
Statistica Sinica 21 (2011), 1379-1396

ROBUST UNIFORM DESIGN WITH ERRORS IN

THE DESIGN VARIABLES

Peter Winker and Dennis K. J. Lin

University of Giessen and Pennsylvania State University

Abstract: Uniform design has become a standard tool in experimental design over

the last two decades. Its properties are analyzed for a situation when the actual val-

ues of the control variables are subject to some error in factor level values. A closed

form for the expected discrepancy is established, under some mild assumptions. A

thorough Monte Carlo study is conducted under various potential scenarios. Some

general properties have been revealed. Both theoretical and simulation results are

consistent. The robustness of uniform design under error in control variables is

also investigated. It is shown that uniform designs are highly robust with regard

to uniformly distributed errors in design variables.
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1. Introduction

Uniform Design (UD) has received a great deal of interest in both theoret-
ical and practical aspects since the 1980s (Fang and Lin (2003); Fang, Li and
Sudjianto (2006)). Typically, uniform experimental design (UD) is used before
further analysis or modeling, i.e., when no information on the actual relationship
is known. Then, the aim is to cover the experimental domain as uniformly as
possible with a limited number of design points. The UD has advantages: it
can explore relationships between the response and the factors with a reasonable
number of runs; it is insensitive to different model specifications. The UD is es-
sentially one kind of fractional factorial design with the uniformity property (see,
e.g., Fang et al. (2000)). For practical use, a large number of uniform designs
have been constructed and tabulated. Some of them are listed on the website
http://www.math.hkbu.edu.hk/UniformDesign.

In practical applications of experimental design, however, it is not always
possible to set the design variables exactly to the values suggested by a given
design. In general, the setting of factor levels in an experiment can be subject
to errors, called errors in factor levels or errors in design variables. There is a
range of possibilities. For example, in some applications it is feasible to set the
factor levels to target values only in the same way as in the experiment. There,

http://www.math.hkbu.edu.hk/UniformDesign


1380 PETER WINKER AND DENNIS K. J. LIN

no consideration regarding robustness of the design with regard to such errors
is relevant. On the other hand, in some processes the setting of factor levels
might be subject to different errors from those in the experiment. Then, a more
complex analysis might be required.

Among these possibilities, in our paper we concentrate on the case where
factor levels might be subject to random errors in the experiment, but can be
set accurately in the process. Examples include physical experiments, e.g., in
agriculture, when it comes to define water level or temperature, and the outcome
of computer simulations which might depend on the actual choice of pseudo-
random numbers. If the experimenter is faced with this situation, the best she
can do is find a design which is as uniform as possible in mean over all possible
realizations of the random errors in design variables.

The following research issues are discussed.

– When the setting of factor levels is subject to some noise, what is the impact
of running a uniform design?

– How robust is uniform design to this type of error in design variables?

– What is the most robust uniform design, i.e., a U -type design which is least
sensitive to errors in design variables or a U -type design which is least sensitive
to errors in design variables, while still keeping a reasonably low discrepancy?
Thereby, a l-level U -type design V (n, ld) is given by a n × d matrix, where n

is the number of runs, d the dimension of the design space, and each column
has the same number of entries of (2k − 1)/2l for k = 1, . . . , l. Throughout,
we consider the case n = l.

Box (1963) and Draper and Beggs (1971) are perhaps the first to address
the errors in factor levels in linear models and design of experiments. Donev
(2004) discusses the effects of errors in setting the factor levels on the optimality
of the designs actually used as compared to the originally planned designs. It is
shown that, when considering D-optimality as criterion, the expected quality of
the designs might be affected. Thereby, it is assumed that a polynomial model
is fitted to the data. Then, robustness is defined in terms of minimizing the sum
of the variances of the estimated responses (Donev (2004, p. 574)). Obviously,
this definition depends on the model considered. This idea of robustness does
not apply to situations in which some independent variables are not subject to
control, as discussed, e.g., by López-Fidalgo and Garcet-Rodŕıguez (2004).

The rest of this paper is organized as follows. In Section 2 we provide some
theoretical results on the robustness of Uniform Designs. Empirical evidence
on robustness properties is provided in Section 3. Section 4 presents a method
for the construction of U -type designs with a small expected discrepancy under
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errors in design variables. We provide both empirical results and a comparison
with standard uniform designs. Section 5 summarizes the main findings and
points at possible areas of future research.

2. Robustness of Uniform Designs

When assessing the quality of a design before and after adding noise to de-
sign variables, a formal criterion is required. Many discrepancy measures have
been proposed for this purpose. The centered L2-discrepancy (CD2), proposed
by Hickernell (1998), is commonly accepted as most appropriate (Fang, Li
and Sudjianto (2006)), and is used here. Other discrepancy criteria can be in-
vestigated in a similar manner, if desired.

Let V denote a design matrix consisting of n points in the d-dimensional
unit cube Cd. Then, a formal definition of CD2 has

(CD2(V ))2 =
∑
u6=∅

∫
Cu

[
N(V ∩ Jw(vu))

n
− V ol(Jw(vu))

]2

dvu, (2.1)

where u is any non-empty subset of the coordinate indices {1, · · · , d}, |u| denotes
the cardinality of u, Cu is the |u|-dimensional unit cube involving the coordinates
in u, N(V ∩A) counts the number of points of V falling in A, vu is the projection
of v ∈ V on Cu, and Jw(vu) is the hyper-rectangle in Cu containing the points
between vu and the nearest vertex of Cu.

Specifically, for each point in Cu, the difference of two ratios is calculated:
(1) the number of design points lying in the rectangle formed by this point and
the nearest vertex of Cu over the total number of design points n, and (2) the
volume of this rectangle and the volume of Cu which is one. For a uniform
design, these differences should be small. The measure is given by integrating
over all points in the experimental region while considering all lower dimensional
projections Cu.

The evaluation of objective function (2.1) appears to be quite complex. How-
ever, based on results provided by Hickernell (1998), the following formula can
be obtained (Fang, Li and Sudjianto (2006)):
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2
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]
. (2.2)

Assume that a UD is selected, i.e., a design minimizing the objective func-
tion (2.2). Furthermore, suppose that there are errors in design variables, i.e.,
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that the values suggested by the UD can be implemented for the practical appli-
cation only with some random errors. One might think of examples like fixing
the temperature for a chemical reaction or the amount of fertilizer provided to
some plants. Our interest is to what extent such errors in design variables might
impair the properties of the UD, in particular with regard to its discrepancy as
measured by (2.2).

Now, suppose the experimental levels of the UD are contaminated with er-
rors, namely, ṽki = vki + τki, where the τki are independently distributed random
variables such that ṽki still belongs to the d-dimensional unit cube. For example,
the τki might be uniformly distributed on (−δ, δ) where δ < 1/2n is a positive
constant. We relax this assumption for the empirical study in Section 3. The
centered discrepancy for the actual design Ṽ = (ṽki)ki becomes, from (2.2),

(CD2(Ṽ ))2 =
(
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Since the errors are assumed to be i.i.d., the expectation of (CD2(Ṽ ))2 can be
written as

E
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Under the assumption of uniformly distributed τki, we are able to prove (see
Appendix A) the following.

Theorem 1. For δ < 1/2n and all vki 6= 1/2, we have
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Recall that for a U -type design with n runs and l = n levels, each exper-
imental variable is coded as [1/(2n), 3/(2n), . . . (2n − 1)/(2n)]. Thus, imposing
the constraint δ < 1/2n ensures that all design points will stay within the unit
cube, even though they may not be exactly located at the designated position.

In other words, under errors in experimental variables, ṽki = vki + τki with
τki ∼ Unif(−δ, δ), the resulting discrepancy is expected to be greater than the
original discrepancy. When such an error in experimental variables is small,
i.e., δ < 1/2n, the difference between the resulting discrepancy and the original
discrepancy is a function of d, n and δ2.

For larger δ or for alternative distributions (for example, normal or beta
distributions), however, we are unable to obtain a closed form expression of
E[(CD2(Ṽ ))2]. We will address these cases via a Monte Carlo study which is
presented in the next section. In particular, it will be verified (numerically) that
E[(CD2(Ṽ ))2] is indeed an increasing function of δ, d, as well as n.

3. Empirical Study

To analyze the actual distribution of the CD2 discrepancy when design points
are subject to errors in design variables, we conducted a Monte Carlo simulation.
The procedure is summarized in Algorithm 1. (1:) fix a run size n, the number
of factors d and the number of levels l. Here, we concentrated on the case that
the number of levels is equal to the run size (l = n). (2:) search for a U -type
design V exhibiting the lowest CD2 discrepancy using the Threshold Accepting
algorithm introduced in Fang et al. (2000). Given that no lower bounds are
available for the CD2 discrepancy in the case that l > 4 (for l = 2, lower bounds
are provided by Fang, Lu and Winker (2003), for l = 3, 4 by Fang et al. (2006)),
no formal proof of optimality can be given for the resulting designs. Nevertheless,
at least, they are close to uniformity, i.e., exhibiting very low discrepancy. When
constructing V , we still assumed the deterministic setting, i.e., without noise in
input variables.

For the Monte Carlo simulation (3: to 11:), in each replication i, a uniform
random error from [−δ, δ] was added to each element of the design matrix V .
Obviously, the uniform distribution can be replaced by another distribution in
step (6:). We report some results for the normal and beta distributions in Sec-
tion 5. For larger values of δ, the modified design points might leave the unit
cube. Therefore, in (7:), such points are put on the boundary introducing some
additional bias. Then (10:), for the modified design matrix Ṽ the discrepancy
CD2 is calculated and stored. Finally (12:), after running all Monte Carlo repli-
cations (1,000,000 for the present application), statistics on the distribution of
these CD2 values were calculated and are reported here.
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Algorithm 1 Simulation of CD2 under Errors-in-Variables.
1: Initialize run size n, number of factors d and number of levels l = n.
2: Find uniform design V = (v)ij by solving: min

V ∈U-type designs CD2(V ).
3: for i = 1 to Imax do
4: for j = 1 to n do
5: for k = 1 to d do
6: Draw random error τ ∼ U(−δ, δ).
7: (Ṽ )jk = max(min((v)jk + τ, 1), 0).
8: end for
9: end for

10: Calculate CD2(Ṽ)
11: end for
12: Report statistics on distribution of CD2.

The range δ for the uniform noise added to the design points varied from
0 to 0.25 in all cases. Given the definition of design points for a U -type design
with n runs, for δ < 1/2n, the boundary control in (7:) was not active. For n
and d, we analyzed the following combinations: (A) d = 2, n = 10, . . . , 30; (B)
d = 3, n = 10, . . . , 30; (C) n = 10, d = 2, . . . , 9; and (D) n = 20, d = 2, . . . , 19.

Figure 1 shows kernel density estimates (f) of the distribution of CD2 for
different values of δ and the problem instance d = 2 and n = 10 from set (A).
The vertical line indicates the discrepancy of the optimized design. As expected,
adding noise to the design points increases the discrepancy. Thereby, both the
mean and the variance of the CD2 values increase for growing values of δ, as
predicted by Theorem 1 for small values of δ.

Summarizing the results from Figure 1 and similar plots for the other problem
instances (not listed here) the following trends can be identified.

• both the mean and the variance of CD2 increase as δ increases for all considered
combinations of d and n;

• both the mean and the variance of CD2 decrease as n increases for d = 2 and
d = 3 and all considered values of δ;

• both the mean and the variance of CD2 increase as d increases for n = 10 and
n = 20 and all considered values of δ.

When starting with an optimized U -type design (or a uniform design), an
increase of the mean and the standard deviation of CD2 when adding noise to
the design points has to be expected. Thus, a proper definition of robustness is
required for further analysis. One way of defining robustness is by comparison
with random designs. Thus, we define a U -type design V to be robust under
addition of uniform random noise τ ∼ Unif(−δ, δ) at level p (p-δ-robust) if

q1−p(D(V + τ)) ≤ qp(D(R)) , (3.1)
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Figure 1. Distribution of CD2 values for increasing δ (d = 2, n = 10).

where q1−p and qp denote the 1 − p and p-quantiles respectively, D is the dis-
crepancy measure considered (CD2), and R is a random design with n points
drawn uniformly from [0, 1]d. This condition implies that, even after adding
some errors to the design variables, an upper quantile of the resulting distribu-
tion of the CD2 values of the uniform design plus noise (V +τ) is still lower than
the corresponding lower quantile of the distribution for the randomly generated
designs.

Next, we can define the maximum noise level still satisfying p-δ-robustness,
i.e.,

δ∗p(V ) = max
δ

{V is p-δ-robust} . (3.2)

Figure 2 summarizes the findings for our test cases in groups (A) – (D) for
p = 0.05 (solid lines) and p = 0.01 (dashed lines). These values were determined
by successively increasing δ until V was not p-δ-robust anymore. Then, the
algorithm went back to the previous value of δ and the step size was decreased.
The procedure was iterated until δ∗p(V ) had been approximated up to at least 4
digits precision. The large values found for δ∗0.05 and δ∗0.01 have to be interpreted
relative to the design space which is [0, 1]d. Therefore, when starting with an
optimized U -type design (or a uniform design if available), even after adding
a substantial amount of noise, the resulting design most of the time was still
significantly better than a random design. The findings for the normal and beta
distributions considered were similar (see Appendix B), except for heavily skewed
distributions (e.g., beta(1,3) and beta(2,5)) and p = 0.01 resulting in substantial
lower, but still positive values of δ∗.
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Figure 2. δ∗0.05(V ) and δ∗0.01(V ) for optimized U -type designs in (A) – (D).

Table 1. Regression model for δ∗p(V ) .
Explanatory δ∗0.05 δ∗0.01

Variable Coeff. t-Stat. p-Value Coeff. t-Stat. p-Value
Const. 0.1328 5.397 0.0000 0.1247 5.504 0.0000
d 0.0221 8.169 0.0000 0.0199 7.982 0.0000
n -0.0030 -1.255 0.2172 -0.0033 -1.482 0.1467
d2 -0.0015 -18.776 0.0000 -0.0014 -19.752 0.0000
n2 3.6 · 10−5 0.667 0.5089 3.8 · 10−5 0.762 0.4509
dn 0.0003 2.226 0.0320 0.0004 2.854 0.0069

R2 0.93 0.93

For given d, the values of δ∗p tended to marginally decrease with growing
n (left plot), while the dependence on d was not monotonic (right plot). In
order to model the dependence of δ∗p on d and n, a second order polynomial
with cross terms was fitted. The results are summarized in Table 1. The partial
impact of n was not significantly different from zero both for p = 0.05 and p =
0.01, confirming what might have been expected from the visual inspection. By
contrast, the partial impact of d was highly significant both in levels (d), squared
terms (d2) and interaction term (dn). For fixed n, growing dimension d first allows
more noise prior to coming close to a low quantile of random designs. However,
this effect decreased due to a negative effect of the squared term. It should be
noted that for d > n, the values of δ∗p eventually converge to zero, e.g., for d > 34
when n = 20 (results available on request). The quadratic approximation was
fitted only for the case d < n and cannot be used to extrapolate for d > n.
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4. Construction of Robust U-type Designs

In the previous section, the properties of uniform designs have been analyzed
when some noise is added to the variables. Alternatively, one might be interested
in constructing designs achieving a high degree of robustness under errors in
design variables. In this section, such an approach is presented.

As above, we assume that the values of the design points are subject to some
random error τ . We still consider U -type designs, for which the number of levels l

is assumed to be equal to the number of runs n. Of course, this constraint might
be relaxed in future work, but appears to be reasonably representative given
the broad use being made of U -type designs in practical applications. Then,
for given dimension d and number of runs n, we try to find the U -type design
with l = n levels minimizing the expected discrepancy, i.e., instead of solving
minV ∈U -type D(V ) the objective becomes

min
V ∈U -type

E(D(V + τ)) , (4.1)

where D is some measure of discrepancy – CD2 for the present application –
and τ is the random error added to V , assumed independent uniform over [−δ, δ]
in each coordinate of each design point, with those components of V leaving
the unit cube being fixed at the boundary. The method can be used for other
distributions as well.

Instead of concentrating solely on the expected discrepancy, we might also
take into account its variance, e.g., by minimizing mean squared error,

min
V ∈U -type

{[E(D(V + τ))]2 + V ar(D(V + τ))} . (4.2)

Given that – except for small δ < 1/2n and a uniform distribution – no
closed form solutions for E(D(V + τ)) and – in general – for V ar(D(V + τ)) are
available, we evaluated these moments by means of Monte Carlo integration, i.e.,
we generated a large number of random drawings of τ and replaced E(D(V + τ))
and V ar(D(V +τ)) by the resulting sample moments. In fact, we used antithetic
variates in these simulations to improve the approximation quality for the rather
modest number of replications which is feasible within the heuristic optimiza-
tion framework. Let f̃(V ) denote these Monte Carlo estimates. Given that the
optimization is run with regard to V , a highly complex optimization problem
results, tackled again using a Threshold Accepting implementation. Some im-
plementation details are presented in the following subsection, while first results
are summarized in Subsection 4.2.
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Algorithm 2 Pseudo-code for the Threshold Accepting implementation.
1: Generate (randomly) initial U -type design V c, initialize Imax and Ti, i = 1, . . . , Imax

2: for i = 1 to Imax do
3: Select V n ∈ N (V c) (neighbor to current solution)
4: Obtain approximation f̃(V n) of objective function (4.1) or (4.2) by Monte Carlo

simulation
5: if f̃(V n) < f̃(V c) + Ti then V c = V n

6: end for

4.1. Implementation details

Algorithm 2 describes the Threshold Accepting implementation for the gen-
eration of robust U -type designs.

The algorithm proceeds similar to the one used for obtaining low discrepancy
U -type designs (Fang et al. (2000)). It starts with a random initial U -type
design V c (1:) that is slightly modified in each iteration (3:). However, the
objective function cannot be evaluated analytically for most cases, but has to be
approximated by means of Monte Carlo simulation (4:) as pointed out above.
For δ < 1/2n and uniformly distributed error terms, the approximation in (4:)
can be replaced by the exact value from Theorem 1. This results in a tremendous
speed up of the algorithm that was used to run the algorithm for such problem
instances (δ = 0.01, δ = 0.02 for n ≤ 20) with a large number of iterations.
However, given the high robustness of uniform designs, the properties of the
robust U -type designs obtained were almost identical to those of the uniform
designs.

Then, the modified design V n became the current solution if the value of f̃
was lower than for the old candidate solution. It was also accepted if f̃ increased
by no more than the current value of the threshold Ti (5:). This threshold ac-
ceptance step was required to avoid getting stuck in local optima. At the same
time, it accounts for the Monte Carlo variance that is inevitable in approximat-
ing f̃ (for another application of threshold accepting in the context of simulated
objective functions, see Winker, Gilli and Jeleskovic (2007)). The implementa-
tion might be improved by fine tuning the threshold sequence as a function of
the Monte Carlo variance, that in turn might be decreased over the number of
iterations by increasing the number of random drawings. This refinement was
not used in the current implementation. Instead we used up to 1,000 drawings
for the Monte Carlo simulation in each step and values of Imax of up to 500,000.

4.2. Results and comparison

Given the high computational load of Algorithm 2 due to the double loop
structure, we did not try to construct robust U -type designs for all cases in groups
(A) – (D) and many different values of δ. Instead, we concentrated on a few
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Table 2. Properties of robust U -type designs with regard to Bias (objective
function (4.1)).

Designs optimized for δ = 0.05 Designs optimized for δ = 0.25
d n µ̂0.05 µ̂0.25 σ̂2

0.05 σ̂2
0.25 µ̂0.05 µ̂0.25 σ̂2

0.05 σ̂2
0.25

2 10 1.0042 1.0010 1.0044 1.0023 1.9716 1.0195 3.1950 1.0671
2 20 1.0595 1.0017 1.0852 1.0067 2.4730 1.0021 3.4741 1.0430
2 30 1.1081 0.9992 1.1785 0.9962 3.4238 0.9641 3.8106 1.0188
3 10 1.0324 0.9991 1.0500 1.0037 1.7303 1.0108 2.7589 1.0355
3 20 1.1497 1.0106 1.2650 1.0142 1.8834 1.0012 2.4649 0.9787
3 30 1.1866 0.9961 1.3043 1.0009 2.0839 0.9970 2.7201 1.0158
5 10 1.0934 1.0044 1.1725 1.0065 1.5364 0.9990 2.2837 0.9626
7 10 1.0313 0.9674 0.8130 0.8836 1.4388 0.9519 1.5970 0.7792
9 10 0.9166 0.8897 0.4959 0.7117 1.2459 0.8667 0.9981 0.5709
7 20 1.1707 0.9982 1.3369 0.9570 1.7765 1.0103 2.7630 0.9126

11 20 1.0188 0.9102 0.6334 0.7117 1.3078 0.8807 1.2127 0.5477
15 20 0.8059 0.7592 0.2537 0.5023 1.0007 0.7002 0.5491 0.2887
19 20 0.5948 0.5788 0.1145 0.3525 0.7497 0.5016 0.2897 0.1363

typical examples, i.e., n ∈ {10, 20, 30} in group (A) and (B), d ∈ {2, 3, 5, 7, 9} in
group (C), and d ∈ {2, 3, 7, 11, 15, 19} in group (D). Furthermore, we considered
one value of δ well below δ∗ for all problem instances (0.05) and one above (0.25).
Given the high degree of robustness of optimized U -type designs reported in
Section 3, we expect only minor improvements for small values of δ (0.05), while
larger uncertainty about the actual design points (0.25) might allow for larger
gains from robustification.

Tables 2 and 3 report the findings for the designs optimized for bias and
MSE, i.e., objective functions (4.1) and (4.2), respectively. We compared the
performance of the robust U -type designs with the uniform designs presented
above. The columns headed by µ̂0.05 and µ̂0.25 report the ratio of the CD2 values
of the robust U -type designs to the CD2 value of the uniform designs, where
for the robust U -type designs uniform noise with δ equal to 0.05 and 0.25 was
added, respectively. To obtain these values, 1,000,000 random draws were used.
Thus, entries smaller than one indicate a higher robustness of the result obtained
by the method described in this section. The same interpretation applies to the
ratios of the variances reported in the columns headed by σ̂2

0.05 and σ̂2
0.25.

The results provide support for the high degree of robustness found for the
uniform designs in the previous section. In fact, for small designs, the method
was not able to suggest designs with a higher level of robustness to low (0.05)
or high (0.25) level of noise in design variables. The algorithm often suggests
designs resulting even in a higher mean and variance. This, of course, is due
to the highly complex double loop optimization problem, that does not always
allow to come up with the global optimum. Theoretically, the results should be



1390 PETER WINKER AND DENNIS K. J. LIN

Table 3. Properties of robust U -type designs with regard to MSE (objective
function (4.2)).

Designs optimized for δ = 0.05 Designs optimized for δ = 0.25
d n µ̂0.05 µ̂0.25 σ̂2

0.05 σ̂2
0.25 µ̂0.05 µ̂0.25 σ̂2

0.05 σ̂2
0.25

2 10 1.0125 1.0010 1.0101 1.0029 2.0511 1.0273 3.4729 1.0997
2 20 1.1004 0.9970 1.1267 0.9989 2.6833 0.9876 3.7447 1.0364
2 30 1.1008 0.9992 1.0448 1.0017 3.4206 0.9797 3.8000 1.0284
3 10 1.0335 0.9975 1.0738 1.0025 1.7045 1.0130 2.8784 1.0432
3 20 1.1503 0.9961 1.2821 0.9899 2.4733 0.9942 3.7322 1.0279
3 30 1.2050 1.0045 1.3588 1.0007 2.3151 1.0123 2.6615 0.9938
5 10 1.0747 1.0145 1.0945 1.0201 1.7796 1.0214 2.8634 1.0257
7 10 1.0459 0.9765 0.8630 0.9099 1.3677 0.9611 1.5811 0.7942
9 10 0.9219 0.8766 0.4590 0.6726 1.1533 0.8635 0.8563 0.5736
7 20 1.2045 0.9947 1.4828 0.9472 1.6715 1.0175 2.4162 0.9228

11 20 1.0243 0.8976 0.6282 0.6665 1.3161 0.8811 1.1956 0.5319
15 20 0.8075 0.7559 0.2698 0.4968 1.0316 0.7039 0.5671 0.2892
19 20 0.5966 0.5809 0.1182 0.3567 0.7194 0.5046 0.2760 0.1486

at least as good as for the uniform design as the latter is within the search space.
In fact, increasing the number of iterations Imax for a few selected cases with
ratios larger than one resulted in ratios much closer to one.

From the designs optimized with regard to a low level of noise, only for
d = 9, n = 10 and d = 15, n = 20 and d = 19, n = 20, the expected value of CD2

was slightly lower than for the uniform design, while the variance was reduced
substantially in these cases. When the designs were optimized with regard to a
higher level of noise, the design for d = 11, n = 20 also was slightly more robust
than the uniform design, while the variance was reduced for the high level of
noise case even for some of the smaller problem instances.

The findings were qualitatively similar for the second objective function con-
sidered, i.e., when minimizing the mean squared error of the discrepancy values.

To summarize our findings, we might conclude that the uniform design is not
robust only in the sense described in the previous section, i.e., in comparison with
random designs. It is also not possible to find U -type designs of higher degree of
robustness by explicit optimization for smaller problem instances. Only for larger
problem instances, in particular when the dimension gets close to the number of
points, more robust designs might be constructed in the way described in this
section.

5. Discussion

Uniform design has received a great deal of attention in the recent literature.
Much of its theoretical development, practical value, as well as performance in
applications has been reported (see, for example, Fang and Lin (2003)). These
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studies are based on the ideal situation where the experimental variables can be
set exactly at the designated values. In some practical applications, however, the
setting of factor level values might be subject to some errors. In this paper, we
investigate the robustness of uniform design under such an error in experimental
variable situation.

The expected L2−discrepancy (CD2) was derived, its closed form is available
when the error is relatively small. A thorough Monte Carlo study was conducted
under various scenarios. Furthermore, the search for the most robust U -type
design was attempted. An algorithm for construction of robust U -type designs
was proposed. The search results under the assumption of uniform error distri-
bution, however, indicate that the uniform design is rather robust for small n and
d. Only for larger d, in particular, when d approaches n, relevant improvements
can be achieved by explicitly searching for robust U -type designs.

Future research will concentrate on the generalization of the closed form ex-
pressions for the expected value under uniform errors for the case of larger errors
(δ ≥ 1/2n) and other distributional assumptions, e.g., normally distributed error
terms. Then, the construction of robust U -type designs will become much more
efficient as the inner Monte Carlo simulation loop in the optimization routine can
be avoided. Otherwise, e.g., for other objective functions like the mean squared
error, it might also be worth considering further improvements of the optimiza-
tion heuristics taking into account the approximation error of the Monte Carlo
integration in the inner loop.
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Appendix A: Proof of Theorem 1

For the proof of Theorem 1 we use the following Lemma.

Lemma 1. For τ, υ ∼ U(−δ, δ) independent, we find

(i) E |τ + c| =


−c , if c ≤ −δ,

δ2+c2

2δ , if − δ < c < δ,
c , if c ≥ δ .

(ii) E |τ + c|2 =
1
3
δ2 + c2 .
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(iii)E |τ − υ + c| =

E |τ + υ + c| =


−c , if c ≤ −2δ,

1
12δ2 (8δ3 + 6δc2 + c3) , if − 2δ < c ≤ 0,

1
12δ2 (8δ3 + 6δc2 − c3) , if 0 ≤ c < 2δ,

c , if c ≥ 2δ .

Proof of Lemma 1.
(i) E|τ + c| = (1/2δ)

∫ δ
−δ |x + c|dx

(1) c ≤ −δ ⇒ x + c ≤ 0
E|τ + c| = −(1/2δ)

∫ δ
−δ(x + c)dx = −c.

(2) −δ ≤ c ≤ δ

E|τ + c| = (1/2δ)
∫ −c
−δ −(x + c)dx + (1/2δ)

∫ δ
−c(x + c)dx = (δ2 + c2)/2δ.

(3) c ≥ δ E|τ + c| = c.

(ii) E|τ + c|2 = (1/2δ)
∫ δ
−δ(x + c)2dx = (1/3)δ2 + c2.

(iii)E|τ − υ + c| = E|τ + υ + c| = (1/4δ2)
∫ δ
−δ

∫ δ
−δ |x + y + c|dxdy

(1) c ≤ −2δ ⇒ x + y + c ≤ 0∫ δ

−δ

∫ δ

−δ
|x + y + c|dxdy = −

∫ δ

−δ
dx

∫ δ

−δ
(x + y + c)dy

= −
∫ δ

−δ
2δ(x + c)dx = −4δ2c.

(2) c ≥ 2δ ⇒ x + y + c ≥ 0
Similar to case (1), we have∫ δ

−δ

∫ δ

−δ
|x + y + c|dxdy = 4δ2c.

(3) −2δ ≤ c ≤ 0∫ δ

−δ

∫ δ

−δ
|x + y + c|dxdy =

∫ δ

−δ

∫ δ

−δ
|x − y + c|dxdy

=
∫ −δ−c

−δ
dx

∫ δ

−δ
−(x − y + c)dy +∫ δ

−δ−c
dx

[∫ x+c

−δ
(x − y + c)dy +

∫ δ

x+c
−(x − y + c)dy

]
=

∫ −δ−c

−δ
−2δ(x + c)dx +

∫ δ

−δ−c

[
1
2
(x + δ + c)2 +

1
2
(x − δ + c)2

]
dx
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= (δc2 − 2δ2c) +
1
3
(8δ3 + c3 + 6δ2c + 3δc2)

=
1
3
(8δ3 + 6δc2 + c3).

(4) 0 ≤ c ≤ 2δ∫ δ

−δ

∫ δ

−δ
|x + y + c|dxdy =

∫ δ

−δ

∫ δ

−δ
|x − y + c|dxdy

=
∫ δ−c

−δ
dx

[∫ x+c

−δ
(x − y + c)dy +

∫ δ

x+c
−(x − y + c)dy

]
+∫ δ

δ−c
dx

∫ δ

−δ
(x − y + c)dy

=
∫ δ−c

−δ

[
1
2
(x + δ + c)2 +

1
2
(x − δ + c)2

]
dx +

∫ δ

δ−c
2δ(x + c)dx

=
1
3
(8δ3 − c3 + 3δc2 − 6δ2c) + (2δ2c + δc2)

=
1
3
(8δ3 + 6δc2 − c3).

Proof of Theorem 1. We proof the following slightly more general version of
Theorem 1 including the case that some vki = 1/2:

Proposition 1. For δ < 1/2n, we have

E
[
CD2(Ṽ ))2

]
=

(
13
12

)d

− 2
n

n∑
k=1

d∏
i=1

[
1+

1
2

(
I(vki−1/2)

∣∣∣∣vki−
1
2

∣∣∣∣+(
1 − I(vki−1/2)

) δ

2

)
− 1

2

∣∣∣∣vki−
1
2

∣∣∣∣2− 1
6
δ2

]

+
1
n2

n∑
k,j=1

d∏
i=1

[
1 +

1
2

(
I(vki−1/2)

∣∣∣∣vki −
1
2

∣∣∣∣ +
(
1 − I(vki−1/2)

) δ

2

)

+
1
2

(
I(vji−1/2)

∣∣∣∣vji −
1
2

∣∣∣∣ +
(
1 − I(vji−1/2)

) δ

2

)
− 1

2
|vki − vji|

]
,

where

I(vki−1/2) =

{
1, if vki − 1

2 6= 0,

0, if vki − 1
2 = 0 .

Proof of Proposition 1. Note that δ < 1/2n and vki 6= 1/2 implies that
|vki − 1/2| > δ. Then the results for the first sum of products follows directly
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from Lemma 1 (i) and (ii). For the second sum of products, again the results for
the first two expected values follow directly from Lemma 1 (i). For vki = 1/2n

the expected values become δ/2 again from Lemma 1 (i). Consider the last term,
E|(vki − vji) + (τki − τji)|. If k = j, the term becomes zero. If k 6= j, τki and τji

are independent by assumption. Then, (iii) of Lemma 1 applies. Furthermore,
as we consider U -type designs with l = n levels, k 6= j implies vki 6= vji. Then,
for δ < 1/2n, the difference (vki−vji) is larger than 2δ in absolute terms. Hence,
the expectation becomes |vki − vji|.

Appendix B: Results for Alternative Distributions

The analysis presented in Section 3 was repeated for the normal and beta
distributions. Some typical shapes of beta distributions are considered with the
parameter combinations (a, b) provided in Table B.1.

The distributions were all scaled such that the noise added to the designs
had mean zero and a variance equal to the one of the uniform distribution for a
given value of δ. Consequently, the results can be compared directly. Figure B.1
shows the resulting values of δ∗ for the problem instances (A) – (D) analyzed in
Section 3 for the normal distribution and the beta distribution with parameters
(1, 1), (1, 3) and (1, 1.5). Thereby, the solid lines correspond to p = 0.05 and the
dashed lines to p = 0.01. Furthermore, for the plots with different run size n (first
row), the grey lines correspond to d = 2, while the dark lines represent d = 3.
For the plots with varying dimension d (second row), the grey lines show results
for n = 20, while the dark lines provide information for the problem instances
with n = 10.

For p = 0.05 we found only minor differences in the values of δ∗ and their
dependence on the run size n and the dimension d, as compared to the results
for the uniform distribution (beta(1,1)). However, when considering a more
binding case of p-δ-robustness for p = 0.01 (dashed lines), we found that the
maximum level of δ satisfying this constraint (δ∗p) was much smaller for heavily
skewed distributions (e.g., beta(1,3)), while similar for symmetric distribution.
The functional form of the dependency on n and d, respectively, remained the
same also for p = 0.01.
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