(s, t)dsdt

and

EW 2(s, t) = Var (W (s, t)) + E2(W (s, t)) = nVar (W1(s, t)) + n2γ2(s, t)
= nEW 2

1 (s, t) − nE2(W1(s, t)) + n2γ2(s, t)
= nEu2

1(s)u
2
1(t) + n(n − 1)γ2(s, t),

we have

E tr(W⊗2) = nE
(∫

T
u2

1(t)dt

)2

+ n(n − 1) tr(γ⊗2)

= nEtr2(W1) + n(n − 1) tr(γ⊗2)
= n(n + 1) tr(γ⊗2) + ntr2(γ),

as desired, where we use the result Etr2(W1) = 2 tr(γ⊗2) + tr2(γ) from Part (c).
The proof is complete.

Direct application of Lemma 1 leads to the following useful lemma about
unbiased estimators of γ(s, t), tr(γ), tr2(γ), and tr(γ⊗2).

Lemma 2. Assume W (s, t) ∼ WP(n, γ) with n > 1 and tr(γ) < ∞. Set
γ̂(s, t) = W (s, t)/n. Then γ̂(s, t) and tr(γ̂) are the unbiased estimators of γ(s, t)
and tr(γ) respectively. Moreover, the unbiased estimators of tr(γ⊗2) and tr2(γ)
are, respectively,

n2

(n − 1)(n + 2)

[
tr(γ̂⊗2) − 1

n
tr2(γ̂)

]
and

n(n + 1)
(n − 1)(n + 2)

[
tr2(γ̂) − 2

n + 1
tr(γ̂⊗2)

]
.
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B. Proofs of Theorems 1 and 3

Proof of Theorem 1. We only need to verify the two expressions in (2.9),
(2.10) follows directly.

To show the first expression of (2.9), notice that we have (2.6). Thus,
the q components of w(t) are independent of each other, and the l-th com-
ponent wl(t) ∼ GP(ηwl, γ), l = 1, . . . , q, where ηwl(t) is the l-th component
of ηw(t). Since γ(s, t) has the singular value decomposition (2.7), we have
wl(t) =

∑∞
r=1 ξlrφr(t), where

ξlr =
∫

T
wl(t)φr(t)dt ∼ N(µlr, λr), (A.4)

with µlr =
∫
T ηwl(t)φr(t)dt. Notice that λr > 0 when r ≤ m and λr = 0 when

r > m. It follows that

ISH =
∫

T
‖w(t)‖2dt =

q∑
l=1

∫
T

w2
l (t)dt =

q∑
l=1

∞∑
r=1

ξ2
lr

=
m∑

r=1

q∑
l=1

ξ2
lr +

∞∑
r=m+1

q∑
l=1

ξ2
lr,

because the eigenfunctions φr(t) are orthonormal over T . By (A.4), we have∑∞
r=m+1

∑q
l=1 ξ2

lr =
∑∞

r=m+1

∑q
l=1 µ2

lr =
∑∞

r=m+1 π2
r , and

∑m
r=1

∑q
l=1 ξ2

lr
d= λrAr,

where Ar =
∑q

l=1 ξ2
lr/λr ∼ χ2

q(λ
−1
r π2

r ) with π2
r =

∑q
l=1 µ2

lr = ‖
∫
T ηw(t)φr(t)dt‖2.

The first expression in (2.9) then follows as desired.
To prove the second expression, recall that v̂(t) = y(t) − ŷ(t) = (In −

PX)y(t) = (In−PX)v(t), where v(t)=[v1(t), . . . , vn(t)]T with vi(t)
i.i.d.∼ GP(0, γ),

and In − PX = U diag(In−p−1,0(p+1)×(p+1))UT , where U is an orthonormal

matrix of size n×n so that UT v(t) d= v(t). It follows that W (s, t) =
∑n

i=1(yi(s)−
ŷi(s))(yi(t)−ŷi(t)) = v(s)T (In−PX)v(t) =

∑n−p−1
r=1 vr(s)vr(t)∼WP(n−p−1, γ).

Since ISE =
∫
T W (t, t)dt=tr(W ), the second expression in (2.9) follows directly

from Lemma 1 (b). Another proof of the second expression can be found in Shen
and Faraway (2004). The proof is completed.

Proof of Theorem 3. First notice that under Assumptions A and B and Case
(2), 0 < tr(γ) < ∞, tr(γ⊗2) < ∞, δ2 > 0, δ2

λ > 0, and 0 ≤ τ < 1.
Set Fn = W1/W2, where W1 and W2 denote the numerator and denominator

of Fn, respectively, as defined in (2.10). It is easy to see that as n → ∞, we have
W2 ∼ AN

[
tr(γ), 2 tr(γ⊗2)/(n − p − 1)

]
. We now show that, for Case (2), W1 is

also asymptotically normally distributed. Under H1n, we have π2
r = n1−τδ2

r . We
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can write W1
d= (

∑m
r=1 λrAr + n1−τ

∑∞
r=m+1 δ2

r )/q, where Ar ∼ χ2
q(n

1−τλ−1
r δ2

r ).
Notice that

Ar
d= z2

1r + · · · + z2
(q−1)r +

[
zqr + n(1−τ)/2λ−1/2

r δr

]2

d= A∗
r + 2n(1−τ)/2λ−1/2

r δrzqr + n1−τλ−1
r δ2

r ,

where zir
i.i.d.∼ N(0, 1) and A∗

r ∼ χ2
q . Thus, we have

m∑
r=1

λrAr
d=

m∑
r=1

λrA
∗
r + 2n(1−τ)/2

m∑
r=1

λ1/2
r δrzqr + n1−τ

m∑
r=1

δ2
r .

It follows that W1
d=

∑m
r=1 λrA

∗
r/q+2n(1−τ)/2

∑m
r=1 λ

1/2
r δrzqr/q+n1−τδ2/q. Since

δ2 > 0 and δ2
λ > 0, as n → ∞, the last two terms on the right-hand side dominate

the first term. Therefore, W1 is asymptotically normally distributed, i.e., W1 ∼
AN

[
n1−τδ2/q, 4n1−τδ2

λ/q2
]
, by dropping higher order terms. It follows that

Fn = W1/W2 is also asymptotically normally distributed with

E(Fn) =
E(W1)
E(W2)

[1 + o(1)] =
n1−τδ2

q tr(γ)
[1 + o(1)],

Var (Fn) =
[

1
E2(W2)

Var (W1) +
E2(W1)
E4(W2)

Var (W2)
]

[1 + o(1)]

=
4n1−τδ2

λ

q2tr2(γ)
[1 + o(1)],

dropping the higher order terms. The proof of (2.14) is then complete.
To prove (2.15), notice that

P
(
Fn ≥ F ∗

n,α|H1n

)
= P

(Fn − E(Fn)√
Var (Fn)

≥
F ∗

n,α − E(Fn)√
Var (Fn)

|H1n

)
= 1 − Φ

(F ∗
n,α − E(Fn)√

Var (Fn)

)
+ o(1) = 1 − Φ

( [T ∗
α − n1−τδ2]/[q tr(γ)]√
4n1−τδ2

λ/[q tr(γ)]2

)
+ o(1)

= Φ
(n(1−τ)/2δ2

2δλ

)
+ o(1),

which obviously tends to 1 as n → ∞. The theorem is proved.
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