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Abstract: We consider problems involving functional data where we have a col-

lection of functions, each viewed as a process realization, e.g., a random curve or

surface. For a particular process realization, we assume that the observation at a

given location can be allocated to separate groups via a random allocation process,

which we name the Dirichlet labeling process. We investigate properties of this pro-

cess and its use as a prior in a mixture model. We develop exact and approximate

representations for the labeling process, analyze the global and local clustering be-

havior, clarify model identifiability and posterior consistency, and develop efficient

inference methods for models using such priors. Performance is demonstrated with

synthetic data examples, a public-health application, and an image segmentation

task.
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1. Introduction

A recurring theme in the nonparametric Bayes literature has been the devel-
opment of mixture models based on Dirichlet processes (DP) (Ferguson (1973);
Sethuraman (1994); Ishwaran and James (2001)). These models have proved to
be useful in applications that involve clustering observations into distinct groups;
the dependence of different groupings can be achieved via the formalism of depen-
dent Dirichlet processes (e.g., MacEachern (2000); DeIorio et al. (2004); Gelfand,
Kottas, and MacEachern (2005); Teh et al. (2006)).

In this paper we are interested in mixture modeling for functional data (Ram-
say and Silverman (2002, 2006); Ferraty and Vieu (2006)). From the viewpoint of
functional data analysis we are given a sample of n functions, surfaces or curves
Y1, . . . , Yn over Rd, each viewed as a realization of a stochastic process Y . The
curves are observed at a common set of locations x1, . . . , xm ∈ D, where D is a
subset of Rd. This setting is natural in many applications: an image is a surface
of light intensity on R2. The ocean temperature at a location is a function of
depth. The monthly progesterone level of a female subject is a function of time.

The primary objective here is to examine clustering of the set of curves.
Formalizing the notion of clustering of curves raises several interesting challenges.
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First, we envision Yi as a noisy version of the curve θi. The θi’s are assumed to be
smooth at least continuous and clustering is considered with regard to these latent
θ’s. For instance, it is easy to ensure mean square continuous realizations using
a Gaussian process with a suitable covariance function (see, e.g., Stein (1999)).
Of course, introducing noise raises a trade-off issue. With too much noise, one θ

can explain all of the Yi’s - one cluster; with too little noise, each Yi requires a
distinct θi - no clustering. Second, we can envision a notion of local clustering by
clustering curve realizations θ1(x), . . . , θn(x) at any location x ∈ D using a DP
mixture. We can envision global clustering, θi and θi′ identical for all x ∈ D, and,
possibly, attempt to formalize notions of “partial” clustering. With smoothness
for these functions, the groupings at locations close to each other are expected
to be more similar than those at distant locations. In other words, there is an
uncountable collection of dependent DP mixtures, one for each location, with the
dependence regulated by the inherent spatial structure. Such clustering would be
viewed as “local”. Alternatively, one can assume that the spatial dependence is
regulated by, say, a Gaussian process (GP) on D. For instance, a simple approach
is to allow random curves to be drawn from a Dirichlet process with a GP as base
measure (Gelfand, Kottas, and MacEachern (2005)). However, this approach is
limited by the discrete nature of DP realizations: conditional on the DP atoms,
a random curve is either a replicate of one of a countable set of curves at all
locations in D, or not at all. Evidently, this is “global” clustering.

Our approach assumes that the collection of curve realizations can be rep-
resented in terms of k “canonical” curves drawn from a stochastic process G0,
but each realization can be expressed as a hybrid species – random portions of
the curve may belong to different species. Canonical curves provide the basis
for representing a curve in terms of disjoint segments with distinct behavior (in
terms of, e.g., smoothness and monotonic properties). In certain applications,
such as image modeling, a canonical curve might simply be a (random) con-
stant function that represents a corresponding level set in the image. The notion
of hybrid species curves has been explored in various contexts, including text
analysis and genetics (Blei, Ng, and Jordan (2003)); (Pritchard, Stephens, and
Donnelly (2000)), as well as in the context of spatial and functional data (Duan,
Guidani, and Gelfand (2007)); (Petrone, Guidani, and Gelfand (2009)). In par-
ticular, our approach is based on the hybrid Dirichlet process mixture model
first introduced by Petrone, Guidani, and Gelfand (2009). Implicit in their mod-
eling is a latent group allocation process, which we call the Dirichlet labeling
process. This labeling process, which we now denote by p, allows random local
allocation to one of a collection of species curves. Operating formally, we work
with finite-dimensional Dirichlet processes (Ishwaran and James (2001)) where
p is a random probability measure on {1, . . . , k}D that is drawn from a Dirichlet
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process via a base measure q (i.e., p ∼ DP (αq)), where q is also a probability
measure on {1, . . . , k}D. Explicitly, we mean that for any finite set of locations,
{xj , j = 1, . . . ,m}, p and q are probability distributions on a km dimensional
simplex such that p|q ∼ Dir(αq). To allow spatial dependence of random allo-
cation, q is constructed via discretization and copula transformation of a latent
Gaussian process, which essentially regulates the random allocation. Letting
k → ∞, it can be shown that the marginal distribution of the curve (at each lo-
cation) tends to the marginal drawn from a Dirichlet process mixture (Petrone,
Guidani, and Gelfand (2009)).

The novel contributions offered here are the following. First, we undertake
a detailed investigation of the Dirichlet labeling process model that provides a
random label for each θ curve at each location x. The labels are dependent within
a realization of a curve and, through the Dirichlet process, can introduce clus-
tering of labels across curves. We illuminate properties of this proposed process,
develop both exact and approximate representations of the labeling processes,
exact calculation when only two labels are allowed and approximate calculation
when a large number of labels are allowed. Then, we investigate the overall
mixture model. We clarify the identifiability of the mixture distribution, build-
ing upon results from Ishwaran and Zarepour (2002) that broaden the classical
work of Teicher (1963). We also discuss consistency of posterior inference under
the overall mixture model, extending results in Ishwaran and Zarepour (2002).
Here, the key issue is how k/n behaves as n → ∞. For any finite number of
locations m, the needed asymptotic rate is km = O(n). However, our practical
interest resides in the case where k is small relative to n, where we can represent
a large number of curves with a small number of canonical species. This, in turn,
leads to analyzing the local and global clustering behavior in the overall mixture
model. Lastly, statistical inference with the latent labeling process is expensive
with a large number of local sites and clusters. We offer computationally efficient
inference methods by proposing a model fitting strategy using Gibbs sampling
that employs ideas of pseudo-likelihood and approximate variational inference in
Markov random fields (Wainwright and Jordan (2003)). We provide application
to curves of progesterone levels of women during the course of a menstrual cycle
and, perhaps surprisingly, to an image segmentation setting.

There are several recent approaches that permit random local allocation for
functional data. In Fernandez and Green (2002), the authors consider Markov
random fields over lattices with Poisson distributed data where the weights in
the mixture vary with locations. Closer in spirit to our framework is the non-
parametric Bayesian mixtures of Hidden Markov Models Teh et al. (2006). Our
labeling process is arguably more computationally tractable, especially for high-
dimensional D and large m, due to the exploitation of spatial structure in the
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model that yields accurate conditional probability approximation. A number of
recent papers introduce various constructions based on the Sethuraman’s stick-
breaking representation, with varying weights assigned for different locations
( Griffin and Steel (2006); Dunson and Park (2008); Duan, Guidani, and Gelfand
(2007); Sudderth et al. (2008)). The work of Griffin and Steel (2006) and Dunson
and Park (2008) exemplify several distinct proposals for constructing spatially
dependent DP mixture marginals. In contrast with our approach, these are some-
what indirect methods for enforcing the spatial dependence – while label sharing
across the collection of curves is encouraged, label sharing across nearby locations
of the same curve is not directly possible.

A number of recent work consider Bayesian models for representing a collec-
tion of functions in terms of kernel basis functions ( Pillai et al. (2006); MacLe-
hose and Dunson (2008); Dunson (2008b,a)), f(x) =

∫
K(x, u)γ(u)du, where the

coefficient function γ(·) is endowed with a nonparametric prior. In particular,
Dunson (2008b) and Dunson (2008a) insist on sparse representations by modeling
the coefficient covariates γ(·) in terms of a labeling process. In Dunson (2008b),
the labeling process is modeled by independent Dirichlet processes, while Dun-
son (2008a) uses kernel functions to induce the spatial dependency of labels in
a manner similar to that of the Dirichlet labeling process. The key distinction
between these and our work is that the Dirichlet labeling process allows distribu-
tional specification of labeling realizations over continuous domain without the
need for kernel basis specification. More similar to our approach is the work
of Duan, Guidani, and Gelfand (2007). It also specifies a generalized DP mix-
ture model using the view of hybrid species curves. Their approach requires a
labeling process obtained by thresholding k latent Gaussian processes, resulting
in a model that is computationally challenging to fit. By contrast, our approach
utilizes only one latent Gaussian process to regulate spatial dependence, while
allowing label sharing through the use of the Dirichlet process at the next stage.
The resultant model is simpler and computationally more tractable.

Although we are taking a nonparametric Bayesian approach to the cluster-
ing of functional data, we must mention that there is a substantial non-Bayesian
literature on this important topic. See, e.g., Abraham et al. (2003); Biau, De-
vroye, and Lugosi (2008); Chiou and Li (2007); Dabo-Niang, Ferraty, and Vieu
(2006); Fraiman, Justel, and Svarc (2008); Fraiman and Muniz (2001); James and
Sugar (2003); Ma and Zhong (2008); Tokushige, Yadohisa, and Inada (2007) and
the references listed therein. Comparison between Bayesian and non-Bayesian
approaches is lacking in the literature, but is not our objective here.

The paper is organized as follows. Section 2 provides background on the
Dirichlet labeling process prior for a mixture model. Section 3 presents prop-
erties of the Dirichlet labeling process and the overall “hybrid” prior. Section
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4 discusses identifiability of the mixture model we propose, as well as posterior
consistency. Section 5 addresses parameter identifiability, a concern in model
fitting with our flexible specification. Section 6 focuses on model fitting and in-
ference. Section 7 offers results for experimental and data analysis. We conclude
with some discussion in Section 8. All proofs and additional details are deferred
to an Appendix.

2. Formalizing the Model

We define a mixture model for curve realizations Y1, . . . , Yn over RD, that
are noisy versions of, respectively, θ1, . . . , θn. In particular, observations are
obtained at local sites x1, . . . , xm ∈ D, so Yi(xj) = θi(xj)+εi(xj). Such modeling
is standard in functional data analysis (see, e.g., Ramsay and Silverman (2006,
p.40) where the ε’s contribute noise, perturbation, disturbance, error, to capture
roughness in the raw data). In different words, the data is assumed to be subject
to pure error fluctuations relative to the process model with the process model
specifying suitably smooth curves (though, in some applications, we may prefer
to leave the noise in the θi’s). This process view is in accord with the idea of
local and global clustering for the collection of curves.

For a given k, we envision k “canonical” species curves θ∗j (j = 1, . . . , k)
based on which the collection of θi’s can be represented. Indeed, each of the
θi curves is described by the label function, Li(x), x ∈ D,Li(x) ∈ {1, . . . , k}
where Li(x) = j implies θi(x) = θ∗j (x). The labels are random as are the
canonical species curves, each defined over an uncountable set D so, to define
a stochastic process, we specify finite dimensional distributions and verify nec-
essary consistency conditions. In particular, for the labels, for any finite set of
locations x1, . . . , xm ∈ D, we specify the random distribution px1,...,xm which
is such that px1,...,xm(j1, . . . , jm) = P (L(x1) = j1, . . . , L(xm) = jm). That is
(L(x1), . . . , L(xn)) is a realization of a multinomial trial driven by the set of
probabilities, {px1,...,xm(j1, . . . , jm)}. For a single site x, the marginal distribu-
tion is a multinomial over the labels, P (L(x) = j) = px(j) for j = 1, . . . , k.

Below, the collection of px1,...,xm is specified to consistently determine a ran-
dom probability measure p on {1, . . . , k}D by what we define as a Dirichlet label-
ing process. For the canonical species curves θ∗j ’s, we assume they are i.i.d. GP
realizations, again characterized by the finite dimensional multivariate normals
for any set of locations, x1, . . . , xm ∈ D. The θ∗j ’s could be modeled as realiza-
tions from a more general process on D but this would not provide any benefit
within our setting. Again, the smoothness of the θ∗j ’s can be controlled through
the choice of covariance function, as noted in the Introduction. We denote the
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GP by G0. Then, formally:

θ∗j
i.i.d.∼ G0, j = 1, . . . , k,

Li| p
i.i.d.∼ p, i = 1, . . . , n,

θi(xt)| L, θ∗ = θ∗Li(xt)
, i = 1, . . . , n; t = 1, . . . ,m,

Yi(xt)| θi(xt) ∼ N(θi(xt), τ2), i = 1, . . . , n; t = 1, . . . ,m.

In addition, depending on the application, there may be prior distributions
for G0 and τ . Also, there may be covariate information, which can be included
in the mean for Yi(xt).

An alternative representation sacrifices the hierarchical specification through
the labels and expresses the model directly through a random finite mixture
distribution, θi

i.i.d.∼ G for i = 1, . . . , n, where G is a random measure on RD such
that

Gx1,...,xm =
∑

(j1,...,jm)∈{1,...,k}m

px1,...,xm(j1, . . . , jm)δ(θ∗j1
(x1),...,θ∗jm

(xm)). (2.1)

See Ishwaran and Zarepour (2002), expressions (1) and (3) in this context.
Regardless, we need to specify p, a random probability measure on {1, . . .,

k}D. For locations x1, . . . , xm, px1,...,xm has the km-dimensional Dirichlet distri-
bution

(px1,...,xm(j1, . . . , jm), ji = 1, . . . , k) ∼ Dir(αqx1,...,xm(j1, . . . , jm), ji = 1, . . . , k),
(2.2)

where the base measure q is a probability measure on {1, . . . , k}D.
The base measure q is constructed such that q has a uniform marginal

distribution at every location x ∈ D, qx(1) = . . . = qx(k) = 1/k. Additionally,
q inherits the spatial dependence structure exhibited by a stochastic process F

on RD as we now clarify.
Denote by Fx1,...,xm the finite-dimensional distributions of F . Let (η(x1), . . .,

η(xm)) ∼ Fx1,...,xm , and consider the random vector (Fx1(η(x1)), . . . , Fxm(η(xm)))
∈ [0, 1]m, where Fxt denotes the cumulative distribution function at location xt

for F . This vector has uniform marginals and induces a joint distribution func-
tion denoted by HF,x1,...,xm . The collection of finite-dimensional d.f. HF,x1,...,xm

characterizes a probability measure HF on [0, 1]D. Now, let us discretize [0, 1]m

into hyper-cubes

Cj1,...,jm =
(

j1 − 1
k

,
j1

k

]
× . . .×

(
jm − 1

k
,
jm

k

]
,
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for ji = 1, . . . , k. Then, the latent labeling process q is defined by:

qx1,...,xm(j1, . . . , jm) = HF,x1,...,xm(Cj1,...,jm).

Remark. (1) The overall model is characterized by a canonical curve distribu-
tion G0 and precision parameter τ , as well as parameters specifying the labeling
process p, which is parameterized by labeling process q.
(2) To gain some intuition about the labeling process q, we provide an alternative
representation. For each x ∈ D, let c1(x), . . . , ck(x) be an increasing sequence
of threshold values in R such that Fx(cj(x)) = j/k, for j = 1, . . . , k − 1. Com-
plement the sequence with c0(x) = −∞ and ck(x) = ∞. Conditioning on the
realization η = (η(x1), . . . , η(xm)), define function Z : D → {1, . . . , k} such that
for each j = 1, . . . , k,

Z(x) = j ⇔ η(x) ∈ (cj−1(x), cj(x)] ⇔ Fx(η(x)) ∈ (
j − 1

k
,
j

k
].

Hence, an η drawn from the stochastic process F yields a label Z ∼ q.
(3) In the foregoing, q is defined by discretizing auxiliary variables η ∼ F . Then
p is a random draw from the Dirichlet process using base measure q, p|q ∼
DP (αq). It is simple to show that p can be defined directly in terms of auxiliary
variables ξ without going through the labeling function Z ∼ q. First, define a
random function ξ on RD such that ξ ∼ H, where H ∼ DP (αF ) (this is called
spatial Dirichlet process in Gelfand, Kottas, and MacEachern (2005). Then,
discretize ξ as follows: for any x ∈ D,

L̃(x) = j ⇔ ξ(x) ∈ (cj−1(x), cj(x)] ⇔ Fx(ξ(x)) ∈ (
j − 1

k
,
j

k
]. (2.3)

Marginalizing over ξ and H, we obtain a random probability distribution p̃ gener-
ating L̃. It can be shown that p d= p̃ and L

d= L̃. Indeed, for any x1, . . . , xm ∈ D,
the random vector L̃ = (L̃(x1), . . . , L̃(xm)) has to satisfy, due to the definition
of the Dirichlet process,(

p̃(L̃ = (j1, . . . , jm)), ji = 1, . . . , k
)

d=
(
p̃(ξ(x1)∈(cj1−1(x1), cj1(x1)], . . . , ξ(xm)∈(cjm−1(xm), cjm(xm)]),

ji =1, . . . , k

)
∼ Dir

(
αF (η(x1)∈(cj1−1(x1), cj1(x1)], . . . , η(xm)∈(cjm−1(xm), cjm(xm)]),

ji =1, . . . , k

)
= Dir(αqx1,...,xm(j1, . . . , jm), ji = 1, . . . , k).
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This implies that p d= p̃ and L
d= L̃. Although we have shown that there are

two equivalent characterizations of p in terms of latent process ξ, or in terms
of latent label function Z, we shall see that the latter characterization is much
more convenient to work with. They key point is that properties for the label
function Z can be easily obtained and incorporated into that for L, and lead to
a computationally efficient inference algorithm to be described in Section 6.

We conclude this section with some words regarding k. It is worth asking
whether it is realistic to assume that k is fixed, or would one expect that iden-
tifying the number of canonical curves should be part of the problem. Perhaps
the latter is more likely to be the case but, due to the complexity of the model
and the challenges to fit it, even with k fixed, we decided not to pursue, for
example, some sort of reversible jump algorithm to allow k to be random. In this
regard, we prefer to perform model comparison to choose k or study sensitivity
of clustering to the choice of k, fitting models for several fixed k’s. In fact, this
is what we have done with the examples in Section 7 below. We can report that,
not surprisingly, a bigger k encourages more clusters but this is also mediated by
the specification of the precision parameter in the labeling process. In practice,
we can hope that a given application will offer some suggestion of what k’s are
interesting so that we can investigate model comparison for such k’s. In general,
as noted in the Introduction, we envision our modeling to be most useful when
k is small relative to n. Moreover, the theoretical analysis in Section 4 also sug-
gests that k should grow very slowly relatively to n to ensure strong consistency
of relevant posterior distributions.

3. Properties of the Labeling Process

As is clear from the previous section, we use the label process as a prior within
the hierarchical model given at the beginning of Section 2. Here we examine
properties of this process: the random label functions L and Z on {1, . . . , k}D,
where L ∼ p and Z ∼ q, as well as that of the hybrid curve realization θ ∼ G.

Properties of p. From (2.2), p and q are related, p|q ∼ DP (αq). As a
result, properties obtained for the labeling process Z can be easily incorporated
into those for L. We start with elementary properties for p that are simple
consequences of our use of the Dirichlet distribution:

Proposition 1.
(a) Let L ∼ p. For any x ∈ D, the distribution for the label L(x) is a k-

dimensional multinomial trial with probabilities px ∼ Dir((α/k)1).

(b) Let L1, L2|p
i.i.d.∼ p. Then, unconditionally, P (L1(x) = L2(x)) = 1/k + (1 −

1/k)/(α + 1).
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(c) Let L1, L2|p
i.i.d.∼ p, and x1, . . . , xm ∈ D. Then, unconditionally,

P (L1(x1, . . . , xm)=L2(x1, . . . , xm))=
1

α+1
+

α

α+1

∑
j1,...,jm

qx1,...,xm(j1, . . . , jm)2.

(d) Let L ∼ p and x1, . . . , xm ∈ D. Then

P (L(x1) = j1|L(x2) = j2, . . . , L(xm) = jm) =
qx1,...,xm(j1, j2, . . . , jm)
qx2,...,xm(j2, . . . , jm)

.

Proposition 1 shows how the clustering behavior exhibited by the label replicates
Li ∼ p is driven by the concentration parameter α and the labeling process q.
(In particular, as α → ∞, p behaves more like the base measure q.) It is worth
noting the distinction between local and global clustering behavior implicit in
the labeling process p. Since the probabilities qx1,...,xm(·) are of order O(1/km)
(cf., Proposition 3 and the Appendix), part (c) implies the global clustering
probability P (L1 = L2) ∼ 1/(α + 1) + α/(α + 1) · 1/km → 1/(α + 1) as m →
∞. On the other hand, at each local site x, the probability of clustering is
substantially higher:

P (L1(x) = L2(x)) =
1

α + 1
+

α

α + 1
· 1
k
.

(Due to the discreteness of L, this probability is greater than 1/(α + 1), the usual
probability of a tie for a continuous variable.) However, since the probability of
global clustering is still 1/(α + 1), there are evident implications regarding either
the specification of α or a prior for it.

When k → ∞, the distinction between global and local clusters is apparently
lost: two realizations L1 and L2 are either identical everywhere, or nowhere at all.
Although the “hard” clustering behavior is lost, the “soft” clustering behavior
remains in play, being driven by q which is, in turn, regulated by F .

Properties of q. In the sequel, we assume that F is a mean-zero, isotropic
Gaussian process GP (0, 1, φL) with covariance function of the form, ρ12(x1, x2) =
cov(η(x1), η(x2)) = exp(−φL‖x1−x2‖) for any x1, x2 ∈ D, where φL > 0 is called
the decay parameter. (We can set the process variance to 1 w.l.o.g.) Under
the assumptions on F , the quantile threshold functions cj(x) are constant with
respect to x and the sequence c0, . . . , ck satisfies Φ(cj) = j/k where Φ is the c.d.f.
of the standard normal variable.

To denote the dependence of labeling process q on φL and k, we write
q(φL, k). Although it is easy to generate a random sample of (Z(x1), . . . , Z(xm))
∼ q, the distribution function for q is generally not available in closed form. In
fact, the next result presents a closed form for k = 2 and for any two locations,
but closed form expressions for k > 2 are not readily available.
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Proposition 2. (k = 2). Let Z ∼ q(φL, 2) and let ρ12 = Cov(η(x1), η(x2)).
Then

P (Z(x1) = 1, Z(x2) = 2) = P (Z(x1) = 2, Z(x2) = 1)

:= qx1,x2(1, 2) =
1
π

arccos
(

1
2

+
ρ12

2

)1/2

,

P (Z(x1) = 1, Z(x2) = 1) = P (Z(x1) = 2, Z(x2) = 2)

:= qx1,x2(1, 1) =
1
2
− 1

π
arccos

(
1
2

+
ρ12

2

)1/2

.

It is simple to observe that, as either φL → ∞ or ‖x1−x2‖ → ∞, ρ12 → 0 so
that both probabilities qx1,x2(1, 2) and qx1,x2(1, 1) tend to 1/4. That is, Z(x1)
and Z(x2) become independent. On the other hand, as φL → 0 or ‖x1−x2‖ → 0,
Z(x1) and Z(x2) are equal with increasing probability.

For large k, it is possible to obtain a good approximation to the likelihood
function using Riemann sum approximation.

Proposition 3.(k is large). Let Z ∼ q(φL, k). For any i, j ≤ k such that ci

and cj do not diverge to either +∞ or −∞ as k → ∞,

P (Z(x1) = i, Z(x2) = j) = qx1,x2(i, j) =
1
k2

(Rij(ci, cj) + o(1)), (3.1)

P (Z(x1) = i, Z(x2) > j) =
1
k

(
1 − Φ

(
cj − ciρ12

1 − ρ2
12

)
+ o(1)

)
, (3.2)

where the o(1) terms tend to 0 uniformly for all such (i, j), and

Rij(ci, cj) =
1√

1 − ρ2
12

exp−
(c2

i + c2
j )ρ

2
12 − 2ρ12cicj

2(1 − ρ2
12)

. (3.3)

Proposition 3 can also be extended to an arbitrary number of locations
x1, . . . , xm, and can be used to obtain conditional probabilities (see the Ap-
pendix).

It is useful to examine the intuitive behavior of the q probabilities for a
fixed k as derived by Proposition 3. As ρ12 → 0, we have Rij(ci, cj) → 1,
so that P (Z(x1) = i, Z(x2) = j) → 1/k2, i.e., Z(x1) and Z(x2) become less
dependent. On the other hand, as ρ12 → 1, for any pair i 6= j, Rij(ci, cj) → 0,
i.e., Z(x1) and Z(x2) take different values i and j with probability converging to 0.
Accordingly, Z(x1) = Z(x2) with probability converging to 1. Now, fixing ρ12 and
ci, consider P (Z(x2)|Z(x1) = i) ≈ (1/k)Rij(ci, cj). Rij(ci, cj) achieves maximum
at cj = ρ12ci. In particular, when x2 is near x1, ρ12 ≈ 1, so that ρ12ci ≈ ci, the
conditional distribution P (Z(x2)|Z(x1) = i) favors values that are near i. For
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most of the nodes that are distant, so that ρ12 ≈ 0, the conditional distribution
is rather flat even though the mode ρ12ci ≈ 0. For nodes in the middle range so
that say, ρ12 ≈ 1/2, there is an interesting shrinkage effect pulling Z(x2) toward
the middle value (between k/2 and i). In addition, variable Z(x2) tends to take
values that are farther away from i with decreasing probabilities.

Turning to the properties of a “hybrid” curve realization θ that is drawn
from the random probability measure G (see (2.1)), we have

Gx1,...,xm =
∑

(j1,...,jm)∈{1,...,k}m

px1,...,xm(j1, . . . , jm)δ(θ∗j1
(x1),...,θ∗jm

(xm)),

where the randomness of G is due to the randomness of p and θ∗. We assume that
the θ∗ are very smooth curves by placing a zero-mean Gaussian process prior G0

on θ∗, with covariance function ρθ(x1, x2) = σ2
θ exp−φθ‖x1 − x2‖2 (other choices

of covariance function could be adopted depending on the application). It is
simple to obtain that

E[θ(x)|q, G0] = E[θ∗(x)|G0] = 0,

E[θ(x1)θ(x2)|q, G0] =
k∑

j=1

qx1,x2(j, j)Cov(θ∗(x1), θ∗(x2)).

As ‖x1 − x2‖ → ∞, Cov(θ∗(x1), θ∗(x2)) → 0, so Cov(θ(x1), θ(x2)|q, G0) →
0. As ‖x1 − x2‖ → 0,

∑k
j=1 qx1,x2(j, j) → 1, so Cov(θ(x1), θ(x2)|q, G0) →

σ2
θ . Formally, it can be shown that the hybrid species θ ∼ G is mean square

continuous:

Proposition 4. Suppose that G0 has bounded mean and variance functions, and
F (x) has non-atomic distribution for any x ∈ D. If both G0 and F are mean
square continuous, so is G.

Although θ is mean square continuous, each realization is almost surely dis-
continuous as it is composed of multiple smooth segments of the canonical curves.
Again, the Yi’s arise by the mixing with the noise or pure error process, i.i.d. ran-
dom variables at locations ε(x) ∼ N(0, τ2)), to obtain Y (x) = θ(x)+ ε(x) for any
x ∈ D. The joint density for Y = (Y (x1), . . . , Y (xm)) given G and τ2 is

f(Y|G, τ) =
∫

Nm(Y|θ, τ2Im)G(dθ). (3.4)

It follows that E(Y|q, G0) = E(θ∗|G0) and the covariance matrix ΣY|q, G0 =
τ2Im + Σθ, where (Σθ)ij = Cov(θ(xi), θ(xj)|q, G0).
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4. Model Identifiability and Posterior Consistency

The described labeling process provides a highly flexible nonparametric prior
for modeling collections of curves. As is generally the case with high-dimensional
mixture models, model identifiability and posterior consistency issues arise. More-
over, as we shall demonstrate, understanding of these issues can be useful for prior
specification. Here, we restrict our attention to the induced distribution of the
m-variate Y = (Y (x1), . . . , Y (xm)) through the associated mixing distribution
Gx1,...,xm . Treatment for the functional case is more demanding and will be pur-
sued elsewhere, but our discussion of the multivariate case should provide some
hints for the model behavior and the issues involved as m → ∞.

For a fixed k, the induced distribution on Y can be viewed as a finite mixture
of m-variate normal vectors with N = km mixture components, where the mixing
parameter p is endowed with a Dirichlet distribution prior, and the normal means
are parameterized by the k canonical species curves. When k is unknown, an
approach that has become common is to consider a prior that corresponds to
the limit of the finite mixture model as k → ∞. In light of the results given by
Proposition 3, it can be shown that as k → ∞, Gx1,...,xm converges in distribution
to G ∼ DP (αF ) (by applying Theorem 2(a) of Petrone, Guidani, and Gelfand
(2009)) In fact, as far as the marginal density of vector Y is concerned, the
finite mixture (with N components) provides a remarkably tight approximation
to the DP limit. Let Πn,k denote the marginal density of (Y1, . . . ,Yn) which
is induced by our prior distributions of (G, τ) for some finite k, and Πn,∞ the
marginal density of (Y1, . . . ,Yn) using prior distributions with k → ∞. It is
shown by Ishwaran and James (2001) that the L1 distance ‖Πn,k − Πn,∞‖1 ∼
4n exp(−(N − 1)/α). Because N = km grows very fast with k, in practice the
choice of k has little effect on the approximation of the marginal distribution of
Y. Rather, the choice of k hinges more on the interpretation of the canonical
species vectors θ∗1, . . . , θ

∗
k. As we see in Section 7, in an example with progesterone

data analysis, we are interested in k = 2, whereas in another example with image
analysis, k = 8 turns out to be sufficient for our segmentation and clustering
application.

Model identifiability.
Our model is a finite mixture with mixing distribution Gx1,...,xm . A multi-

variate version of Theorem 2 of Ishwaran and Zarepour (2002), shows that it is
fully identified under mild conditions.

Proposition 5. Let ψ(Y|θ, τ) denote the m-variate normal density with mean θ
and covariance matrix τ2Im. Let Gx1,...,xm be a mixing distribution defined (2.1)
for some fixed canonical vectors θ∗1, . . . , θ

∗
k for some finite k, and positive mixing

proportions px1,...,xm(·). Given some τ∗ > 0, suppose there is a distribution G1

over Rm and π1 over R+ such that



THE DIRICHLET LABELING PROCESS FOR CLUSTERING FUNCTIONAL DATA 1261

(a)
∫

ψ(Y|θ, τ∗)Gx1,...,xm(dθ) =
∫

ψ(Y|θ, τ)G1(dθ)π1(dτ) for almost all Y ∈
Rm,

(b) Under G1 × π1, E exp{1/[2(τ∗2 − τ2)]}
∑m

r=1 θ(xr)2 < ∞,

(c) θ∗i (xr) 6= θ∗j (xr) for i 6= j; r = 1, . . . ,m.
Then we have G1 = Gx1,...,xm, and π1(·) = δτ∗.

Note that the mixing distribution Gx1,...,xm is parameterized in terms of the
canonical curves θ∗1, . . . , θ

∗
k. Though the above result shows that G is identifi-

able, it does not necessarily establish that these canonical curves (m-dimensional
vectors) can actually be determined. This issue of parameter determinacy can
be resolved by incorporating additional assumptions on the prior distributions
on the canonical curves. As a simple example, if the canonical curves are non-
identical constant functions, then the identifiability of Gx1,...,xm trivially implies
the identifiability of the each individual canonical curves. More generally, we
could envision identifiability conditions for the functional case that requires “dis-
tinguishable” canonical curves based on smoothness criteria. In addition to the
determination of canonical curves, label switching among the canonical curves is
an issue commonly encountered in mixture models. Again, these issues can be
resolved in practice by introducing additional, e.g., ordering constraints to the
parameters. A more detailed discussion of parameter determinacy is deferred to
the next section.

Posterior consistency. Turning to asymptotic analysis of the posterior dis-
tribution derived from our labeling process prior, we view the use of a finite
dimensional Dirichlet prior in a finite mixture model as a Bayesian method of
sieves by allowing k to grow with sample size n. A similar viewpoint was adopted
by Ishwaran and Zarepour (2002) in their analysis of finite mixture for univari-
ate normal variables. Indeed, with care, their results could be adapted to obtain
ours.

We consider first the distribution of the m-variate Y = (Y(x1), . . . ,Y(xm))
whose (conditional) density f(Y|G, τ) is given at (3.4). Because the conditioned
G and τ are random and endowed with prior distributions of their own, we can
view the density f (with the conditioning notations G and τ being dropped) as
a random element in a set Fk of densities of form (3.4) for some k and some
realization of G and τ .

As before, Πn,k is used to denote the induced prior on f . The posterior
distribution of density f is a random measure denoted by Πn,k(·|Y1, . . . ,Yn),
and has the following form, for any measurable subset B of Fk:

Πn,k(B|Y1, . . . ,Yn) =

∫
B

∏n
i=1 f(Yi)dΠn,k(f)∫ ∏n
i=1 f(Yi)dΠn,k(f)

.
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Suppose that Y1, . . . ,Yn are i.i.d. draws from some f0 ∈ Fk∗ , where f0 is
defined in terms of some realization of G = G∗, τ = τ∗ for some fixed but possibly
unknown value of k = k∗. The posterior distribution of Y is strongly consistent
if, for any ε > 0, as n tends to infinity with k growing at an appropriate rate, we
have

Πn,k({f ∈ Fk : ‖f − f0‖1 < ε}|Y1, . . . ,Yn) → 1 Pf0 a.s..

There is a rich body of work on posterior asymptotics for nonparamet-
ric Bayesian models, and Dirichlet process mixture models in particular (see,
e.g., Ghosal (2007) for an elegant exposition). Most relevant to our model are
the analyses of Ghosal, Ghosh, and Ramamoorthi (1999) for Dirichlet process
mixture models and Ishwaran and Zarepour (2002) for finite normal mixtures,
both focusing on univariate distributions, and a more recent work extending to
multivariate density estimation (Wu and Ghosal (2009)). As with these analy-
ses we follow the now standard approach developed by Schwartz (1965); Barron,
Schervish, and Wasserman (1999); Ghosal, Ghosh, and Ramamoorthi (1999) and
several others, which requires meeting the two sufficient conditions: (A) The prior
Πn,k is information dense around the true density f0 (that is, Πn,k places positive
mass on each Kullback-Leibler neighborhood of f0), and (B) the prior Πn,k puts
most of its mass around a “small” subset Fn,k ⊂ Fk, where the size of Fn,k can
be measured by the entropy number. In fact, condition (A) is guaranteed by the
following lemma.

Lemma 6. Let D(·||·) denote the Kullback-Leibler divergence between two prob-
ability densities. Assume that measure G0 of the canonical vectors (θ∗(x1), . . .,
θ∗(xm)) places positive density in a rectangle containing the support of G∗. For
sufficiently large k, Πn,k(f ∈ Fk : D(f0||f) < ε) > 0 for any ε > 0.

It is worth noting that our proof for this Lemma (see the Appendix) exploits
specifically the choice of the finite Dirichlet prior for p as defined by (2.2) whose
base measure is specified by q. The proof, however, does not extend to the
functional case (by letting m be arbitrary). Moreover, it appears that to obtain
the denseness properties in the functional setting, additional assumptions on the
true density f0 are needed. For instance, one might need a condition to the
effect that the majority of the hybrid curves do not switch very often, so that
the technique used in our proof can be applied for arbitrary m.

Turning to condition (B), for given positive numbers δ, an, τn, we take Fn,k

to consist of all densities f ∈ Fk whose associated mixing distribution Gx1,...,xm

has support bounded within [−an, an]m with probability at least 1 − δ, with
variance τ restricted to the interval [τn,M ], assuming that the prior for τ is some
distribution truncated to the right at M . Define the entropy number J(δ,Fn,k) to
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be the logarithm of the minimum of all r such that there exists f1, . . . , fr ∈ Fn,k

with the property Fn,k ⊆ ∪r
i=1{f : ‖f − fi‖1 < δ}. The collection {f1, . . . , fr} is

called a covering of Fn,k.

Lemma 7. Assume that an >M/
√

δ. Then J(6mδ,Fn,k)≤km log(1 + mδ)/(mδ)
+km log(1 + (2an)/(τnmδ2)).

This lemma says that the entropy of Fn,k can be controlled by k, an, τn. Com-
bining the last two lemmas and Theorem 2 of Ghosal, Ghosh, and Ramamoorthi
(1999), the following result is immediate.

Proposition 8. Suppose that τ has support in [0,M ] and the canonical curves
(vectors) have prior distribution G0. If for each δ > 0, β > 0, there exists
constants β0, β1, and sequences an → ∞ and τn → 0, k → ∞ such that

(i) for some β0, G0(θ∗(xi) ∈ [−an, an] for i = 1, . . . ,m) ≥ 1 − exp(−nβ0),

(ii) under the prior of τ , P (τ < τn) ≤ exp(−nβ1),

(iii)km log(1 + mδ)/(mδ) + km log(1 + 2an/(τnmδ2)) ≤ nβ,

(iv) conditions of Lemma 6 and Lemma 7 hold,
then the posterior distribution of Y is strongly consistent at f0.

If, for instance, θ∗ has a Gaussian prior distribution, and τ has an inverse
gamma distribution truncated to the right, then we can allow an ∼

√
n and

τn ∼ 1/
√

n. Then, if k is allowed to grow at a rate slower than n1/m, all con-
ditions of the proposition hold, yielding the strong consistency of the posterior
distribution of Y. Finally, consistency results can also be extended to that of
the mixing distribution Gx1,...,xm (see Ishwaran and Zarepour (2002), Theorem
7, and Ghosal, Ghosh, and Ramamoorthi (1999, p.151)).

5. Parameter Identifiability

The previous section focused on large sample properties of the posterior dis-
tribution of the curves, and the identifiability of the mixing distribution Gx1,...,xm .
In specific applications we are usually concerned with the identifiability (deter-
minacy) of certain parameters and latent variables of interest, under a limited
supply of data. Indeed, the foregoing discussion provides some hints on the roles
of certain parameters controlling the smoothness of canonical curves θ∗ and the
labeling allocation probabilities p. We examine these issues in more detail here.
Section 3 discussed the roles of the concentration parameter α and the labeling
decay parameter φL on both the global and local clustering behavior exhibited
by the label realization L ∼ p. Here we focus on the effects of the prior of φL,
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canonical curves θ∗, and the precision parameter τ on the determinacy of the
labeling L and canonical curves θ∗.

Suppose that we are interested in a representation that achieves dimension-
ality reduction, with the goal of inferring both canonical curves θ∗ and labeling
L1, . . . , Ln for observed replicates Y1, . . . , Yn. In this scenario the canonical curves
can be viewed as basis functions with the label vectors L1, . . . Ln providing co-
efficients with respect to such bases. When the number of canonical curves k is
small, the canonical curves are expected to represent “canonical” patterns for the
whole collection of curves. As noted in the Introduction, the variance parameter
τ plays an important role in the identifiability of the canonical curve θ∗. When
τ is large, the learned canonical curves become very smooth but weakly distin-
guishable. By contrast, when τ is small, the canonical curves are less smooth and
more distinguishable, as their respective posteriors cover different regions in the
function space spanned by the curve collection. This phenomenon is illustrated
in Section 7.

φL also plays an important role in the identifiablity of the canonical species
curves θ∗j . When φL is close to 0, as shown by Prop 2 and Prop 3, the hy-
bridization (label switching) within each individual curve is discouraged – the
model essentially insists on global clustering. If the curve collection can indeed
be clustered globally in terms of canonical curves, these are strongly identifi-
able. On the other hand, if the curve realizations tend to switch often among
the canonical curves, corresponding to large φL, or canonical curves are not very
smooth, we observe that the canonical curves become more weakly identified. As
we illustrate in Section 7, our model is able to recover segments of locations that
admit relatively few switchings among relatively smooth canonical curves. In
particular, similar locations tend to be (correctly) assigned the same labels, but
it is possible that whole segment is incorrectly labeled relatively to some other
segments.

Suppose, on the other hand, that we are less interested in inferring about
the canonical curves, but more about the labeling realizations L1, . . . , Ln as a
means for characterizing and clustering the observed replicates Y1, . . . , Yn. In this
scenario, strong constraints can be imposed upon θ∗ to improve the identifiability
of labels Li’s. In the image segmentation application we present, an image can be
viewed as being composed of different objects (grass, plants, buildings, animals,
human faces, etc), each of which is associated with a level set corresponding to
a (random) level of light intensity. Thus, canonical curves θ∗ can be taken to
be random constant functions. Furthermore, additional order constraints can
be imposed according to label values {1, . . . , k}. The previous discussion on
properties of p and q suggests that for large k there is a natural ordering of label
values {1, . . . , k}. That is, locations near to each other have high probability of
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sharing similar labels, i.e., labels j1 and j2 such that |j1−j2| is small. It is natural
to assign more extreme ranges for priors to extreme labels such as 1 and k. We
could even specify that E(θ∗1) < E(θ∗2) < . . . < E(θ∗k). Note that such ordering
constraints are not necessary to ensure model identifiability, but they would be
expected to improve the mixing for simulation-based posterior inference.

6. Model Fitting and Inference

Using the bracket notation, the joint distribution associated with the model
presented at the start of Section 2 is

n∏
i=1

[Yi|Li, θ
∗
1, . . . , θ

∗
k, τ ]×

k∏
j=1

[θ∗j |σθ, φθ]×[L1, . . . , Ln|φL, α]×[φL]×[α]×[τ ]×[φθ]×[σθ].

In this expression we have implemented the usual marginalization over p, with
q ≡ φL, [L1, . . . , Ln|φL, α] =

∫ ∏n
i=1[Li|p][p|φL, α]dp .

In this section we develop an algorithm for fitting the model and for infer-
ence regarding the parameters of interest. We use Gibbs sampling to draw from
[L1, . . . , Ln, θ∗1, . . . , θ

∗
k, φL, α, τ, φθ, σθ|Y]. The updates of parameters α, τ, φθ, σθ

are standard, see ,e.g., Duan, Guidani, and Gelfand (2007). For canonical curves,
under a Gaussian process, the prior for vector θ∗j = (θ∗j (x1), . . . , θ∗j (xm)) is nor-
mal with mean µj and covariance matrix Σθ∗j |σθ,φθ

. Let Iij be an m×m diagonal
matrix whose t-th entry is I(Li(t) = j). The full conditional for θ∗j has the form

[θ∗j |Y1, . . . , Yn, L1, . . . , Ln, φθ, σθ] ∼ N

(
1
τ2

Λ
n∑

i=1

IijYi + (Σθ∗j |σθ,φθ
)−1µj , Λ

)
,

where Λ = ((Σθ∗j |σθ,φθ
)−1 + (1/τ2)

∑n
i=1 Iij)−1.

We now turn our attention to updating label vectors Li, i = 1, . . . , n and
decay parameter φL. Due to the alternative characterization of latent labels L

captured by (2.3), one simple method is to directly sample the latent variables
ξi ∼ H, where H ∼ DP (αFφL

). The label vector Li is then obtained by thresh-
olding ξi. Although the full conditional distribution for ξi can in principle be
obtained by the standard Polya urn scheme, it is simple to observe that at each
iteration one has to compute an intractable sum of km terms. To overcome this
difficulty, a simple heuristic is to introduce an auxiliary variable ξ̃i, a perturbed
version of ξ by a small independent noisd: ξ̃i = ξ + ε, where ε ∼ N(0, γ2Im) and
Im is an m × m identity matrix. For small γ2, it is expected that ξ̃i and ξi be-
long to the same thresholded hypercubes with high probability. Thus, the label
vector Li can be obtained by thresholding ξ̃i instead of ξi. Vector ξi can now be
updated independently of the data via Pólya’s urn scheme, while ξ̃i can be up-
dated conditionally component-by-component via truncated univariate normals.
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The problem with this approach is sensitivity of the perturbation noise σ to the
varying size of different thresholded hypercubes, especially when k is moderate or
large. Moreover, sampling over continuous and high-dimensional latent vectors
ξ̃ and ξ could be very inefficient and, as we shall see, is unnecessary.

Our approach relies on the characterization of Li in terms of label vectors
i ∼ q and the latent vector ηi for i = 1, . . . , n. Furthermore, by the virtue of
Proposition 3 (and its extension for any m, see the Appendix), the latent ηi

can be easily marginalized so the overall mixing can be significantly improved.
Thanks to our choice of the Dirichlet prior, the Gibbs sampling procedure is now
straightforward by applying the Pólya urn sampling scheme. Here, we have for,
say, curve 1 at x1, that the conditional label distribution is

P (L1(x1)|L1(x2), . . . , L1(xm), the rest) ∝
n∑

i=2

I(L1 = Li)
α + n − 1

N(Y1|θLi)+

α

α + n − 1
N(Y1|θL1)qx1,...,xm(L(x1), . . . , L1(xm)|φL, k).

The likelihood function under q is obtained via Proposition 3. This likelihood
also provides means for updating φL via a standard Metropolis step. One possible
issue is that the approximation of the likelihood function for q is not expected
to be accurate for small value of k. In particular, the distribution function and
relevant conditional probabilities for the labeling process q are not available in
closed form. For the remainder of this section we develop approximate inference
methods for the latent labeling process q for small k. We illustrate with k = 2.

Turning first to estimation of the φ’s, we seek inference for φL given i.i.d. la-
bel realizations Z1, . . . , Zn drawn from q, observed values at locations x1, . . . , xm.
We first consider the point estimation problem for φL. Suppose we have multiple
curves, indexed by i = 1, . . . , n, observed at m = 2 locations x1 and x2 only. In
this scenario, one can use a maximum likelihood method to obtain a consistent
estimate for φL:

φ̂L = argmaxφL≥0

n∏
i=1

q(Zi(x1), Zi(x2)),

where the d.f q for k = 2 is available in the closed form given in Proposition 2.
The more typical scenario, however, is when m much larger than 2 and the
sample size n is small. For simplicity of exposition, suppose that n = 1. How
can one estimate φL given a single realization of random curve z evaluated at
m locations x1, . . . , xm: z = (z(x1), . . . , z(xm))? An intuitive approach is to
maximize a pseudo-likelihood for z that is obtained by taking the product of
all pairwise likelihood functions. Simulation work indicates that this is a good
estimator (see Table 1 for an illustration).
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Table 1. Mean and variance of the maximum likelihood estimate (for one
edge) and maximum pseudo-likelihood estimates for φL. n denotes sample
size, m denotes the number of locations in a equally spaced grid in R2. The
data is drawn from q(φL, k) with φL = 0.5, k = 2.

OneEdge MLE m = 4 m = 36 m = 100
n = 1 N/A 2.26 + 2.55 0.60 + 0.35 0.51 + 0.23
n = 10 2.03 + 8.03 0.64 + 0.43 0.48 + 0.15 0.51 + 0.06
n = 20 2.57 + 7.90 0.63 + 0.31 0.51 + 0.09 0.50 + 0.04
n = 40 0.48 + 0.30 0.53 + 0.19 0.51 + 0.05 0.51 + 0.04
n = 60 0.53 + 0.20 0.54 + 0.16 0.50 + 0.05 0.51 + 0.03
n = 80 0.52 + 0.33 0.51 + 0.16 0.50 + 0.04 0.50 + 0.02
n = 100 0.49 + 0.16 0.50 + 0.14 0.49 + 0.03 0.50 + 0.02

Proposition 9. Suppose that Z = (Z(x1), . . . , Z(xm)) is drawn from q(φ∗
L, 2)

via Fφ∗
L

for some φ∗
L > 0. Let rm be the number of pairs of (xi, xj) s.t. ‖xi−xj‖ ≤

d0 for some d0 > 0. Then, for

φ̂L = argmaxφ≥0

∏
1≤i<j≤m

q(Z(xi), Z(xj))|φ),

we have that |φ̂L − φ∗
L| = O(

√
m/rm) in probability.

Though the proof is provided for k = 2 it can be easily extended for k > 2.
Suppose now that φL is endowed with a prior distribution π(φL) on a bounded

interval [φ1, φ0]. We are interested in sampling the posterior distribution for
φL given values of the label Z = (z(x1), . . . , z(xm)). We propose to use the
aforementioned pseudo-likelihood to obtain what we term a “Gibbs posterior”
distribution Zhang (2006) for φL as

Pλ(φL|Z) ∝
∏

1≤i<j≤m

q(Z(xi) = z(xi), Z(xj) = z(xj))|φL)λπ(φL). (6.1)

Here λ > 0 is an arbitrary parameter that controls the dispersion of the Gibbs
posterior. It can be shown that the Gibbs posterior is very close to the “true”
posterior in the sense of Kullback-Leibler divergence.

Proposition 10. Suppose that Z = (Z(x1), . . . , Z(xm)) is drawn from q, equiv-
alently Fφ∗

L
, for some φ∗

L > 0, and that for any sufficiently small neighborhood
(u, v) of φ∗

L, π(u, v) > |u − v|r for some r > 0, then under the true marginal
generating Z,

EPλ

1
m(m − 1)/2

log
(Pλ(φ∗

L|Z)
Pλ(φ|Z)

)
= OP (

1
m

).
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Next, we introduce a variational Bayes approach for inference about q. In
particular, the proposed sampling method for the decay parameter φL via the
Gibbs posterior provides a direct motivation for approximating the distribution
q using variational inference techniques for Markov random fields (cf., e.g., Wain-
wright and Jordan (2003)). Let E be a subset of pairs {(i, j)| 1 ≤ i < j ≤ m}. E

could be viewed as a collection of edges connecting the vertices x1, . . . , xm ∈ D

to form a graphical structure. Our strategy is to approximate the multivariate
distribution q(Z(x1), . . . , Z(xm)) by a graphical model distribution q̃ defined as

q̃E(Z(x1), . . . , Z(xm)) ∝
∏

(i,j)∈E

q(Z(xi), Z(xj)). (6.2)

Then the conditional probability distribution for the labels is approximated by
q̃E(Z(x1)|Z(x2), . . . , Z(xm)) ∝

∏
j 6=1 q(Z(x1), Z(xj)).

The following result shows that q̃ is the best possible approximation within
a restricted class of graphical models in the sense of Kullback-Leibler divergence
D(·||·).

Lemma 11. Consider a class of probability distributions of (Z(x1), . . . , Z(xm)) ∈
{1, 2}m:

QE =
{

Q : Q(Z(x1), . . . , Z(xm)) ∝
∏

(i,j)∈E

qij(Z(xi), Z(xj))
}

,

where qij’s are any function on {1, 2}2. Then the distribution q̃E defined in (6.2)
satisfies

q̃E = argminQ∈QE
D(q||Q).

From the above lemma, the more edges added to set E, the better the ap-
proximation q̃ is for q, but it is also more difficult to estimate the log-partition
function

A(E) = log
∑
Z

∏
(i,j)∈E

q(Z(xi), Z(xj)).

Indeed, for a tree-structured graph, A(E) is a known constant while, in general,
we can only obtain upper and lower bounds.

Proposition 12.
(a) The marginal distribution under q̃E is uniform.

(b) If E forms a spanning tree, then A(θE) = −(m−2) log 2, and q̃E(Z(xi), Z(xj))
= q(Z(xi), Z(xj)) for any (i, j) ∈ E.
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(c) Suppose E forms a connected graph, and E0 ⊆ E is a spanning tree, then

−(|E| − 1) log 2 + U ≤ A(θE) ≤ −(|E| − 1) log 2 + V, where

U =
∑

(i,j)∈E−E0

(
q̃E0(Z(xi) 6= Z(xj)) log q(Z(xi) 6= Z(xj))

+q̃E0(Z(xi) = Z(xj)) log q(Z(xi) = Z(xj))
)

,

V =
∑

(i,j)∈E−E0

(
q̃E(Z(xi) 6= Z(xj)) log q(Z(xi) 6= Z(xj))

+q̃E(Z(xi) = Z(xj)) log q(Z(xi) = Z(xj))
)

.

For a one-dimensional domain D, we conveniently employ a tree-structured ap-
proximation for q in which the set of (xt, xt+1) pairs form the collection of edges
for t = 1, . . . ,m − 1, assuming that x1 < . . . < xm. For domains of two or
higher dimensions, we also apply a minimum spanning tree approximation, al-
though more sophisticated methods can be employed (see Wainwright and Jordan
(2003)).

7. Applications

We demonstrate the behavior of the Dirichlet label process prior using simu-
lated data in Section 7.1. Sections 7.2 and 7.3 look at a collection of progesterone
curves and a collection of images, respectively.

7.1. Synthetic data

First we illustrate the fitting of the mixture model described in Section 2,
where the species samples are obtained by random switching among k species
curves that are drawn from a known Gaussian process on the real line. In partic-
ular, we specify m = 20 locations [x1, . . . , xm] = [1, 3, . . . , 39] while leaving out 20
other locations 2, 4, . . . , 40 for validation purposes. θ∗j for j = 1, . . . , k are inde-
pendently drawn from a Gaussian process GP (µj , φθ, σθ) at locations x1, . . . , xm,
where µj = −1+2(j−1)/(k−1). The label vectors L1, . . . , Ln are drawn from la-
bel process q, which is drawn by known φL. Species θ1, . . . , θn are constructed by
letting θi(xt) = θ∗Li(t)

(xt). Finally, the data collection Y1, . . . , Yn is obtained by
mixing θi with an independent error process drawn from N(0, τ2Im). We gener-
ated n = 100 sample curves using k = 4 canonical species curves. Parameter val-
ues for data generation were φθ = 0.01, σθ = 1, φL = 0.05, τ = 0.1. For inference,
we placed an uniform prior on the label switching parameter φL ∼ Uni[0.0001, 1],
while keeping φθ, σθ and τ fixed. Posterior distributions for latent labels and
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Figure 1. Evolution of posterior distributions at held-out locations x =
2, 4, . . . , 40. Solid plots are true distributions. Dashed plots are predictive
distributions learned from the model.

canonical species curves were obtained by running the MCMC algorithm for
4,000 iterations after a burn-in period of 1,000 iterations. An examination of
running traces suggested that the sampling algorithm mixed well.

Figure 1 illustrates the evolution of the posterior distributions (in solid lines)
at the held-out locations, as we move from location 2 to 40, the estimated den-
sities obtained from our sampling. It is interesting to observe how the clusters
initially “move” toward each other, then split into more clusters, and merge
again. The estimated densities (in dashed lines) approximate the true densities
well. The dependence in these distributions is driven by the smoothness of the
k canonical species curves θj (j = 1, . . . , k) serving as the bases for our curve
collection, as well as the label switching parameter φL.

With φθ fixed, φL plays a central role in the identifiablity of the canonical
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Figure 2. Illustration of canonical curve samples generated from the posterior
in solid lines with squares. Figures to the right describe the corresponding
Gibbs posterior for φL.

species curves θj . When φL is close to 0, the curves hardly switch their labels,
the curve collections can be globally clustered by the canonical curves that are
strongly identifiable. On the other hand, when φL is large, the curves tend
to switch often among the canonical species curves which become more weakly
identified. In general, our model is able to always recover segments of locations
that admit relatively few switchings. Figure 2 illustrates this phenomenon with
data generated from k = 2 canonical curves, with the true φL set to be 0.1 (top)
and 0.5 (bottom figures). Note the corresponding Gibbs posterior for φL which
was obtained from our sampling algorithm. In both cases, a uniform distribution
prior Uni[0.0001, 1] was placed on parameter φL, while φθ = 0.005, σθ = 1,
τ = 0.1 were fixed. For smaller value of true φL (top figures), the posterior
was well-concentrated around the true value. For larger φL (bottom figures), the
posterior mass shifted to the right, because the canonical species curve estimates
(due to weak identifiability) tended to over-switch between the modes.

7.2. Progesterone modeling

We turn to an application of the Dirichlet labeling process for modeling
Progesterone data (cf., Brumback and Rice (1998)). This data set records the
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natural logarithm of the progesterone metabolite, measured by urinary hormone
assay, during a monthly cycle for 51 female subjects. Each cycle ranges from -8
to 15 (8 days pre-ovulation to 15 days post-ovulation). There are a total of 88
cycles; the first 66 cycles belong to non-contraceptive group, the remaining 22
cycles belong to the contraceptive group. This grouping is of course unknown to
our analysis. See Figure 3 for the illustration. This data set is interesting as it
allows us to compare our model to a more simplistic global clustering approach.
To appreciate the noise and overlap of the two groups, we also consider a modified
data set in which the curves belong to the contraceptive group are down-shifted
by 2 (see Figure 6).

We focus our analysis to the case k = 2. We envision that there are two
canonical curves providing bases for random label selection (switching). Due
to the apparent noise and overlap of the two groups, we placed a prior on the
switching parameter φL ∼ Gam(5, 2) so as to allow possible duplication of canon-
ical curves in certain local segments. Canonical curves were drawn from mean-0
Gaussian process with a covariance matrix using decay parameter φθ = 0.005
and σθ = 1. We fixed the precision parameters τ = 1, α = 1. A discussion of
the sensitivity of these parameters is included in the sequel. Samples from poste-
rior distribution were collected from 5,000 MCMC iterations (discarding the first
1,000). An examination of running traces suggested very fast mixing. Figure 3
shows the mean estimate for the canonical curves. (The quantiles are not plotted
because the posterior distribution for canonical curves are tightly concentrated
around their means). It appears difficult to cluster the data for individual lo-
cations without taking into account the global smoothness of the whole curves.
With our model the estimated canonical curves appear to match the general be-
havior of the two groups fairly well. We observe that the two canonical curves are
virtually indistinguishable in the early part of the cycle. In fact, the behavioral
patterns between the two curves become more distinguishable only in the post-
ovulation period. Figure 4 shows the label mean for the whole monthly period for
each of the 88 individual cycles. The last 22 cycles (contraceptive group) register
generally higher label means than the first 66 cycles. This is also demonstrated
by heatmaps in Figure 5, which illustrate the proportion of equal labels for pairs
of curve replicates. Although global clustering is apparently not possible, one
can observe the local clustering effect by zooming in to the curve segment corre-
sponding to the last 5 days of the menstrual cycle. We also applied our analysis
(using the same prior specification and parameter initial values) to a modified
data set in which the curves belong to the second group were down-shifted by 2.
Global clustering was now easily achievable (see Figure 6).

We now turn to a discussion of the effects of several parameters of interest on
the identifiability of the canonical curves (see Figure 7 for illustrative results). We
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Figure 3. Monthly PGD cycle for contraceptive group (solid lines) and non-
contraceptive group (dashed lines). Solid lines with squares are the mean
estimate of canonical curves.

Figure 4. Left: Mean of estimated labels during the whole monthly cycle.
Right: label means for pre and post-ovulation periods for 88 individuals
(plots with x’s and squares, resp.).

observe that, as φL gets smaller, the model insists on increasingly global clusters
(and less label switching for each replicate) resulting in separable canonical curves
that do not intersect. For this data set, these separable curve estimates do not
reflect the behavioral pattern for each of the two groups, but act rather as a pair
of basis curves for representing the curve collection. On the other hand, large
φL offers more flexibility by allowing more complex canonical curve interaction.
For instance, it is possible to obtain well separated clustering effects in one local
segment and almost duplicates in another local segment. Turning to τ , as τ gets
smaller, the canonical curves become more distinct (and less smooth) to expand
the coverage of the function space. On the other hand, large τ results in weakly
distinguishable canonical curves. The role of φθ is to dictate the smoothness of



1274 XUANLONG NGUYEN AND ALAN E. GELFAND

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85
0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Heatmap illustrating propotion of equal labels for pairs of repli-
cates for the whole curve (left), and a curve segment [20, 24] (i.e., last 5 days
of the monitored cycle) (right).
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Figure 6. Analysis applied to the modified PG data set. Left: Mean estimate
for the canonical curves. Right: Heatmap illustrating proportion of equal
labels for pairs of replicates for the whole curve.

canonical curves. Finally, the influence of α (not shown here) on the number of
clusters induced by label realizations is less pronounced than that of τ and φL

for this data set.

7.3 Image modeling

In this section we demonstrate a possibly surprising application of our model
to an image segmentation task. Our data set consists of 80 color images from
a Microsoft image database Winn, Criminisi, and Minka (2005). These images
are of size 26 × 40. Although these images can be loosely grouped into different
categories (grass fields, plants, buildings, planes, etc), there are often multiple
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Figure 7. Top row: effects of τ = 0.1, 1, 2. Second row: effects of φL =
0.01, 1, 2. Third row: effects of φθ = 0.001, 0.005, 0.02.

objects of different types in the same image. It is thus very natural to view
them as hybrid species curves. Each image is represented by a surface real-
ization Yi, for i = 1, . . . , 80, where Yi(x) is the color intensity of the location
x ∈ D = {1, . . . , 26} × {1, . . . , 40} in the i-th image. The color intensity consists
of three numbers in [0, 255] (corresponding to the red, green and blue scales). Ac-
cordingly, we write Yi(x) = [Y 1

i (x), Y 2
i (x), Y 3

i (x)]. We introduce k = 8 canonical
species curves, each of which is represented by three constant random functions
ranging in [0, 255]. (Introducing more canonical species, which we did for in-
stance with k = 12, almost always yielded more than one duplicate canonical
species curves). We write θ∗j (·) = [θ∗j

1(·), θ∗j
2(·), θ∗j

3(·)] for j = 1, k. The three
dimensions are treated independently, by letting Y r

i (x) = θ∗Li(x)
r(x)+εi,r,x, where

εi,r,x is independent zero-mean normal noise with variance τ2 for any i = 1, . . . , n;
r = 1, 2, 3;x ∈ D.

As described in Section 4 we introduce additional constraints into the prior
structure for the canonical curves θ∗. In particular, we placed a (truncated)
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Figure 8. Effects of φL = 0.5, 0.05, 0.01 on segmentation for the leftmost image.

Figure 9. Examples of segmented images (using φL = 0.1).

normal prior with mean [10 10 10] and variance 102I3 on θ∗1, and a normal prior
with mean [240 240 240] and the same variance on θ∗k. That is, we anchored
the two extreme labels with the two extremes of the color scale (black and white
colors). All remaining canonical species were given a relatively non-informative
prior; for j = 2, . . . , k − 1, θ∗j

r i.i.d.∼ N(µj , σj) · I[0,255], where µj = 128. For all
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j = 1, . . . , k, we fixed σj = σθ, where σ−2
θ ∼ Gam(aσ, bσ). We set aσ = 0.4 and

bσ = 0.001. For precision parameter τ we let τ−2 ∼ Gam(aτ , bτ ), where aτ = 0.1
and bτ = 0.025. We set the concentration parameter α = 1.

To complete the prior specification, let us turn to the latent labeling processes
p and q. One possible approach is to endow p with a single Dirichlet labeling
process prior for the entire domain (as in the previous applications). For the
image data set, global clustering is generally not of interest (because it is unlikely
that two images have exactly the same labeling everywhere). On the other hand,
label sharing at smaller scales (not to mention the pixel-level scale) is much more
likely due to the occurrence of similar objects in similar scenes. To encourage
this sharing we decomposed each image into fixed and disjoint patches of size
r × r. Conditionally on q, the labeling processes p defined for disjoint patches
are mutually independent and follow the Dirichlet labeling process specification
as before. We experimented with the choices r = 4, 6, 8 and received comparable
results. Finally, the latent labeling process q(φL, k = 8) was specified for the
whole domain using different choices of φL = 0.5, 0.1, 0.05, 0.01.

The MCMC algorithm was run for 200 iterations. Samples obtained from
the last 150 iterations were used for image segmentation. The segmented im-
ages were obtained by assigning to each image location the light intensity of
the MAP estimate of the canonical curve at the same location. Figure 9 pro-
vides examples of representative segmentation results. Figure 8 illustrates the
effects of φL on the segmentation results. For φL large, the group allocation at
each location is highly independent, resulting in fragmented segmentation. As
φL decreases, the segments become increasingly coherent. As φL becomes too
small, however, nearby locations are forced to share the same group. Further-
more, patches from different images are also encouraged to cluster, resulting in
increasingly “abstract” segments.

8. Conclusions

The Dirichlet labeling process provides a highly flexible prior for modeling
collections of functions (curves, surfaces). Though driven by just a few param-
eters, the inter-relationships between these parameters are complex with regard
to process behavior. We are currently exploring multivariate extensions of the
labeling process, the modeling of label clustering at random spatial scales, as
well as the incorporation of prior knowledge of canonical curves. From a practi-
cal viewpoint, it is also worth comparing the functional clustering arising from
the Dirichlet labeling process prior with that of non model-based approaches
such as those mentioned in the Introduction. Investigation to illuminate advan-
tages/diadvantages offers potential future work.
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Appendix

Proof of Proposition 1. This result is straightforward using standard proper-

ties of Dirichlet distribution.

Proof of Proposition 2. We derive the result for a stochastic process F ∼
GP (0, σL, φL) (the Proposition states the result for σL = 1). From the def-

inition, qx1,x2(1, 1) = P (η(x1) > 0, η(x2) > 0). Note that (η(x1), η(x2)) ∼

N([0 0],
[

σ2
L ρ12

ρ12 σ2
L

]
). By a change of variables, η̃=(1/

√
2)

[
1 1
−1 1

]
[η(x1) η(x2)]T ,

we obtain that η̃ ∼ N([0 0],
[
λ1 0
0 λ2

]
), where λ1 = σ2

L + ρ12 and λ2 = σ2
L − ρ12.

Then

P (η(x1) > 0, η(x2) > 0) =
1

2π
√

λ1λ2

∫
η(x1),η(x2)>0

exp−(η̃2
1/λ1 + η̃2

2/λ2)
2

dη̃1η̃2.

Another change of variables ( η̃1 = r
√

λ1 cos α and η̃2 = r
√

λ2 sinα) and some

elementary calculus yields the desired result.

Proof of Proposition 3. We derive the result for a stochastic process F ∼
GP (0, σL, φL) (the Proposition states the result for σL = 1). The proposition is

concerned with an arbitrary collection of indices i, j such that i, j ∈ (α1k, α2k)

for given 0 < α1 < α2 < 1. By definition, cj = σLΦ−1(j/k). By Taylor approxi-

mation, it is simple to obtain that

cj = cj−1 +
1
k
(
√

2πσLec2j/2σ2
L + o(1)). (A.1)

Furthermore, cj = −ck−j and ck/2 = 0 if k is even. Using a Riemann sum
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approximation, we have:

P (Z1 = i, Z2 = j)

= P (η1 ∈ (ci−1, ci), η2 ∈ (cj−1, cj))

=
1

2π
√

σ4
L − ρ2

12

∫ ci

ci−1

∫ cj

cj−1

exp−
σ2

L(η2
1 + η2

2) − 2ρ12η1η2

2(σ4
L − ρ2

12)
dη1η2

=
1

2π
√

σ4
L − ρ2

12

(ci − ci−1)(cj − cj−1) exp−
σ2

L(c2
i + c2

j ) − 2ρ12cicj

2(σ4
L − ρ2

12)
(1 + o(1))

(A.1)
=

1
k2

σ2
L√

σ4
L − ρ2

12

exp−
(c2

i + c2
j )ρ

2
12 − 2ρ12σ

2
Lcicj

2(σ4
L − ρ2

12)σ
2
L

(1 + o(1)).

By properties of the multivariate Gaussian, η2|η1 = u1 ∼ N(u1ρ12/σ2
L, σ2

L −
ρ2
12/σ2

L). So

P (η1 = i, η2 ≥ j) =
∫ ci

ci−1

e−u2
1/2σ2

L

σL

√
2π

(
1 − Φ(

cj − u1ρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)
)

du1

= (ci − ci−1)(
e−c2i /2σ2

L

σL

√
2π

(
1 − Φ(

cj − ciρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)
)

)

(A.1)
=

1
k

(
1 − Φ

(
cj − ciρ12/σ2

L

σ2
L − ρ2

12/σ2
L

)
+ o(1)

)
.

The above result can be used to obtain conditional probabilities (e.g., for inter-
polation). For instance, for i, j1, j2 ∈ {1, . . . , k},

P (Z(x2) ∈ (j1, j2]|Z(x1) = i) = Φ
(

cj2 − ciρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)
−Φ

(
cj1 − ciρ12/σ2

L

σ2
L − ρ2

12/σ2
L

)
+o(1).

Finally, it is worth mentioning that as k → ∞, o(1) → 0 uniformly for all i, j in
the specified interval, where o(1) does depend on σL and φL.

Extension of Proposition 3 to m > 2 locations. The results of Proposition
2 can be easily extended to an arbitrary collection of locations x1, . . . , xm. Let A

denote the inverse covariance matrix for random vector (η(x1), . . . , η(xm)). For
any m-tuple (j1, . . . , jm) ∈ {1, . . . , k}m such that none of cji diverges to ∞ or
−∞,

P (Z(x1) = j1, . . . , Z(xm) = jm) =
1

km
(Rj1,...,jm(cj1 , . . . , cjm) + o(1)), (A.2)
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where o(1) → 0 uniformly for all such tuple (j1, . . . , jm), and

Rj1,...,jm(cj1 , . . . , cjm) = σm
L (detA)1/2 exp

m∑
i=1

c2
ji
(

1
2σ2

L

− Aii

2
) −

∑
s<t

cjscjtAst.

(A.3)
Given the d.f. for q, it is simple to obtain conditional probabilities, e.g., for label
Z(x1) at location x1 given remaining labels Z(x2), . . . , Z(xm). Letting Ã denote
the inverse of the covariance matrix for Z(x2), . . . , Z(xm),

P (Z(x1) = j1|Z(x2) = j2, . . . , Z(xm) = jm)

=
σL(detA)1/2

k(det Ã)1/2
exp

{
c2
j1(

1
2σ2

L

− A11

2
) − cj1

∑
t6=1

cjtA1t

−1
2
[cj2 . . . cjm]T (A − Ã)[cj2 . . . cjm]

}
+ o(

1
k
).

P (Z(x1) > j1|Z(x2) = j2, . . . , Z(xm) = jm)

= 1 − Φ
(

cj1 − [ρ12 . . . ρ1m]Ã[cj2 . . . cjm]T

σ2
L − [ρ12 . . . ρ1m]T Ã[ρ12 . . . ρ1m]

)
+ o(1).

Proof of Proposition 4. Since θ∗ and L are independent, we have

E(θ(x1) − θ(x2))2 = E
∑

j1,j2=1,...,k

px1,x2(j1, j2)(θ∗j1(x1) − θ∗j2(x2))2

=
∑

j1 6=j2

qx1,x2(j1, j2)(Eθ∗(x1)2 + Eθ∗(x2)2 − Eθ∗(x1)Eθ∗(x2))

+
k∑

j=1

qx1,x2(j, j)E(θ∗(x1) − θ∗(x2))2.

The second summand goes to 0 because θ∗ is mean square continuous. It remains
to show that for any j1, j2 such that j1 6= j2, qx1,x2(j1, j2) → 0 as x2 → x1. Note
that if F is a Gaussian process GP (0, σL, φL) and k = 2, this probability is
available in a closed form given by Proposition 2: For j1 6= j2, qx1,x2(j1, j2) =
(1/π) arccos(1/2 + ρ12/2σ2

L)1/2 → 0 as x2 − x1 → 0. More generally, suppose
that j1 < j2. Recall the construction of Z via the auxiliary random function
η ∼ F . Fix an arbitrary ε > 0. P (Z(x1) = j1, Z(x2) = j2|η(x1) < cj1 − ε) ≤
P (η(x2) − η(x1) > ε) ≤ E(η(x1) − η(x2))2/ε2 → 0 as x2 → x1, due to the mean
square continuity of η. Now letting ε → 0, we obtain P (η(x1) ∈ [cj1−ε, cj1 ]) → 0.
So, as x2 → x1

qx1,x2(j1, j2)≤P (η(x1)∈ [cj1 − ε, cj1 ]) + P (Z(x1)=j1, Z(x2)=j2|η(x1)<cj1−ε)

→ 0.
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Proof of Proposition 5. To simplify the notation in the proof we omit the sub-
scripts x1, . . . , xm. The equality in distribution implies the equality of moment
generating functions. Thus, for any (t1, . . . , tm) ∈ Rm, we have

∑
(j1,...,jm)

p(j1, . . . , jm) exp
( m∑

r=1

θ∗jr
(xr)tr +

1
2
τ∗2

∑
t2r

)

=
∫

exp
( m∑

r=1

θ(xr)tr +
1
2
τ2

∑
t2r

)
G1(dθ)π1(dτ). (A.4)

Let j∗1 , . . . , j∗m be the indices of the canonical curves that have the maximum val-
ues at locations x1, . . . , xm, respectively. Divide both sides of the above equation
by exp[

∑
r θ∗j∗r tr + (1/2)τ∗2 ∑

t2r ] to obtain

p(j∗1 , . . . , j∗m) +
∑

(j1,...,jm)

p(j1, . . . , jm) exp
{ m∑

r=1

(θ∗jr
(xr) − θ∗j∗r )tr

}

=
∫

exp
{ m∑

r=1

(θ(xr) − θ∗j∗r )tr +
1
2
(τ2 − τ∗2)

∑
t2r

}
G1(dθ)π1(dτ).

Note that for any r = 1, . . . ,m, letting tr → +∞ leaves the left hand side
positive and bounded while the right hand side tends to 0 or ∞, unless under
the prior G1 × π1 the only events with strictly positive probabilities are either
Y1 = {τ = τ∗, θ(xr) = θ∗j∗r (xr) for all r = 1, . . . ,m} or Y2 = {τ < τ∗}. It follows
that the RHS can be written as

PG1×π1(Y1)

+
∫
Y2

exp
{ m∑

r=1

−θ∗j∗r tr −
1
2
(τ∗2 − τ2)(tr −

θ(xr)
τ∗2 − τ2

)2
}

R(θ, τ)G1(dθ)π1(dτ),

where R(θ, τ) = exp[1/2(τ∗2 − τ2)]
∑m

r=1 θ(xr)2. Let tr → ∞ for r = 1, . . . ,m,
and use the assumption on function R, to obtain that PG1×π1(Y1) = pj∗1 ,...,j∗m×δτ∗ .
Now substract the tuple (j∗1 , . . . , j∗m) from the moment equality equation and
carry the same argument to the remaining terms to obtain G1 = Gx1,...,xm , and
π1 = δτ∗ .

Proof of Lemma 6. This lemma is a multivariate version of a result of Ishwaran
and Zarepour (Lemma 2). The key to the proof is to exploit the distribution of
the weight vector (px1,...,xm(·)), which is a km-dimensional Dirichlet distribution
parameterized by qx1,...,xm(j1, . . . , jm) where (j1, . . . , jm) ∈ {1, . . . , k}m. It can
be shown that, by examining the proof of Proposition 3, there exists a constant
c > 0 such that for any k there are at least (k/2)m tuples of the form (j1, . . . , jm)
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whose associated q probabilities are greater than c/km. Using this fact, and
choosing k > 2k∗, where k∗ is the true number of canonical curves used to
generate f0, it can be verified that Ishwaran and Zarepour’s proof goes through
here as well.

Proof of Lemma 7. First, let Fan
n,k,τ be a subset of Fn,k where the associated

τ is fixed to a constant in [τn,M ], and the support of the associated Gx1,...,xm

lies entirely in [−an, an]m. We obtain the bound of this density class first, and
then relate it to the entropy of the bigger class Fn,k.

We note the following bound of L1 distance for two univariate normal den-
sities (from Lemma 1 of Ghosal, Ghosh, and Ramamoorthi (1999)):

‖ψ(θ(x1), τ) − ψ(θ(x2), τ)‖1 ≤ (θ(x1) − θ(x2))
τ

.

To extend this bound to the product of normal densities, we exploit the following
bound between L1 and the Hellinger distance h (which is defined as 2h2(f, g) =∫
(
√

f −√
g)2):

1
2
‖f − g‖2

1 ≤ 2h2(f, g) ≤ ‖f − g‖1.

For product of densities, we have

h2(
m∏

i=1

fi,

m∏
i=1

gi) = 1−
∫

(
m∏

i=1

figi)1/2 = 1−
m∏

i=1

∫
(figi)1/2 = 1−

m∏
i=1

(1−h2(fi, gi)).

As a result, if |θ(xi) − θ̃(xi)| ≤ δ for all i = 1, . . . ,m,∥∥∥ m∏
i=1

ψ(θ(xi), τ) −
m∏

i=1

ψ(θ̃(xi), τ)
∥∥∥2

1
≤ 4(1 −

m∏
i=1

(1 − (θ(xi) − θ̃(xi))
2τ

) ≤ 2mδ

τ
.

If ‖θ−θ̃‖∞ ≤ δ2τn/2m and τ ≥τn then ‖
∏m

i=1 ψ(θ(xi), τ)−
∏m

i=1 ψ(θ̃(xi), τ)‖1

≤ δ.
Next, note that the hybrid species curves (vectors) θ is parameterized in

terms of only k canonical vectors θ∗. That is, instead of needing km mean
variables of the km mixture components, we need only km mean variables.
This can reduce the size of the covering for Fan

n,k,τ , which we now specify: Let
N0 be the smallest integer greater than 2an/(δ2τn/2m) = 4anm/(τnδ2). Di-
vide [−an, an] into N0 equal intervals and collect N0 midpoints. At each lo-
cation xi, i = 1, . . . ,m, there are only k possible values for θ(xi). Combin-
ing across m locations, there are

(
N0

k

)m ≤ Nkm
0 ways of choosing km hybrid

curves (vectors) for the km mixture components using the midpoints constructed.
Thus, we have obtained a δ-covering for the set of density products of the form
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PY = {
∏m

i=1 ψ(Y(xi)|θ(xi), τ)|θ ∈ [−an, an]m} that has no more than Nkm
0 ele-

ments, and J(δ,PY ) ≤ km log N0.
Let N = km and PN = {(P1, . . . , PN ) : Pi ≥ 0,

∑N
i=1 Pi = 1}. As proved

in Lemma 1 of Ghosal, Ghosh, and Ramamoorthi (1999) (GGR), under the l1
metric, that J(δ,PN ) ≤ N(1+log(1 + δ)/δ). Furthermore, it is simple to observe
that one can construct a 2δ-covering for Fan

n,k,τ by combining each element of the
δ-covering for PN with an element of the δ-covering for PY . This implies that:

J(2δ,Fan
n,k,τ ) ≤ J(δ,PN ) + J(δ,PY ). (A.5)

The final step is to relate J(2δ,Fan
n,k,τ ) to J(2δ,Fn,k). Following GGR we

use another intermediate class Fan,δ
n,k,τ that consists of all f ∈ Fn,k where the

support of the associated Gx1,...,xm lies within [−an, an]m with probability at
least 1 − δ, and the variance τ is fixed. From GGR’s Lemma 2, J(3δ,Fan,δ

n,k,τ ) ≤
J(δ,Fan

n,k,τ ). Following GGR’s Lemma 3, for an > M/
√

δ, one can obtain that

Fn,k ⊂ F2an,2mδ
n,k,τn

. Combining these with (A.5)

J(6mδ,Fn,k) ≤ J(6mδ,F2an,2mδ
n,k,τn

) ≤ J(2mδ,F2an
n,k,τn

)

≤ km log
1 + mδ

mδ
+ km log(1 +

2an

τnmδ2
).

Proof of Proposition 9.
Let D = {‖xi − xj‖|1 ≤ i, j ≤ m} and pφ(d) = (1/π) arccos

√
1/2 + e−φd/2.

Let n+(d) (n−(d), resp.) be the number of (xi, xj) pairs such that ‖xi − xj‖ = d
and η(x1)η(x2) ≥ 0 (η(x1)η(x2) < 0, resp.) Let n(d) = n+(d) + n−(d). Note
that n(d) is independent of η. The maximum pseudo-likelihood estimator can be
written as

φ̂L = argmaxφ≥0

∑
d∈D

n+(d) log pφ(d) + n−(d) log(
1
2
− pφ(d)).

For any φ, d ≥ 0, 0 ≤ pφ(d) ≤ 1/4. From the definition of φ̂L,∑
d∈D

n+(d) log pφ̂L
(d) + n−(d) log(

1
2
− pφ̂L

(d))

≥
∑
d∈D

n+(d) log pφ∗
L
(d) + n−(d) log(

1
2
− pφ∗

L
(d)).

Due to the concavity of logarithm, log(u + v)/2 ≥ (log u + log v)/2 by Jensen’s
inequality. This implies∑

d∈D
n+(d) log

pφ̂L
(d) + pφ∗

L
(d)

2pφ∗
L
(d)

+ n−(d) log
1 − pφ̂L

(d) − pφ∗
L
(d)

1 − 2pφ∗
L
(d)

≥ 0. (A.6)
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It is simple to see that both log[pφ(d) + pφ∗
L
(d)]/[2pφ∗

L
(d)] and log[1 − pφ(d)

−pφ∗
L
(d)]/[1 − 2pφ∗

L
(d)] are absolutely bounded by some constant M > 0 for any

φ ≥ 0. From Proposition 2, En+(d) = 2n(d)pφ∗
L
(d) and En−(d) = 2n(d)(1/2 −

pφ∗
L
(d)). Applying McDiarmid’s inequality, for any ε > 0 we obtain

P

(
sup
φ≥0

∣∣∣∣ ∑
d∈D

(
n+(d) − 2n(d)pφ∗

L
(d))

)
log

pφ(d) + pφ∗
L
(d)

2pφ∗
L
(d)

+
(

n−(d) − 2n(d)(
1
2
− pφ∗

L
(d)

)
log

1 − pφ(d) − pφ∗
L
(d)

1 − 2pφ∗
L
(d)

∣∣∣∣ ≥ ε

)
≤ 2 exp

−4ε2

m(m − 1)M2
. (A.7)

Combining (A.7) and (A.6),

P

(∣∣∣∣ ∑
d∈D

−2n(d)pφ∗
L
(d) log

pφ̂L
(d) + pφ∗

L
(d)

2pφ∗
L
(d)

−2n(d)(
1
2
− pφ∗

L
(d) log

1 − pφ̂L
(d) − pφ∗

L
(d)

1 − 2pφ∗
L
(d)

∣∣∣∣ ≥ ε

)
≤ 2 exp

−4ε2

m(m − 1)M2
.

Thus,∑
d∈D

n(d)
(

pφ∗
L
(d) log

2pφ∗
L
(d)

pφ̂L
(d)+pφ∗

L
(d)

+(
1
2
−pφ∗

L
(d)) log

1−2pφ∗
L
(d)

1−pφ̂L
(d) − pφ∗

L
(d)

)
= OP (m)

in q-probability. Note that for log x ≤ 2(
√

x − 1),

pφ∗
L
(d) log

2pφ∗
L
(d)

pφ̂L
(d) + pφ∗

L
(d)

+ (
1
2
− pφ∗

L
(d)) log

1 − 2pφ∗
L
(d)

1 − pφ̂L
(d) − pφ∗

L
(d)

≥ −2pφ∗
L
(d)

(√√√√pφ∗
L
(d) + pφ̂L

(d)

2pφ̂L
(d)

− 1
)

−2(
1
2
− pφ∗

L
(d))

(√
1 − pφ̂L

(d) − pφ∗
L
(d)

1 − 2pφ∗
L
(d)

− 1
)

=
(√

pφ∗
L
(d)+pφ̂L

(d)

2
−

√
pφ∗

L
(d)

)2

+
(√

1−pφ̂L
(d)−pφ∗

L
(d)

2
−

√
1
2
− pφ∗

L
(d)

)2

≥ 1
8
(pφ̂L

(d) − pφ∗
L
(d))2.

For any φ ∈ [0, φ0] and d ≤ d0, it is simple to verify that there exists a constant
C0 > 0 that depends only on φ0 and d0 such that |pφ(d)− pφ∗

L
(d)| ≥ C0|φ− φ∗

L|.
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As a result, |φ̂L − φ∗
L| = OP (

√
m/rm), where rm is the number of pairs (xi, xj)

such that ‖xi − xj‖ ≤ d0.

Proof of Proposition 10. Let Z = (z(x1), . . . , z(xm)). Denote by P ∗ the joint
distribution PZ ×Pλ, where Pλ denotes the Gibbs posterior given Z, and PZ the
“true” distribution generating Z (i.e., under true φ∗

L). By Markov’s inequality,
for any εm > 0,

Pλ(log P1(φ∗
L|) − log P1(φ|) ≥ εm)

= Pλ(exp(λ(log P1(φ∗
L|) − log P1(φ|)) ≥ exp(λεm)))

≤ exp(−λεm)EPλ

(
P1(φ∗

L|Z)
P1(φ|Z)

)λ

= exp(−λεm)
∫ (

P1(φ∗
L|Z)

P1(φ|Z)

)λ ∏
q(z(xi), z(xj))λπ(φ)dφ∫ ∏
q(z(xi), z(xj))λπ(φ)dφ

= exp(−λεm)
∏

q(z(xi), z(xj)|φ∗
L)λ

∫
(π(φ∗

L)/π(φ))λdφ∫ ∏
q(z(xi), z(xj))λπ(φ)dφ

= exp(−λεm)
∏

q(z(xi), z(xj)|φ∗
L)λC1∫ ∏

q(z(xi), z(xj))λπ(φ)dφ
,

where C1 =
∫

(π(φ∗
L)/π(φ))λdφ is a constant. Let

Am(ε) = {Z : sup
φ≥φ1

∣∣∣∣ log
∏

q(z(xi), z(xj)) − EZ log
∏

q(z(xi), z(xj))
∣∣∣∣ ≥ ε}.

By McDiarmid’s inequality, PZ(Am(ε)) ≤ 2 exp(−4ε2)/[m(m − 1)M2] for
some constant M > 0. Applying union bounds, under the joint distribution P ∗

we have, for any δm > 0,

P ∗(log P1(φ∗
L|) − log P1(φ|) ≥ εm)

≤ PZ(Am(δm/4)) + EZ

[
exp(−λεm)

C1
∏

q(z(xi), z(xj)|φ∗
L)λ∫ ∏

q(z(xi), z(xj))λπ(φ)dφ

∣∣∣∣AC
m(

δm

4
)
]

≤ PZ(Am(
δm

4
))

+EZ

[
C1 exp−λ(εm − δm)

π(φ : log
∏

q(z(xi), z(xj)) ≥ log
∏

q(z(xi), z(xj)|φ∗
L) − δm)

∣∣∣∣AC
m(

δm

4
)
]

≤ PZ(Am(
δm

4
))

+
C1 exp−λ(εm − δm)

π(φ : EZ log
∏

q(z(xi), z(xj)) ≥ EZ log
∏

q(z(xi), z(xj)|φ∗
L) − δm/2)

= PZ(Am(
δm

4
)) +

C1 exp−λ(εm − δm)
π(φ : h(φ) ≥ h(φ∗

L) − δm/2)
,
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where we define h(φ) := EZ log
∏

q(z(xi), z(xj)). Let nd be the number of pairs
(xi, xj) such that ‖xi − xj‖ = d, and D be the set of such d. For any φ ≥ φ1 and
d ≥ d1,

|h(φ∗
L) − h(φ)| ≤ C2|φ − φ∗

L|
∑
d∈D

ndd

for some constant C2 > 0 that depends on φ1, d1. From the assumption on the
prior π,

π(φ : h(φ∗
L) − h(φ) ≤ δm

2
) ≥ π

(
φ : |φ − φ∗

L| ≤
δm

2C2
∑

d ndd

)
≥

(
δm

2C2
∑

d ndd

)r

.

Thus we obtain

P ∗(log P1(φ∗
L|) − log P1(φ|) ≥ εm)

≤ 2 exp
−δ2

m

4m(m − 1)M2
+

C1 exp(−λ(εm − δm))(2C2
∑

d ndd)r

δr
m

.

Let δm = εm/2 and εm ∼ m, it follows that under P ∗, log P1(φ∗
L|)− log P1(φ|) =

OP (m), which means {1/[m(m − 1)/2]} log P1(φ∗
L|)/P1(φ|) = OP (1/m).

Proof of Lemma 11. (sketch) Using standard calculations for exponential
families, for each pair of values (u, v) ∈ {1, . . . , k}2, taking the derivative of
D(q||Q) with respect to qij(Z(x1) = u,Z(x2) = v) and setting to 0 we can easily
obtain the desired result.

Proof of Proposition 12. (sketch)
(a) The proof proceeds by induction. The result clearly holds for m = 2. For
m > 2, assume that x0 corresponds to a leaf node and let E′ = E − {x0}. It is
simple to show that the marginal distribution generating the remaining m − 1
nodes follow the form

q̃E′(Z(x2), . . . , Z(xm))=
2∑

Z(x1)=1

q̃E(Z(x1), . . . , Z(xm))∝
∏

(i,j)∈E′

qij(Z(xi), Z(xj)),

so, by induction, it has uniform marginal at each single node corresponding to
x2, . . . , xm. Apply the same step to another subtree to obtain that the marginal
for Z(x1) is also uniform.
(b) The proof for the first result is straightforward by induction based on the
following fact: A(E) = A(E′) + log 2. The second result is a known fact for
tree-structured graphical models.
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(c) To understand the behavior of A, it is useful to interpret it as a function of
parameter θ, A(θ) from now on, via

θij = log
q(Z(xi) 6= Z(xj))
q(Z(xi) = Z(xj))

for (i, j) ∈ E ; 0 otherwise,

θE = {(θij) | 1 ≤ i, j ≤ m},

q̃E() = exp
{ ∑

(i,j)∈E

θijI(Z(xi) 6= Z(xj)) − BE(θ)
}

,

B(θE) = log
∑
Z

exp
{ ∑

(i,j)∈E

θijI(Z(xi) 6= Z(xj))
}

,

A(θE) = B(θE) +
∑

(i,j)∈E

log
1
2
q(Z(xi) = Z(xj)).

As a standard fact of exponential families, B : Rm(m−1)/2 → R is a convex
function with respect to θE . In addition, ∇θE

B(θE) = q̃E(Z(xi) 6= Z(xj)). Due
to the convexity, we havd:

B(θE) ≥ B(θE0) + (θE − θE0)∇θE
B(θE0) and

B(θE0) ≥ B(θE) + (θE0 − θE)∇θE
B(θE).

These inequalities lead to the desired result.
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