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Abstract: A common problem associated with longitudinal studies is the dropouts

of subjects or censoring before the end of follow-up. In most existing methods,

it is assumed that censoring is noninformative about missed responses. This as-

sumption is crucial to the validity of many statistical procedures. We develop some

nonparametric hypothesis testing procedures to test for independent censoring in

the absence/presence of covariates. The test statistics are constructed by contrast-

ing two estimators of the conditional mean of cumulative responses for each stratum

of covariate space from sample subsets with different patterns of censoring. Our

method does not require the modelling of longitudinal response processes, therefore

is robust to model misspecifications. A diagnostic plot procedure is also developed

that can be used to identify dependent censoring to certain covariate strata. The

finite sample performances of the tests are investigated through extensive simula-

tion studies. The potential of our methods is demonstrated through the application

of the tests to a chronic granulomatous disease study.
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1. Introduction

Longitudinal data are repeated measurements collected on subjects over a
period of time. Some response processes are observed at discrete sampling times.
Others are continuously observed counting processes of recurrent events. There
is an extensive literature on the analysis of longitudinal data. Among many
others, recent works on nonparametric and semiparametric modelling of longi-
tudinal data collected on observed sampling times include Hoover et al. (1998),
Martinussen and Scheike (1999, 2000, 2001), Lin and Ying (2001) Wu and Zhang
(2002), Fan and Li (2004) and Sun and Wu (2005). Data collected on count-
ing processes at a finite set of sampling times are also called panel count data.
Many authors have studied statistical methods for analyzing panel count data;
cf., Sun and Kalbfleisch (1995), Cheng and Wei (2000), Sun and Wei (2000),
Wellner and Zhang (2000), Hu, Sun and Wei (2003), and Lu, Zhang, and Huang
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(2007). The mean rate modelling for recurrent events based on continuously ob-
served counting processes has been studied by Pepe and Cai (1993), Lawless and
Nadeau (1995), Lin et al. (2000), Scheike (2002), and Schaubel, Zeng and Cai
(2006) among others. Many statistical models and procedures for the intensity of
continuously observed counting processes are discussed by Andersen et al. (1993).

A common problem associated with longitudinal studies is the dropouts of
study subjects or censoring for various reasons. In some situations, censoring
may alter intensities or mean occurrence rate for the events of interest. For
instance in a clinical trial, as noted in Andersen et al. (1993), if those patients
who are particularly ill (or particularly well) are removed from study, then the
remaining patients are no longer “representative” for the sample of patients that
we would have had, had there been no such censoring. In most existing methods
in the analysis of longitudinal data, it is assumed that longitudinal responses and
censoring times are independent conditional on certain relevant covariates. That
is, censoring is not informative about missed responses conditional on covariates.
This assumption is crucial to the validity of many statistical procedures and
its violation can mislead the outcomes of analysis. The goal of this study is
to develop some hypothesis testing procedures to test whether censoring times
are independent of longitudinal responses. Cautions and perhaps alternative
approaches should be taken when there is evidence of dependent censoring.

Let N∗
i (t) be the counting process of recurrent events for the ith subject, Zi

a p-dimensional covariate, and Ci the possible censoring time. In the study of
recurrent event data, a basic assumption for identifiability is that, given the full
data Fτ = {N∗

i (t), Zi; 0 ≤ t ≤ τ}, the censoring event defining the observed data
depends only on the observed part of the data, where τ is the end of follow-up
time. This assumption is called coarsening at random (CAR); see Robins and
Rotnitzky (1992) and Robins (1993). For right censored data it means that, under
CAR, λC(t|Fτ ) = λC(t|Ft) for t < τ , where λC(t|Fτ ) = P (t < C < t + dt|C >
t, Fτ )/dt is the conditional hazard function of censoring variable C given the full
data Fτ . The CAR assumption is essential for the full data parameter of interest
to be identifiable from the distribution of the observed data (Miloslavsky et
al. (2004)). In the modelling of mean rate for the recurrent events, it is often
assumed that E [dN∗

i (t)|Zi, Ci ≥ t] = E [dN∗
i (t)|Zi], 0 ≤ t ≤ τ , which, together

with CAR, implies that the censoring Ci is independent of the counting process
N∗

i (t), 0 ≤ t ≤ τ , given the covariate Zi, as noted in Miloslavsky et al. (2004).
We thus formulate the independent censoring assumption as

NIC1 : E [dN∗
i (s)|Zi, Ci ≥ t] = E [dN∗

i (s)|Zi] , 0 ≤ s ≤ t ≤ τ. (1.1)

The marginal independent censoring refers to the case where the covariate Zi is
removed from the conditioning set in (1.1). The conditional independent censor-
ing does not imply marginal independent censoring, and vice versa. Independent
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censoring has been assumed in the statistical methods developed for the propor-
tional mean rate model (Lin et al. (2000)), the semiparametric transformation
mean rate model (Lin, Wei and Ying (2001)) and the additive mean rate model
(Scheike (2002) and Schaubel, Zeng and Cai (2006)).

Miloslavsky et al. (2004) proposed a class of inverse probability of censoring
weighted estimators for the proportional rate model in the presence of dependent
censoring. The method requires that the censoring mechanism can be estimated
consistently based on {N∗

i (t), Xi, 0 ≤ t ≤ τ}, where Xi includes Zi as a subset.
This method can be implemented by assuming that dependent censoring is in-
duced by omitting certain relevant covariates, and that the censoring mechanism
Ci is independent of the counting process N∗

i (t), 0 ≤ t ≤ τ , given all relevant
covariates Xi. Thus independent censoring is still an assumption that needs to
be checked.

In the analysis of longitudinal data, let Yi(t) be the response process and
N∗

i (t) the counting process of sampling time points for the ith subject. The
full data under the CAR now is Fτ = {N∗

i (t), Yi(t) dN∗
i (t), Zi; 0 ≤ t ≤ τ}. We

refer to the following assumption as independent censoring in case of longitudinal
observations:

NIC2 : E [Yi(s)dN∗
i (s)|Zi, Ci ≥ t] = E [Yi(s)dN∗

i (s)|Zi] , 0 ≤ s ≤ t ≤ τ.
(1.2)

NIC2 becomes NIC1 when Yi(·) = 1. The validity of NIC1 and NIC2 imply the
noninformative censoring assumed in Hoover et al. (1998), Lin and Ying (2001),
Martinussen and Scheike (1999, 2000, 2001), and Sun and Wu (2005).

Diggle (1989) developed a method of testing the hypothesis of random dropouts
within groups. The method applies to the designs with fixed observation time
points. Ridout (1991) introduced logistic regression models to analyze patterns
of occurrence of dropouts in repeated measurement data to increase flexibility.
Under the parametric modelling of longitudinal data, Chen and Little (1999) de-
veloped a Wald-type test of missing completely at random in estimating equation
settings. Qu and Song (2002) proposed a generalized score type test based on
quadratic inference functions, and showed that their test is asymptotically equiv-
alent to Chen and Little’s Wald-type test with improved numerical properties.
Both tests assume the validity of the underlying parametric models and are con-
structed based on generalized estimating equations. In case of significantly small
p-values, it may be difficult to determine whether this is due to the lack of miss-
ing at random or because of the misspecification of the underlying parametric
model.

We propose some robust inference procedures to test whether a censoring
random variable Ci is marginally or conditionally independent of the recur-
rent process N∗

i (t) when covariates may or may not be presented. For longi-
tudinal data, we test whether Ci is marginally or conditionally independent of
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(N∗
i (t), Yi(t) dN∗

i (t)). In terms of Robin’s (1976) classification of missing data
and in case of right censoring, marginal independence corresponds to missing
completely at random and conditional independence corresponds to missing at
random. Our test statistics are not constructed based on any particular models
for N∗

i (t) and Yi(t), and thus are robust to model misspecifications; they can
avoid the difficulty of existing approaches. The rest of the paper is arranged
in the following way. In Section 2, tests of independence are developed in the
absence of covariates. The tests of conditional independence are developed in
Section 3. A simulation study is conducted in Section 4 to examine finite sample
properties of the proposed test procedures. The proposed tests are illustrated
in Section 5 with an application to a chronic granulomatous disease study. All
proofs are allocated to the Appendix.

2. Testing of Independent Censoring in the Absence of Covariates

Assume that the processes (N∗
i (t), Yi(t), Ci), 1 ≤ i ≤ n, are independent and

identically distributed (iid). Let Ni(t) = N∗
i (t∧Ci) and N̄ (Y )(t) =

∫ t
0

∑n
i=1 Yi(s)

Ni(ds). For 0 ≤ s ≤ t, let Ni(s, t) = N∗
i (s)I(Ci ≥ t) and N̄ (Y )(s, t) =∑n

i=1

∫ s
0 Yi(u)Ni(du, t). N̄ (Y )(s, t) is the cumulative response over the time in-

terval [0, s] for those not censored by time t. For Yi(·) = 1, N̄ (1)(s, t) is the total
number of observed recurrent events by time s for those not censored by time t.

Let α(t)dt = E(Yi(t)dN∗
i (t)) and µ(t) =

∫ t
0 α(s) ds. Then µ(t) is the ex-

pected cumulative response over the time interval [0, t]. When Yi(·) = 1, µ(t)
is the mean function of the number of recurrent events by time t, and α(t) is
the mean rate function of recurrent events. We construct two estimators of µ(s)
from sample subsets based on two different patterns of uncensored longitudinal
responses. If censoring is independent, both estimators are consistent estimators
of µ(s). The two estimators would both be biased, however, in different ways
under dependent censoring. Let

µ̄(Y )(s) =
∫ s

0
(ξ̄(u))−1N̄ (Y )(du),

µ̂(Y )(s, t) =
∫ s

0
(ξ̄(t))−1N̄ (Y )(du, t),

where ξ̄(t) =
∑n

i=1 ξi(t) and ξi(t) = I(Ci ≥ t) is the at risk process for the
ith subject. The first estimator µ̄(Y )(s) uses observed data available up to time
s, and the second estimator µ̂(Y )(s, t) is calculated based on the sample subset
of subjects not censored by time t. Under independent censoring, both µ̄(Y )(s)
and µ̂(Y )(s, s) are consistent estimator of µ(s) for 0 ≤ s ≤ τ . We consider the
following test process based the weighted difference of these two estimators:

R(Y )(t) =
√

n

∫ t

0
H(u)

(
µ̄(Y )(du) − µ̂(Y )(du, t)

)
, (2.1)
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where H(·) is a weight process converging in probability to a bounded determin-
istic function h(·), i.e., sup0≤u≤τ |H(u) − h(u)| P−→0.

Let αc
1(s)ds = E(Yi(s)dN∗

i (s)|Ci ≥ s), αc
2(s, t)ds = E(Yi(s)dN∗

i (s)|Ci ≥
t), µc

1(s) =
∫ s
0 αc

1(u) du, µc
2(s, t) =

∫ s
0 αc

2(u, t) du. Under independent censoring
NIC2, αc

1(s) = αc
2(s, t) = α(s) for 0 ≤ s ≤ t. Let G(t) = P (Ci ≥ t) for

the survival function of censoring variable Ci. The asymptotic results given
in the following theorem establish that R(Y )(t) converges weakly to a mean zero
Gaussian process under NIC2 and that µ̄(Y )(s) and µ̂(Y )(s, t) converge to different
limits under dependent censoring.

Theorem 1. Assume that P (Ci ≥ τ) > 0, E(N∗
i (τ)) < ∞, and E(Yi(t)) < ∞

for 0 ≤ t ≤ τ . Also assume that the weight process H(t) can be written as the
difference of two monotone processes, each of which converges in probability to a
bounded deterministic function, such that sup0≤u≤τ |H(u)−h(u)| P−→0. Then the
following decomposition holds uniformly in 0 ≤ t ≤ τ :

R(Y )(t) = n−1/2
n∑

i=1

∫ t

0

h(u)[Yi(u)dNi(u) − I(Ci ≥ u)dµc
1(u)]

G(u)

−n−1/2
n∑

i=1

∫ t

0
h(u)(Yi(u)dNi(u) − µc

2(du, t))
I(Ci ≥ t)

G(t)

+n1/2

∫ t

0
H(u)(dµc

1(u) − µc
2(du, t)) + op(1). (2.2)

Under independent censoring NIC2, R(Y )(t), 0 ≤ t ≤ τ , converges weakly to a
mean zero Gaussian process.

Under NIC2, µc
1(u) = µc

2(u, t) = µ(u) for 0 ≤ u ≤ t. The distribution of
R(Y )(t) can be simulated using the Gaussian multiplier method described below.
We estimate G(t) by ξ̄(t)/n, µc

1(u) by µ̄(Y )(u), and µc
2(u, t) by µ̂(Y )(u, t). Let φi,

i = 1, . . . , n, be iid standard normal random variables, and let

R∗(Y )(t) = n1/2
n∑

i=1

φi

∫ t

0

H(u)
ξ̄(u)

[
Yi(u)dNi(u) − I(Ci ≥ u)dµ̄(Y )(u)

]

−n1/2
n∑

i=1

φi

∫ t

0
H(u)(Yi(u)dNi(u) − µ̂(Y )(du, t))

I(Ci ≥ t)
ξ̄(t)

. (2.3)

By Sun and Wu (2005), the distribution of R(Y )(·) under NIC2 can be approxi-
mated by the distribution R∗(Y )(·) given the observed recurrent event data, which
can be estimated by repeatedly generating independent sets of iid normal devi-
ates. This approach is often called the Gaussian multiplier method and has been
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widely use to approximate the distribution of a Gaussian process that is the limit
of some empirical processes, cf., Lin, Wei and Ying (1993) and Martinussen and
Scheike (2006).

Various test statistics can be constructed to test NIC1 and/or NIC2 based
on the test process R(Y )(t), 0 ≤ t ≤ τ . Setting Yi(·) ≡ 1, we propose to use
the test statistics S(1) = sup0≤t≤τ |R(1)(t)| and L(1) =

∫ τ
0 (R(1)(t))2 dt to test

independent censoring NIC1, and the test statistics S(Y ) = sup0≤t≤τ |R(Y )(t)|
and L(Y ) =

∫ τ
0 (R(Y )(t))2 dt to test NIC2. The test statistics for testing NIC1

and NIC2 can be obtained by taking S = S(1) + S(Y ) and L = L(1) + L(Y ). The
critical values of these test statistics can be estimated by repeatedly generating
R∗(1)(t) and R∗(Y )(t) while holding the observed data sequence fixed. We reject
the null hypothesis NIC1 and/or NIC2 for large values of the test statistics. In
testing independent censoring for recurrent event data, for example, we replace
R(1)(t) in S(1) and L(1) by R∗(1)(t) to obtain S∗(1) and L∗(1), respectively. The
critical values of the test statistics S(1) and L(1) at the significance level α can be
estimated by the upper α percentiles of S∗(1) and L∗(1), respectively, given the
observed data sequence.

It follows from (2.2) that the presence of dependent censoring can be captured
through the term n1/2

∫ t
0 H(u)(µc

1(du)−µc
2(du, t)) which equals n1/2(µc

1(t)−µc
2(t))

for H(·) = 1, where µc
2(t) = µc

2(t, t). This is further demonstrated in the following
for testing dependent censoring for recurrent event processes. It has been argued
by many authors that dependence between recurrent event process and censoring
time can be fully explained by all the collected covariates, cf., Miloslavsky et al.
(2004) and Zeng (2005). Suppose that Xi is the collection of covariates such that
N∗

i (·) is independent of Ci given Xi. Setting Yi(·) ≡ 1,

µc
1(t) =

∫ t

0
E(dN∗

i (s)|Ci ≥ s) =
∫ t

0
E[E(dN∗

i (s)|Xi)|Ci ≥ s],

µc
2(t) =

∫ t

0
E(dN∗

i (s)|Ci ≥ t) =
∫ t

0
E[E(dN∗

i (s)|Xi)|Ci ≥ t].

Suppose E(dN∗
i (t)|Xi) = α0(t) exp(γT Xi)dt, where α0(t) is an unspecified

baseline function and γ is an unknown vector of parameters. Then µc
1(t) =∫ t

0 α0(s)E(exp(γT Xi)|Ci ≥ s) ds and µc
2(t) = A0(t)E(exp(γT Xi)|Ci ≥ t) with

A0(t) =
∫ t
0 α0(s) ds. Let q(t) = E(exp(γT Xi)|Ci ≥ t). If µc

1(t) = µc
2(t) for all t,

then A0(t)q(t) =
∫ t
0 α0(s)q(s) ds, which implies that q(t) does not depend on t.

Thus, E(dN∗
i (t)|Ci ≥ t) = α0(t)E(exp(γT Xi)|Ci ≥ t) = E(dN∗

i (t)). This shows
that independent censoring is equivalent to µc

2(t) = µc
1(t) for all t. By Theorem

1, the supremum test statistic S(1) and the integrated square test statistics L(1)

yield consistent tests against any type of dependent censoring.
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3. Testing of Conditional Independent Censoring Given Covariates

In the presence of a p-dimensional covariate Zi, let αc
1(s, Zi)ds = E(Yi(s)

dN∗
i (s)|Zi, Ci ≥ s) and αc

2(s, t, Zi)ds = E(Yi(s)dN∗
i (s)|Zi, Ci ≥ t). Let α(s, Zi)ds

= E(Yi(s)dN∗
i (s)|Zi) be the true regression function. Under NIC2, we have

αc
1(s, Zi) = αc

2(s, t, Zi) = α(s, Zi).
Assume that the processes (N∗

i (t), Yi(t), Zi, Ci), 1 ≤ i ≤ n, are indepen-
dent identically distributed. Let Gi(t) = G(t|Zi) = P (Ci ≥ t|Zi) and Ĝi(t) =
Ĝ(t|Zi) be its nonparametric or semiparametric estimator. Partition the covari-
ate space into K strata, ∆k, k = 1, . . . ,K. For each stratum, define µc

1k(s) =∫ s
0 E[I(Zi ∈ ∆k)αc

1(u,Zi)] du, µc
2k(s, t) =

∫ s
0 E[I(Zi ∈ ∆k)αc

2(u, t, Zi)] du, and
µk(s) =

∫ s
0 E[I(Zi ∈ ∆k)α(u,Zi)] du. Here µk(s) is the expected value in the kth

stratum of the conditional mean of cumulative response given Zi over time inter-
val [0, s]. The other two terms µc

1k(s) and µc
2k(s, t) have similar interpretations

except that they are obtained by conditioning on different subsets of censoring
variable. Let

µ̄
(Y )
k (s) =

∫ s

0
n−1

n∑
i=1

I(Zi ∈ ∆k)(Ĝi(u))−1Yi(u)Ni(du),

µ̂
(Y )
k (s, t) =

∫ s

0
n−1

n∑
i=1

I(Zi ∈ ∆k)(Ĝi(t))−1Yi(u)Ni(du, t)

for 0 ≤ s ≤ t ≤ τ . Then µ̄
(Y )
k (s) and µ̂

(Y )
k (s, t) are consistent estimators of

µc
1k(s) and µc

2k(s, t), respectively. The two estimators µ̄
(Y )
k (s) and µ̂

(Y )
k (s, t) are

calculated from sample subsets within stratum k based on two different patterns
of uncensored longitudinal responses. Under NIC2, µc

1k(s) = µc
2k(s, t) = µk(s),

and thus µ̄
(Y )
k (s) and µ̂

(Y )
k (s, t) are consistent estimators of µk(s). They are,

however, biased in different ways under dependent censoring.
Let Hk(u) be some suitable weight processes such that |Hk(u)− hk(u)| P−→0

for some bounded deterministic functions hk(u). We form the following test
processes as weighted difference between the two estimators of µk(t):

R
(Y )
k (t) =

√
n

∫ t

0
Hk(u) (µ̄(Y )

k (du) − µ̂
(Y )
k (du, t)), k = 1, . . . ,K. (3.1)

For longitudinal data, censoring time Ci is observed for each subject (taken
as the last available observation time). The conditional distribution of censoring
times can be estimated nonparametrically or through semiparametric models.
Here we assume that censoring times Ci follow the proportional hazards model

λc(t|Zi) = λ0(t) exp{βT Zi}, (3.2)
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where λ0(t) is an unspecified baseline function and β is a p-dimensional vec-
tor of parameters. Under (3.2), Gi(t) = exp{−Λ0(t) exp{βT Zi}} where Λ0(t) =∫ t
0 λ0(u) du. The estimators for β and Λ0(t) can be obtained based on the stan-

dard partial likelihood method. Let S(j)(t, β) = n−1
∑n

i=1 ξi(t) exp{βT Zi}Z⊗j
i ,

for j = 0, 1, 2, where Z⊗0
i = 1, Z⊗1

i = Zi, and Z⊗2
i = ZiZ

T
i . Let Z̄(t; β) =

S(1)(t, β)/S(0)(t, β) and N c
i (t) = I(Ci ≤ t). The maximum partial likelihood

estimator β̂ of β solves the partial likelihood estimation equation

n∑
i=1

∫ τ

0
{Zi − Z̄(t; β)} dN c

i (t) = 0. (3.3)

The Nelson-Aalen estimator for Λ0(t) is Λ̂0(t) =
∑n

i=1

∫ t
0 dN c

i (s)/
∑n

j=1 ξj(s)
exp(β̂T Zj). The survival function Gi(t) can be estimated by Ĝi(t) = exp{−Λ̂0(t)
exp{β̂T Zi}}.

Let s(j)(t) = ES(j)(t, β) and z̄(t) = s(1)(t)/s(0)(t). Let A = E{
∫ τ
0 (Zi −

z̄(t))⊗2 dN c
i (t)}. Assume that the matrix A is nonsingular. The asymptotic

property for the test process R
(Y )
Z (t) = (R(Y )

1 (t), . . . , R(Y )
K (t)) is stated in the

following theorem.

Theorem 2. Assume that P (Ci ≥ τ) > 0, E(N∗
i (τ)) < ∞ and E(Yi(t)) < ∞

for 0 ≤ t ≤ τ . Assume that the weight processes Hk(t) can be written as the
difference of two monotone processes, each of which converges in probability to
a bounded deterministic function, such that sup0≤u≤τ |Hk(u) − hk(u)| P−→0 for
1 ≤ k ≤ K. Then, uniformly in 0 ≤ t ≤ τ for 1 ≤ k ≤ K,

R
(Y )
k (t) = n−1/2

n∑
i=1

rki(t) + n1/2

∫ t

0
Hk(u) (µc

1k(du) − µc
2k(du, t)) + op(1), (3.4)

where rki(t)’s are defined in (A.10). Under conditional independent censoring
NIC2, R

(Y )
Z (t) converges weakly to a vector of K-dimensional mean zero Gaussian

processes on [0, τ ].

Under NIC2, µc
1k(s) = µc

2k(s, t) for 0 ≤ s ≤ t. Let r̂ki(t) be the empirical
counterpart of rki(t) by plugging in the consistent estimators β̂, Λ̂0(·), Ĝi(·),
S(i)(·, β̂), and Hk(·) for β, Λ0(·), Gi(·), s(i)(·, β̂), and hk(·), respectively. Let
φi, i = 1, . . . , n, be iid standard normal random variables, independent of the
observed data. Define

R
∗(Y )
k (t) = n−1/2

n∑
i=1

φir̂ki(t), (3.5)
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and let R
∗(Y )
Z (t) = (R∗(Y )

1 (t), . . . , R∗(Y )
K (t)). Then under NIC2, the processes

R
(Y )
Z (t) and R

∗(Y )
Z (t) converge weakly to the same mean zero Gaussian limit

processes by Lemma 1 of Sun and Wu (2005). The null distribution of R
(Y )
Z (·)

can be estimated using a number of realizations from R
∗(Y )
Z (·) by repeatedly

generating independent sets of iid standard normal random variables φi, i =
1, . . . , n.

The test statistics similar to those proposed in Section 2 can be constructed
here. Let S

(Y )
Z =

∑K
k=1 sup0≤t≤τ |R

(Y )
k (t)| and L

(Y )
Z =

∑K
k=1

∫ τ
0 (R(Y )

k (t))2 dt.

We use the test statistics S
(1)
Z and L

(1)
Z to test NIC1 and S

(Y )
Z and L

(Y )
Z to test

NIC2. The test statistics for testing NIC1 and NIC2 can be obtained by taking
SZ = S

(1)
Z + S

(Y )
Z and LZ = L

(1)
Z + L

(Y )
Z . Critical values can be estimated by

repeatedly generating copies of (R∗(1)
Z (·), R∗(Y )

Z (·)) while holding the observed
data fixed. The null hypotheses NIC1 and/or NIC2 are rejected for large values
of the corresponding test statistics.

Note that if NIC2 does not hold, i.e., the censoring is not independent con-
ditional on Zi, then αc

1(u, , Zi) 6= αc
2(u, t, Zi) for some 0 ≤ u ≤ t and Zi. Suppose

that hk(u) > 0, 0 ≤ u ≤ τ for k = 1, · · · ,K. If a partition ∆k is chosen such
that P (Zi ∈ ∆k) 6= 0 and E[αc

1(u,Zi)|Zi ∈ ∆k] 6= E[αc
2(u, t, Zi)|Zi ∈ ∆k], then∫ t

0 hk(u)(µc
1k(du) − µc

2k(du, t)) 6= 0 and n1/2
∫ t
0 hk(u) (µc

1k(du) − µc
2k(du, t)) P−→∞

for some t ∈ [0, τ ], in which case the test statistics S
(Y )
Z and L

(Y )
Z converge in

probability to ∞ as n → ∞.
The test statistics based on stratifications over the values of covariates are

more sensitive in detecting dependent censoring conditional on the covariates.
Without stratifications, the tests are able to detect marginal dependence between
censoring time Ci and response processes N∗

i (t) and/or Yi(t)dN∗
i (t), but not sen-

sitive to conditional dependence. Since much literature on recurrent events and
longitudinal data analysis assumes conditional independence given covariates, the
tests developed here provide a tool to check the validity of these assumptions.
The tests developed here do not assume any models for (N∗

i (·), Yi(·)); they are
robust and applicable to many situations regardless of the underlying models.

Let us look at a simple case to see how dependent censoring is captured by
the proposed test statistics for NIC1. Set Yi(·) ≡ 1 and assume that N∗

i (·) and Ci

are dependent conditional on Zi and independent conditional on a larger set of co-
variates Xi. Assume that E{dN∗

i (t)|Xi} = α0(t) exp(γT Xi) dt, where α0(t) is an
unspecified baseline function and γ is an unknown vector of parameters. It follows
that αc

1(s, Zi)ds = E[E{dN∗
i (s)|Xi}|Zi, Ci ≥ s] = α0(s) E{exp(γT Xi)|Zi, Ci ≥

s}ds and αc
2(s, t, Zi)ds = E[E{dN∗

i (s)|Xi}|Zi, Ci ≥ t] = α0(s) E{exp(γT Xi)|Zi,
Ci ≥ t}ds. Let qk(t) = E[I(Zi ∈ ∆k) E{exp(γT Xi)|Zi, Ci ≥ t}]. Then E[I(Zi ∈
∆k) αc

1(s, Zi)] = α0(s) qk(s) and E[I(Zi ∈ ∆k) αc
2(s, t, Zi)] = α0(s) qk(t). If
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µc
1k(t) = µc

2k(t, t) for 0 ≤ t ≤ τ , 1 ≤ k ≤ K, then
∫ t
0 E[I(Zi ∈ ∆k)αc

1(s, Zi)] ds =∫ t
0 E[I(Zi ∈ ∆k)αc

2(s, t, Zi)] ds. Hence
∫ t
0 α0(s)qk(s) ds =

∫ t
0 α0(s)qk(t) ds. It fol-

lows that qk(t) does not depend on t, 0 ≤ t ≤ τ for 1 ≤ k ≤ K. In case Zi is
a discrete random variable taking K different values classified by ∆1, . . . , ∆K ,
this implies that E{exp(γT Xi)|Zi ∈ ∆k, Ci ≥ t} does not depend on t for
0 ≤ t ≤ τ and 1 ≤ k ≤ K, hence not on Ci. We have E[dN∗

i (t)|Zi, Ci ≥ t] =
α0(t) E{exp(γT Xi)|Zi} = E[E{dN∗

i (t)|Xi}|Zi] = E{dN∗
i (t)|Zi}. Thus N∗

i (·)
and Ci are independent given Zi. This shows that, for discrete Zi, the condi-
tional independence of N∗

i (·) and Ci given Zi is equivalent to µc
1k(t) = µc

2k(t, t)
for 0 ≤ t ≤ τ , 1 ≤ k ≤ K.

In general, given that hk(t) > 0 for 0 ≤ t ≤ τ , the tests based on L
(1)
Z

and S
(1)
Z for testing NIC1 can detect dependent censoring at the stratum level.

Theoretically speaking, the tests are more sensitive to dependent censoring when
there are more strata. However, a large number of strata may slow the rate
of convergence of the test process R

(1)
k (t) within each stratum and affect the

performance of the tests in terms of size and power. Similar remarks apply to
the tests for NIC2.

4. Simulation Studies

In this section, we report on a simulation study to investigate the finite sam-
ple performance of the proposed tests. Simulation experiments were conducted
for the tests of independent censoring for recurrent events processes in the ab-
sence/presence of covariates and for tests of conditional independent censoring
for longitudinal response processes given covariates. All test statistics were con-
structed using the identity weight process.

4.1. Tests of independent censoring for recurrent event processes in
the absence of covariates

First, we describe the settings of simulation models under the null hypothesis
NIC1 to examine the sizes of the tests L(1) and S(1) for independence between
recurrent event processes N∗

i (·) and censoring times Ci without conditioning
on covariates. We simulated the recurrent event process N∗

i (t) from a Poisson
process on [0, 5] with E(N∗

i (t)) = γ0t and censoring Ci was taken to be uniformly
distributed over (0, ν0), independent of N∗

i (·). The parameters γ0 and ν0 were
chosen to yield different levels of censorings and different numbers of observations
per subject by τ = 5. The following settings of the parameters (γ0, ν0) were
selected to check the sizes of the tests L(1) and S(1):

M1 : (γ0, ν0) = (1.1, 15); M2 : (γ0, ν0) = (0.8, 15);
M3 : (γ0, ν0) = (1.0, 8); M4 : (γ0, ν0) = (0.8, 8).
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To examine the powers of the tests L(1) and S(1), we considered simulation
models under which Ci depends on N∗

i (·). Let Zi be a binary covariate with
probability p = 0.5. The process N∗

i (t) was taken to be a Poisson process condi-
tional on Zi with E(N∗

i (t)|Zi) = γ0t exp(0.5θ0Zi). The censoring times Ci were
generated based on the hazard function λc(t|Zi) = β0 exp(0.5θ0Zi), independent
of N∗

i (·) conditional on Zi. However, Ci and N∗
i (·) were dependent without con-

ditioning on Zi; larger value of |θ0| induces higher correlation between Ci and
N∗

i (·) in the absence of covariate Zi. We chose θ0 = 1.5 and 2.0. The combina-
tion of the parameters (γ0, β0, θ0) yielded different levels of censorings by τ = 5,
different numbers of observations per subject on [0, τ ], and different degrees of
dependence between Ci and N∗

i (·). We denote the settings of the parameters
(γ0, β0) under the alternative hypotheses by

M5 : (γ0, β0) = (0.8, 0.07); M6 : (γ0, β0) = (0.5, 0.05);
M7 : (γ0, β0) = (0.8, 0.15); M8 : (γ0, β0) = (0.5, 0.10).

Table 1 shows the observed size and power of the test statistics L(1) and
S(1) for selected models at the nominal level 0.05. Listed in Table 1 are also the
percentage of censoring by τ = 5, and the average number of observed events
per subject under each model. The reported censoring rates here and in other
tables refer to the percentages of the subjects with censored events in the time
period [0, τ ]. They are within 6% of the actual percentages of the censoring
of the simulation settings. Each entry was obtained from 1,000 independent
samples. For each sample, the critical values of the tests were estimated from
1,000 realizations from R∗(1)(t), 0 ≤ t ≤ τ , conditional on the observed sample
data. The observed sizes of the tests are reasonably close to the nominal level
0.05. The powers increase as θ0 increases. The powers also increase as the number
of observations increases.

4.2. Tests of conditional independent censoring for recurrent event
processes given covariates

Now, we describe the simulation models under the null hypothesis NIC1 to
evaluate the performance of tests L

(1)
Z and S

(1)
Z for testing conditional indepen-

dence between recurrent event processes N∗
i (·) and censoring times Ci given the

covariates. We considered two covariates Z1i and Z2i, where Z1i is a binary ran-
dom variable with probability p = 0.5 and Z2i is uniformly distributed on [0, 1].
The recurrent events process N∗

i (t) was taken to be a Poisson process on [0, 5]
conditional on Zi = (Z1i, Z2i), with

E(N∗
i (t)|Z1i, Z2i) = γ0t exp(θ1γ1Z1i + γ2Z2i). (4.1)
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Table 1. Empirical size and power of the tests L(1) and S(1) for marginal
independence between censoring and recurrent event process at the nominal
level α = 0.05.

Censoring Setting θ0
Avg.#
obs. Test Sample size n

200 300 400 500 800
Sizes

30% M1 3.8 L(1) 0.039 0.037 0.038 0.050 0.042
S(1) 0.040 0.036 0.048 0.041 0.042

M2 5.0 L(1) 0.054 0.046 0.051 0.041 0.060
S(1) 0.061 0.049 0.051 0.043 0.060

50% M3 3.4 L(1) 0.054 0.054 0.039 0.061 0.068
S(1) 0.056 0.058 0.047 0.057 0.059

M4 4.3 L(1) 0.072 0.052 0.043 0.054 0.049
S(1) 0.065 0.054 0.045 0.057 0.056

Powers
30% M5 1.5 3.3 L(1) 0.296 0.389 0.495 0.617 0.817

S(1) 0.303 0.422 0.517 0.633 0.834
2.0 L(1) 0.624 0.795 0.905 0.948 0.998

S(1) 0.634 0.809 0.895 0.954 0.999
M6 1.5 5.7 L(1) 0.334 0.476 0.561 0.647 0.860

S(1) 0.349 0.500 0.594 0.684 0.858
2.0 L(1) 0.657 0.837 0.915 0.967 0.996

S(1) 0.694 0.835 0.929 0.971 0.996
50% M7 1.5 2.9 L(1) 0.385 0.543 0.625 0.789 0.919

S(1) 0.389 0.535 0.618 0.781 0.909
2.0 L(1) 0.740 0.899 0.954 0.983 0.999

S(1) 0.703 0.876 0.938 0.973 0.997
M8 1.5 4.9 L(1) 0.531 0.670 0.810 0.885 0.977

S(1) 0.496 0.671 0.799 0.884 0.977
2.0 L(1) 0.807 0.947 0.985 0.997 1.000

S(1) 0.800 0.938 0.978 0.995 1.000

The right censoring Ci was independent of N∗
i (·) conditional on Z1i and Z2i and

had the proportional hazards function

λc(t|Zi) = β0 exp(θ1β1Z1i + β2Z2i). (4.2)

It is easy to check that the hazard function of censoring times conditional on Z2i

is still proportional. The value of θ1 induces dependence between Ci and N∗
i (·)

conditional on Z2i. When θ1 = 0, N∗
i (·) and Ci are conditionally independent

given Z2i. They are, however, dependent by conditioning on Z2i alone if θ1 6= 0.
There is an increased dependence between N∗

i (·) and Ci conditional on Z2i when
|θ1| is increased.
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We list the following settings of parameters for (4.1) and (4.2). We chose the
settings M9–M12 and θ1 = 0 to represent the models under the null hypothe-
ses that N∗

i (·) and Ci are conditionally independent given Z2i. The settings
M13–M16 with θ1 = 1.5 and 2 are selected to represent the models under the
alternative hypotheses that N∗

i (·) and Ci are dependent conditional Z2i.

M9 : (γ0, γ1, γ2) = (1, 0, 5.5), (β0, β1, β2) = (0.07, 0, 1);

M10: (γ0, γ1, γ2) = (1, 0, 3.5), (β0, β1, β2) = (0.13, 0, 1);

M11: (γ0, γ1, γ2) = (1, 0, 5.0), (β0, β1, β2) = (0.15, 0, 1);

M12: (γ0, γ1, γ2) = (1, 0, 3.0), (β0, β1, β2) = (0.13, 0, 1);

M13: (γ0, γ1, γ2) = (1, 2, 2.5), (β0, β1, β2) = (0.07, 0.7, 0.9);

M14: (γ0, γ1, γ2) = (1, 2, 1.5), (β0, β1, β2) = (0.05, 0.7, 0.9);

M15: (γ0, γ1, γ2) = (1, 3, 1.5), (β0, β1, β2) = (0.15, 0.7, 0.9);

M16: (γ0, γ1, γ2) = (1, 2, 1.5), (β0, β1, β2) = (0.10, 0.7, 0.9).

Table 2 presents the observed size and power of the tests L
(1)
Z and S

(1)
Z

at the nominal level 0.05 for the selected models. The tests were constructed
with K = 2 partitions of Z2 ≤ 0.5 and Z2 > 0.5. Table 2 also presents the
percentage of censoring by τ = 5 and the average number of observed events per
subject under each model. Each entry was estimated from 1,000 independent
samples. For each sample the critical values of the tests were obtained from
1,000 realizations of R

∗(1)
Z (·). The observed size of both tests were reasonably

close to the nominal level 0.05 with L
(1)
Z performing slightly better than S

(1)
Z . As

the sample size increased from 200 to 800, the accuracy further improved. The
power of both tests increased as θ1 increased. Power also increased as censoring
got heavier and as sample size increased.

4.3. Tests of conditional independent censoring for longitudinal pro-
cesses given covariates

Here we examine the performance of the tests L
(Y )
Z and S

(Y )
Z for NIC2, that

the censoring times Ci and longitudinal responses Yi(t)dN∗
i (t), 0 ≤ t ≤ τ , are

conditionally independent given covariates. Consider the recurrent event pro-
cesses N∗

i (·) on [0, 5] to be Poisson processes conditional on Z2i with

E(N∗
i (t)|Z2i) = γ0t exp(γ1Z1i + γ2Z2i). (4.3)

Let the censoring times Ci follow the proportional hazards model

λc(t|Z1i, Z2i) = β0 exp(θ2β1Z1i + β2Z2i), (4.4)
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Table 2. Empirical size and power of the tests L
(1)
Z and S

(1)
Z with K =

2 partitions for conditional independence between censoring and recurrent
event process given covariates at nominal level α = 0.05.

Censoring Setting θ1
Avg.#
obs. Test Sample size n

200 300 400 500 800
Sizes

30% M9 0 3.8 L
(1)
Z 0.051 0.043 0.052 0.049 0.050

S
(1)
Z 0.070 0.064 0.064 0.073 0.065

M10 0 4.6 L
(1)
Z 0.032 0.032 0.052 0.056 0.054

S
(1)
Z 0.055 0.048 0.066 0.073 0.061

50% M11 0 3.3 L
(1)
Z 0.029 0.031 0.051 0.046 0.045

S
(1)
Z 0.046 0.057 0.067 0.054 0.056

M12 0 5.2 L
(1)
Z 0.030 0.034 0.054 0.054 0.052

S
(1)
Z 0.052 0.054 0.065 0.069 0.060

Powers
30% M13 1.5 3.7 L

(1)
Z 0.349 0.464 0.592 0.695 0.898

S
(1)
Z 0.402 0.548 0.666 0.771 0.929

2.0 L
(1)
Z 0.509 0.667 0.808 0.902 0.985

S
(1)
Z 0.577 0.731 0.861 0.930 0.993

M14 1.5 5.6 L
(1)
Z 0.441 0.569 0.678 0.802 0.945

S
(1)
Z 0.535 0.641 0.771 0.863 0.965

2.0 L
(1)
Z 0.647 0.829 0.913 0.970 0.999

S
(1)
Z 0.749 0.887 0.953 0.978 1.000

50% M15 1.5 4.3 L
(1)
Z 0.383 0.577 0.729 0.870 0.978

S
(1)
Z 0.357 0.542 0.687 0.818 0.963

2.0 L
(1)
Z 0.441 0.665 0.829 0.927 0.997

S
(1)
Z 0.357 0.569 0.715 0.841 0.976

M16 1.5 5.0 L
(1)
Z 0.436 0.630 0.766 0.879 0.980

S
(1)
Z 0.458 0.644 0.788 0.878 0.983

2.0 L
(1)
Z 0.609 0.807 0.922 0.972 0.998

S
(1)
Z 0.601 0.803 0.909 0.964 1.000

and the longitudinal responses follow the additive model

Yi(t) = (ψ0 + ψ1t) + θ2ψ2Z1i + ψ3Z2i + εi(t), (4.5)

where εi(t) has a normal distribution with mean ηi and variance σ2
ε = 1 condi-

tional on the ith subject, and ηi is normal with mean zero and variance σ2
η = 1.

The triple (Ci, N
∗
i (·), Yi(·)dN∗

i (·)) are conditional independent given the covari-
ates (Z1i, Z2i). The Yi(·)dN∗

i (·) and Ci conditionally independent given Z2i if
θ2 = 0, and they are dependent by conditioning on Z2i alone if θ2 6= 0. The θ2
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induces dependence between Yi(·)dN∗
i (·) and Ci conditional on Z2i. This depen-

dence increases as |θ2| increases.
The following settings of the parameters under (4.3), (4.4), and (4.5), to-

gether with the choices of θ2 = 0, 2.0 and 2.5, were used in simulations to check
the performance of the tests L

(Y )
Z and S

(Y )
Z .

Settings (γ0, γ1, γ2) (β0, β1, β2) (ψ0, ψ1, ψ2, ψ3)
M17: (1, 0, 5.5) (0.07, 0, 1) (1, 0.5, 0, 1)
M18: (1, 0, 3.5) (0.13, 0, 1) (1, 0.5, 0, 1)
M19: (1, 0, 5.0) (0.15, 0, 1) (1, 0.5, 0, 1)
M20: (1, 0, 3.0) (0.13, 0, 1) (1, 0.5, 0, 1)
M21: (1, 0, 5.5) (0.04, 1, 0.01) (1, 0.5, 2.5, 1)
M22: (1, 0, 3.5) (0.04, 1, 0.01) (1, 0.5, 2.5, 1)
M23: (1, 0, 3.3) (0.07, 1, 0.01) (1, 0.5, 2.5, 1)
M24: (1, 0, 2.5) (0.07, 1, 0.01) (1, 0.5, 2.5, 1)

Table 3 presents the empirical size and power of the test statistics L
(Y )
Z and

S
(Y )
Z , which were obtained based on the partition of covariate space for Z2 into

two stratum Z2 ≤ 0.5 and Z2 > 0.5. The percentage of censoring by τ = 5 and
the average number of observed events per subject under each model are also
listed in Table 3. The observed sizes and powers of the tests at the nominal
level 0.05 were estimated from 1,000 independent samples. For each sample the
critical values of the tests were obtained from 1,000 realizations of R

∗(Y )
Z (·). The

observed size of the test L
(Y )
Z were reasonably close to the nominal level 0.05 while

the test S
(Y )
Z had slightly inflated observed sizes at the 30% censoring rate. Both

tests had improved observed sizes close to 0.05 at the 50% censoring rate. Since
the construction of the test statistics involved the estimation of the conditional
survival function of the censoring time. A smaller censoring rate can result in
larger variation in the values of the test statistics, and thus more variability in the
observed sizes. The empirical size became stable around the nominal level 0.05
as the percentage of censoring increased and as the sample size increased. The
observed power increased as sample size, censoring percentage, or θ2 increased.

5. Application to Chronic Granulotomous Disease Study

We applied the proposed tests to a placebo controlled randomized trial of
gamma interferon in chronic granulotamous disease (CGD). Chronic granulota-
mous disease is a group of inherited rare disorders of the immune function char-
acterized by recurrent pyogenic infections which usually present early in life and
may lead to death in childhood. A description of this study can be found in
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Table 3. Empirical size and power of the tests L
(Y )
Z and S

(Y )
Z with K = 2

partitions for conditional independence between censoring and longitudinal
response process given covariates at nominal level α = 0.05.

Censoring Setting θ2
Avg.#
obs. Test Sample size n

200 300 400 500 800
Sizes

30% M17 0 3.0 L
(Y )
Z 0.043 0.049 0.062 0.076 0.054

S
(Y )
Z 0.070 0.070 0.083 0.085 0.083

M18 0 5.1 L
(Y )
Z 0.050 0.052 0.054 0.063 0.053

S
(Y )
Z 0.077 0.069 0.073 0.088 0.068

50% M19 0 3.0 L
(Y )
Z 0.027 0.034 0.047 0.035 0.036

S
(Y )
Z 0.047 0.046 0.060 0.045 0.052

M20 0 5.1 L
(Y )
Z 0.038 0.040 0.045 0.050 0.040

S
(Y )
Z 0.048 0.046 0.057 0.068 0.045

Powers
30% M21 2.0 3.5 L

(Y )
Z 0.063 0.136 0.226 0.321 0.629

S
(Y )
Z 0.120 0.233 0.340 0.448 0.734

2.5 L
(Y )
Z 0.194 0.387 0.622 0.748 0.958

S
(Y )
Z 0.353 0.557 0.759 0.853 0.986

M22 2.0 5.0 L
(Y )
Z 0.109 0.253 0.389 0.519 0.814

S
(Y )
Z 0.184 0.368 0.493 0.641 0.883

2.5 L
(Y )
Z 0.362 0.616 0.816 0.911 0.999

S
(Y )
Z 0.525 0.728 0.885 0.959 0.999

50% M23 2.0 4.3 L
(Y )
Z 0.312 0.547 0.751 0.860 0.976

S
(Y )
Z 0.417 0.655 0.814 0.896 0.985

2.5 L
(Y )
Z 0.540 0.779 0.941 0.981 1.000

S
(Y )
Z 0.651 0.882 0.960 0.990 0.999

M24 2.0 5.0 L
(Y )
Z 0.420 0.673 0.836 0.930 0.992

S
(Y )
Z 0.535 0.748 0.885 0.950 0.997

2.5 L
(Y )
Z 0.688 0.904 0.981 0.993 1.000

S
(Y )
Z 0.779 0.947 0.986 0.999 1.000

Fleming and Harrington (1991). In order to study the ability of gamma inter-
feron to reduce the rate of serious infections, a double-blinded clinical trial was
conducted in which patients were randomized to placebo vs. gamma interferon.

Between October 1988 and March 1989, 128 eligible patients with CGD were
accrued and followed for any recurrent serious infections. There were 63 patients
on gamma interferon and 65 placebo. By the end of the trial, 30 of 65 placebo
patients and 14 of 63 patients on gamma interferon had experienced at least one
serious infection. Of the 30 placebo patients with at least one infection, eighteen
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had experienced one infection, five others had experienced two, four others had
experienced three, three others had four or more. Of the 14 patients on gamma
interferon with at least one infection, nine had experienced one infection, four
others had experienced two, and one had a third infection. Overall, a total of 56
serious infections were observed on placebo compared to only 20 among patients
on gamma interferon. The average number of observed events was 0.59 (76 of
observed recurrent events for 128 individuals).

Let N∗
i (t) be the number of observed serious infections by time t for ith

subject. Lin et al. (2000) analyzed CGD data using the proportional mean rate
model for N∗

i (·) and found that treatment and age are significant, indicating that
gamma interferon is effective in reducing the rate of recurrent serious infections,
and that older children have less frequent serious infection than younger ones.
The analysis assumed that N∗

i (·) and the censoring time Ci are conditional in-
dependent given the treatment indicator and age. To check the validity of this
assumption, the proposed tests were applied to test if censoring or drop-out of a
patient is independent of recurrent serious infections.

First, we tested that censoring times and the recurrent event processes are
independent in the absence of covariate. The longest follow-up time in CGD data
was 1.2 years. We took τ=1 year. The values of the test statistics are L(1) = 1.72
(p-value=0.121) and S(1) = 4.61 (p-value=0.305), which are not significant at
5% significance level. The diagnosis plot of R(1)(t) against 50 realizations from
R∗(1)(t) shown in Figure 1 does not show visible patterns of departure of R(1)(t)
from the realizations of R∗(1)(t). We conclude that there is no significant evidence
of dependence between censoring times and the recurrent event processes without
conditioning on covariates.

Next, the test of independent censoring was conducted by conditioning on
treatment indicator Z1 and age Z2. We considered a partition of covariate space
into K = 4 partitions based on treatment groups and whether age ≤ 14.64 or
> 14.64 years, where 14.64 is the mean age of the patients. The values of the
test statistics are L

(1)
Z = 8.70 (p-value=0.004) and S

(1)
Z = 21.39 (p-value=0.017),

significant at the 5% level. This suggested that censoring times in CGD data
are not independent of the recurrent event processes for serious infections con-
ditional on treatment indicator and age. The diagnosis plot, shown in Figure 2,
of R

(1)
Z (t) against 50 realizations from R

∗(1)
Z (t) also show the evidence of possible

dependence between censoring times and the recurrent event process. Figure
2(b) indicates that censored patients on gamma interferon and over the average
age of 14.64 years old tend to have more frequent serious infections compared
to the uncensored patients in the same group. This casts reasonable doubt on
the independent censoring assumption made in the analysis of CGD data by Lin
et al. (2000). The effect of gamma interferon in reducing recurrent serious in-
fections could be overestimated since older patients with serious infections on
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Figure 1. A diagnosis plot for testing marginal independent censoring of the
recurrent events for CGD data. The solid line is the observed test process
R(1)(t) and the gray lines are 50 realizations from R∗(1)(t) conditional on
the observed data.

gamma interferon tend to drop out the study more often. Sensitivity analysis
can be used to examine how the estimation is affected by dependent censoring,
which necessitates further study.

6. Discussion

The proposed test procedures are based on the weighted difference of the two
reduced sample estimators µ̄(Y )(s) and µ̂(Y )(s, t) for 0 ≤ s ≤ t. In particular,
µ̂(Y )(·, t) does not use information from subjects whose censoring times are before
t and thus may have large variance when t is large. We suggest choosing τ such
that the percentage of uncensored subjects by τ is not too small. This may
cause some concerns on efficiency loss of the tests. This problem needs further
investigation.

The proposed test procedures allow the flexibility of choosing different weight
processes. One can choose to emphasize early or late differences between the two
estimators constructed from sample subsets with different patterns of censor-
ing by selecting the weight processes to be decreasing or increasing. We have,
however, used identity weight in our numerical studies. Choosing a weight pro-
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Figure 2. A diagnosis plot for testing conditional independent censoring of
the recurrent events given treatment and age for CGD data. The solid lines
are the observed test process R

(1)
Z (t) and the gray lines are 50 realizations

from R
∗(1)
Z (t) conditional on the observed data corresponding to the four

strata of the covariate space. Figure (a) is for patients on gamma interferon
treatment and under the average age of 14.64 years, (b) is for patients on
gamma interferon treatment and over 14.64 years old, (c) is for patients on
placebo and under 14.64 years old, and (d) is for patients on placebo and
over 14.64 years old.

cess that optimizes the power against given alternatives is challenging and needs
further exploration.
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Appendix

Proof of Theorem 1. Let M̄(t) =
∑n

i=1

∫ t
0 [Yi(u)dNi(u) − I(Ci ≥ u)αc

1(u)du].
By an application of the Central Limit Theorem for empirical processes (cf.
Theorem 19.5 of van der Vaart (1998)), n−1/2M̄(t) converges weakly to a mean
zero Gaussian process on t ∈ [0, τ ]. By the uniform convergence H(t) P−→h(t)
and n−1ξ̄(t) P−→G(t) over t ∈ [0, τ ], and by Lemma A.1 of Lin and Ying (2001),
we have

n1/2

∫ t

0
H(u) d(µ̄(Y )(u) − µc

1(u))

= n1/2
n∑

i=1

∫ t

0

H(u)[Yi(u)dNi(u) − I(Ci ≥ u)αc
1(u)du]

ξ̄(u)
+ op(1)

= n−1/2
n∑

i=1

∫ t

0

h(u)[Yi(u)dNi(u) − I(Ci ≥ u)dµc
1(u)]

G(u)
+ op(1). (A.1)

Similarly,

n1/2

∫ t

0
H(u) (µ̂(Y )(du, t) − µc

2(du, t))

= n1/2
n∑

i=1

∫ t

0

H(u)[Yi(u)dNi(u) − αc
2(u, t)du]I(Ci ≥ t)

ξ̄(t)
+ op(1)

= n−1/2
n∑

i=1

∫ t

0

h(u)[Yi(u)dNi(u) − µc
2(du, t)]I(Ci ≥ t)

G(t)
+ op(1). (A.2)

Combining (A.1) and (A.2), we have

R(Y )(t) = n1/2

∫ t

0
H(u) (µ̄(Y )(du) − µ̂(Y )(du, t))

= n−1/2
n∑

i=1

∫ t

0

h(u)[Yi(u)dNi(u) − I(Ci ≥ u)dµc
1(u)]

G(u)

−n−1/2
n∑

i=1

∫ t

0

h(u)[Yi(u)dNi(u) − µc
2(du, t)]I(Ci ≥ t)

G(t)

+n1/2

∫ t

0
H(u)(µc

1(du) − µc
2(du, t)) + op(1). (A.3)

Under independent censoring NIC2, µc
1(u) = µc

2(u, t) for 0 ≤ u ≤ t. By an appli-
cation of the Central Limit Theorem for empirical processes, R(Y )(t) converges
weakly to a mean zero Gaussian process.
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Proof of Theorem 2. Let Jn(β)=S(2)(t, β)/S(0)(t, β)−
(
S(1)(t, β)/S(0)(t, β)

)⊗2
,

An(β) = n−1
∑n

i=1

∫ τ
0 Jn(β) dN c

i (t), and Oc
i (t) = N c

i (t)−
∫ t
0 I(Ci ≥ s)λc(s|Zi) ds.

A routine analysis following Sun and Wu (2005, Appendix, p.42) shows that

n1/2(β̂ − β) = n−1/2A−1
n∑

i=1

∫ τ

0
(Zi − z̄(t)) dOc

i (t) + op(1), (A.4)

n1/2(Λ̂0(t) − Λ0(t))

= n−1/2
n∑

i=1

∫ t

0
(S(0)(s, β))−1dOc

i (s) − n1/2

∫ t

0
(β̂ − β)T Z̄(s)λ0(s) ds + op(1)

= n−1/2
n∑

i=1

∫ t

0
(s(0)(s))−1dOc

i (s) − n1/2(β̂ − β)T

∫ t

0
z̄(s)λ0(s) ds + op(1). (A.5)

By using the delta method,

Ĝi(t) − Gi(t) = exp{−Λ̂0(t) exp(β̂T Zi)} − exp{−Λ0(t) exp(βT Zi)}

= −Ĝi(t) exp(βT Zi)(Λ̂0(t) − Λ0(t)) − Gi(t)Λ0(t) exp(βT Zi)ZT
i (β̂ − β)

+op

(
n−1/2

)
= −n−1Ĝi(t) exp(βT Zi)

n∑
j=1

∫ t

0
(s(0)(s))−1dOc

j(s)

+(β̂ − β)T Gi(t) exp(βT Zi)
[ ∫ t

0
z̄(s)λ0(s)ds−ZiΛ0(t)

]
+op(n−1/2). (A.6)

Let ψi(t) =
∫ t
0 z̄(s)λ0(s) ds − ZiΛ0(t),

B1k(s, t)= lim
n→∞

1
n

n∑
i=1

(∫ t

s
hk(u)I(Zi ∈ ∆k)(Gi(u))−1 exp(βT Zi)Yi(u)dNi(u)

)
,

C1k(t)= lim
n→∞

1
n

n∑
i=1

[∫ t

0
hk(u)I(Zi∈∆k)(Gi(u))−1 exp(βT Zi)ψi(u)Yi(u)dNi(u)

]
,

B2k(t)= lim
n→∞

1
n

n∑
i=1

I(Zi ∈ ∆k)(Gi(t))−1 exp(βT Zi)
∫ t

0
hk(u)Yi(u)Ni(du, t),

C2k(t)= lim
n→∞

1
n

n∑
i=1

I(Zi ∈ ∆k)(Gi(t))−1 exp(βT Zi)ψi(t)
∫ t

0
hk(u)Yi(u)Ni(du, t).
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By (A.4), (A.6), and Lemma A.1 of Lin and Ying (2001), we have∫ t

0
Hk(u) dµ̄

(Y )
k (u) −

∫ t

0
Hk(u)dµc

1k(u)

= −n−1
n∑

i=1

[ ∫ t

0
Hk(u)I(Zi ∈ ∆k)(Ĝi(u))−1(Gi(u))−1

×[(Ĝi(u)) − (Gi(u))]Yi(u)dNi(u)
]

+n−1
n∑

i=1

[ ∫ t

0
Hk(u)I(Zi ∈ ∆k)(Gi(u))−1Yi(u)dNi(u) −

∫ t

0
Hk(u)dµc

1k(u)
]

= n−1
n∑

j=1

∫ t

0
B1k(u, t)(s(0)(u))−1dOc

j(u)

−n−1(C1k(t))T A−1
n∑

i=1

∫ τ

0
(Zi − z̄(u)) dOc

i (u)

+n−1
n∑

i=1

[ ∫ t

0
hk(u)I(Zi ∈ ∆k)(Gi(u))−1Yi(u)dNi(u) −

∫ t

0
hk(u)dµc

1k(u)
]

+op

(
n−1/2

)
. (A.7)

Similarly,∫ t

0
Hk(u)µ̂(Y )

k (du, t) −
∫ t

0
Hk(u)µc

2k(du, t)

= n−1
n∑

i=1

[
I(Zi ∈ ∆k)[(Ĝi(t))−1 − (Gi(t))−1]

∫ t

0
Hk(u)Yi(u)Ni(du, t)

]

+n−1
n∑

i=1

[
I(Zi ∈ ∆k)(Gi(t))−1

∫ t

0
Hk(u)Yi(u)Ni(du, t)−

∫ t

0
Hk(u)µc

2k(du, t)
]

= n−1B2k(t)
n∑

j=1

∫ t

0
(s(0)(u))−1dOc

j(u)

−n−1(C2k(t))T A−1
n∑

i=1

∫ τ

0
(Zi − z̄(u)) dOc

i (u)

+n−1
n∑

i=1

[
I(Zi ∈ ∆k)(Gi(t))−1

∫ t

0
hk(u)Yi(s)Ni(du, t) −

∫ t

0
hk(u)µc

2k(du, t)
]

+op

(
n−1/2

)
. (A.8)
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Combining (A.7) and (A.8), we have∫ t

0
Hk(u)(µ̄(Y )

k (du) − µ̂
(Y )
k (du, t))

= n−1
n∑

i=1

rki(t) +
∫ t

0
Hk(u)(µc

1k(du) − µc
2k(du, t)) + op

(
n−1/2

)
, (A.9)

where

rki(t) =
∫ t

0
B1k(u, t)(s(0)(u))−1dOc

i (u) − (C1k(t))T A−1

∫ τ

0
(Zi − z̄(u)) dOc

i (u)

−B2k(t)
∫ t

0
(s(0)(u))−1dOc

i (u) + (C2k(t))T A−1

∫ τ

0
(Zi − z̄(u)) dOc

i (u)

+
∫ t

0
hk(u)I(Zi ∈ ∆k)(Gi(u))−1Yi(u)dNi(u)

−I(Zi ∈ ∆k)(Gi(t))−1

∫ t

0
hk(u)Yi(u)Ni(du, t). (A.10)

Under NIC2, µc
1k(u) = µc

2k(u, t) for 0 ≤ u ≤ t. By an application of the Central
Limit Theorem for empirical processes, R

(Y )
Z (t) converges weakly to a vector of

K-dimensional mean zero Gaussian processes. This proves Theorem 2.
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