
Statistica Sinica 21 (2011), 973-999

QUASI-LIKELIHOOD ESTIMATION IN STATIONARY AND

NONSTATIONARY AUTOREGRESSIVE MODELS

WITH RANDOM COEFFICIENTS

Alexander Aue and Lajos Horváth
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Abstract: We propose a unified quasi-likelihood procedure for the estimation of the

unknown parameters of a first-order random coefficient autoregressive, RCA, model

that works both for stationary and nonstationary processes. For this procedure,

the weak consistency and the asymptotic normality are established under minimal

assumptions on the noise sequences. In an empirical study, we highlight the prac-

ticality of the quasi-likelihood estimation for applications. As no initial knowledge

about the probabilistic properties of the RCA process is required, our theoretical

results immediately facilitate the statistical analysis for practitioners. They may,

moreover, have an impact on the treatment of the prominent unit-root problems

often encountered in econometrics.
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1. Introduction

We develop in this paper a unified estimation theory for random coefficient
autoregressive (RCA) processes which works irrespective of stationarity issues.
These RCA models are nonlinear, thus extending the class of classical autore-
gressive (AR) models paramount in linear time series analysis, leading to an
increased flexibility in modeling heteroscedasticity often found in data, while
still enabling a parsimonious representation. Early contributions in this respect
are due to Conlisk (1974, 1976) who dealt with econometric modeling questions,
and Andél (1976) who argued that many engineering applications can be ade-
quately described by RCA models. Other successful applications of RCA models
to problems in financial, ecological, and longitudinal data analysis can be found
in Liu and Tiao (1980), Stenseth et al. (1999), and Rahiala (1999), respectively.
Despite this history, RCA models have as of now received less attention than
a number of other nonlinear models such as (G)ARCH and threshold models
and their variants. In this paper,we argue that it would be worthwhile to give
RCA models a closer look and that they are worthy of inclusion in the applied
statistician’s toolbox. There are several arguments supporting this claim.
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First, RCA models allow for a unified estimation procedure which does not
depend on the probabilistic structure of the underlying processes. To discrim-
inate between stationary and nonstationary time series can prove difficult in
applications, and estimation techniques typically require stationarity as a basic
assumption. Under nonstationarity, on the other hand, applied statisticians pro-
ceed in their analysis frequently by using the differencing methods based on an
ARIMA-type approach. Difficulties arising from (over)differencing the data can
be entirely bypassed whenever an RCA framework is appropriate.

Second, even though GARCH-type models have been more popular in the
analysis of financial data, it has been pointed out in Tsay (1987) that the ARCH
regression model introduced by Engle and Kraft (1983) can be cast into an RCA
framework and can therefore be regarded as a special, second-order equivalent
case.

Third, even the simple first-order RCA model can prove relevant for applica-
tions in econometrics. Owing to the random walk hypothesis (see, for example,
Fama (1965), Nelson and Plosser (1982), among many others), the behavior of
stock market prices is commonly modeled by an autoregressive time series with
autoregressive parameter ϕ = 1. Since the value of the autoregressive parameter
is exactly on the boundary between stationary and nonstationary AR(1) models,
this theory inherits the undesirable side effect of estimation procedures exhibit-
ing significantly different behavior for the cases ϕ < 1, ϕ = 1, and ϕ > 1. This is
known as knife edge effect (see Lumsdaine (1996)). If, however, the autoregres-
sive parameter is accompanied by an additional (and maybe marginal) random
disturbance, these differences cease to exist as we will show in this paper.

For the sake of clarity in the presentation we focus on first-order RCA models.
Similar results for higher orders are to be expected, but would require more
technical effort without bringing substantial additional insight into the theory
provided for the first-order case. The paper is organized as follows. In Section
2, we review the existing methods concerning the estimation of the parameters
determining an RCA process with a focus on the quasi-likelihood approach. The
unified estimation theory based on this method is developed in Section 3. The
ramifications of these results are discussed in the first two parts of Section 4,
while the third part contains a Monte Carlo simulation study which underlines
that the novel unified estimation procedure produces satisfactory results also
in finite samples of moderate size. In the fourth part of Section 4 we provide
applications to the daily trading volume of IBM stock and annual change rates
of world GDP. The proofs of all theorems are then given in Sections 5 and 6.
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2. Review of Existing Results

We study the first-order random coefficient autoregressive RCA(1) model
given by the stochastic difference equations

Xj = (ϕ + bj)Xj−1 + ej , j ∈ N, (2.1)

where ϕ is a real number and N denotes the positive integers. The set of equations
(2.1) is initialized with a random variable X0 which we specify further in the
discourse. Throughout, we work with the following requirements on the noise
sequences.

Assumption 2.1. The sequences (bj : j ∈ N) and (ej : j ∈ N) are indepen-
dent sequences of independent and identically distributed random variables with
E[b1] = 0, E[e1] = 0, 0 < ω2 = E[b2

1], and 0 < σ2 = E[e2
1].

The sequence (Xj : j ∈ N) defines a nonlinear time series model that has
received considerable attention in the literature. Early contributions include
Andél (1976), Feigin and Tweedie (1985), Liu and Tiao (1980), Nicholls and
Quinn (1980), Quinn and Nicholls (1981), and Robinson (1978).

While most of the previous literature was concerned with weak stationarity,
strictly stationary solutions to (2.1) were characterized under a minimal set of
assumptions in Aue, Horváth, and Steinebach (2006). Restating their results, we
let ln+ x = max{lnx, 0} be the positive part of the natural logarithm. It is then
shown that if both E[ln+ |ϕ+b1|] and E[ln+ |e1|] are finite (and without invoking
the moment conditions of Assumption 2.1, (2.1) admits a strictly stationary,
nonanticipative solution if and only if

−∞ ≤ E[ln |ϕ + b1|] < 0. (2.2)

Notice that this statement requires X0 to possess the strictly stationary and
ergodic distribution, so that the sequence (Xj : j ∈ N) is already properly initial-
ized.

The model (2.1) depends on the unknown parameter vector θ = (ϕ, ω2, σ2).
Various estimation procedures for θ in the strictly stationary case (2.2) have been
discussed. A two-step least squares method was covered in Nicholls and Quinn
(1980). The same authors also established the large sample properties of the
likelihood procedure in Quinn and Nicholls (1981). For other estimation proce-
dures, we refer here only to the contributions by Koul and Schick (1996), Li and
Hui (1983), and Rudolph (1998). In this paper, we focus on the quasi-maximum
likelihood estimator (QMLE) for θ. It has been shown in Aue, Horváth, and
Steinebach (2006) that the log-likelihood function is given by (notice the sign
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change)

`n(u) =
1
n

n∑
j=1

gj(u), gj(u) = −(Xj − sXj−1)2

xX2
j−1 + y

− ln(xX2
j−1 + y), (2.3)

where u = (s, x, y) denotes a generic parameter vector. With the suitably chosen
parameter space Γ = {u ∈ R3 : s∗ ≤ s ≤ s∗, x∗ ≤ x ≤ x∗, y∗ ≤ y ≤ y∗}, where
s∗ < s∗, 0 < x∗ < x∗ and 0 < y∗ < y∗, the QMLE θ̂n for θ is obtained from

`n(θ̂n) = sup
u∈Γ

`n(u).

Aue, Horváth, and Steinebach (2006) have derived the strong consistency and
the asymptotic normality of θ̂n.

Contributions concerned with the estimation of θ in the nonstationary case
E[ln |ϕ + b1|] ≥ 0 are rare. An exception is the paper by Hwang and Basawa
(2005) that discussed the least squares and weighted least squares procedures for
the estimation of the parameter ϕ. The behavior of the QMLE θ̂n in the non-
stationary case has recently been studied by Berkes, Horváth, and Ling (2009)
who prove that the original likelihood procedure does not work under nonsta-
tionarity, since `n(u) P→ ∞ for all u ∈ Γ. Here and in the following, P→ indicates
convergence in probability. It holds, however, that `n(u) − `n(θ) P→ f(s, x),
where the limit can be given explicitly. Since f(s, x) is independent of y, the
QMLE cannot be employed to produce an estimate of σ2. This is in accor-
dance with similar results for ARCH and GARCH processes, see Jensen and
Rahbek (2004a,b). Consequently, estimation procedures need to be restricted
to the parameters ϕ and ω2. Let v = (s, x) be the vector consisting of the
first two coordinates of u. Berkes, Horváth, and Ling (2009) suggested fixing
y > 0 and maximizing `n(u) with respect to v in the restricted parameter space
ΓR(y) = {v ∈ R2 : s∗ ≤ s ≤ s∗, x∗ ≤ x ≤ x∗}. This leads to the restricted QMLE

θ̂
(R)

n (y) given by

`n

(
θ̂

(R)

n (y), y
)

= sup
v∈ΓR(y)

`n(v, y).

The weak consistency and asymptotic normality of θ̂
(R)

n (y) have been established
in Berkes, Horváth, and Ling (2009).

As a consequence of the above, the QMLE-based procedures θ̂n and θ̂
(R)

n

cannot be employed for the statistical inference about the unknown parameter θ

without further knowledge of the probabilistic structure of the underlying RCA
process (Xj : j ∈ N). In practice, however, it is often hard to discriminate be-
tween a stationary and a nonstationary time series. This is in particular true
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in the transition cases for which E[ln |ϕ + b1|] takes a value in the vicinity of
zero. It would thus be advantageous to design estimation procedures that work
simultaneously irrespective of the particular form of (Xj : j ∈ N). To derive such
a unified estimation theory is the main aim of this paper. As a byproduct, this
theory sheds new light on the unit-root phenomenon prominent in the statistical
analysis of econometric time series (see, among many others, Phillips and Perron
(1998) and Phillips and Xiao (1998)).

3. A Unified Estimation Theory Based on QMLE

There are two options that can be used to build a unified estimation theory
for an RCA process given by (2.1). One is based on θ̂n, originally introduced to
estimate the parameters of a strictly stationary version of (Xj : j ∈ N), the other

on θ̂
(R)

n , designed for the nonstationary case. In this section, we show that only
the first approach leads to the desired goal. The first question we address in this
section, however, is concerned with the latter approach. How does the restricted
QMLE θ̂

(R)

n (y) behave if the RCA equations (2.1) admit a strictly stationary
solution? Recall that it has been shown in Berkes, Horváth, and Ling (2009)

that, for any y > 0, θ̂
(R)

n (y) P−→ (ϕ, ω2) as n → ∞ if E[ln |ϕ + b1|] ≥ 0. In
the following, we deal with the stationary counterpart of this statement. To do
so, we assume again that X0 has the distribution of the strictly stationary and
ergodic solution.

Theorem 3.1. Let (Xj : j ∈ N) be a solution to (2.1) such that E[ln |ϕ+b1|] < 0.

If (ϕ, ω2) is an inner point of ΓR, then θ̂
(R)

n (σ2) → (ϕ, ω2) a.s. as n → ∞. If,
on the other hand, y 6= σ2, then

P
(

lim
n→∞

θ̂
(R)

n (y) = (ϕ, ω2)
)

= 0.

The proof of Theorem 3.1 is given in Section 5. Theorem 3.1 states that
the estimator θ̂

(R)

n cannot be used to estimate the remaining parameters ϕ and
ω2 in the stationary case unless the value of σ2 is known beforehand, which is
almost always unrealistic to assume in practice. While a unified estimation theory
does not follow from the restricted QMLE, it can nevertheless be employed to
construct a novel type of stationarity test for RCA processes. We develop these
tests in Section 4 below.

Noticing that the variance parameter σ2 cannot be estimated consistently
under nonstationarity, we study next the behavior of the first two coordinates of
the original QMLE θ̂n = (θ̂n,1, θ̂n,2, θ̂n,3) without specifying the type of solution
to (2.1). This means, in particular, that (2.2) may be violated and it is therefore
to be replaced with a milder moment assumption. To phrase this precisely, we set
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θ̃n = (θ̂n,1, θ̂n,2) and θ̃ = (ϕ, ω2) and are interested in deriving the large sample
properties of θ̃n. The first result establishes weak consistency.

Theorem 3.2. Let (Xj : j ∈ N) be a solution to (2.1) such that E[ln+ |ϕ+b1|] <

∞. Then θ̃n
P−→ θ̃ as n → ∞.

We give the proof of Theorem 3.2 in Section 5. Next, we focus on the asymp-
totic normality of θ̃n. To begin with, we study only its first coordinate θ̂n,1. In
many cases, the main part of the statistical inference is about the autoregressive
parameter ϕ. Without the additional random disturbances (bj : j ∈ N)—in the
classical AR(1) setting—this would lead to the unit root phenomenon which,
however, does not exist for RCA time series (see Section 4 below). Introducing
the quantities

α(κ, γ) = E

[
Xκ

1

(ω2X2
1 + σ2)γ

]
, κ = 0, 1, . . . , 2γ, γ ∈ N, (3.1)

we obtain a central limit theorem for the the inference about ϕ.

Theorem 3.3. Let (Xj : j ∈ N) be a solution to (2.1) such that E[ln+ |ϕ+b1|] <

∞. Then,
√

n(θ̂n,1 − ϕ) D−→ N(0, τ2) as n → ∞, where

τ2 =


ω2 if E[ln |ϕ + b1|] ≥ 0,

4
α2(2, 1)

[
ω2α(4, 2) + σ2α(2, 2)

]
if E[ln |ϕ + b1|] < 0.

Observe that the condition E[ln+ |ϕ + b1|] < ∞ is only needed in the sta-
tionary case. The asymptotic normality for θ̂n,1 − ϕ is therefore valid without
further restrictions on the process (Xj : j ∈ N). The asymptotic variance τ2,
however, is different in stationary and nonstationary cases. To use Theorem 3.3.
for statistical inference, we consequently need to find an estimator τ̂2

n for τ2 that
works for both. Let

α̂n(κ, γ) =
1
n

n∑
j=1

Xκ
j

(θ̂n,2X2
j + θ̂n,3)γ

, κ = 0, 1, . . . , 2γ, γ ∈ N.

Corollary 3.1. Suppose that the assumptions of Theorem 3.3 are satisfied.
Then,

√
nτ̂−1

n (θ̂n,1−ϕ) D−→ N(0, 1) as n → ∞, where τ̂2
n = 4α̂−2

n (2, 1)
[
θ̂n,2α̂n(4, 2)

+θ̂n,3α̂n(2, 2)
]
.

Note that τ̂2
n is consistent for τ2 in all cases. This seems to be intuitive in

the stationary case, where the moment estimators α̂n(κ, γ) are computed from
the strictly stationary quantities Xκ

j (θ̂n,2X
2
j + θ̂n,3)−2. In the nonstationary case,
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however, θ̂n,3 is noninformative for σ2. Here, the exponential growth of (Xj : j ∈
N) (see Corollary 3.1 in Berkes, Horváth, and Ling (2009)) implies that α̂n(2, 2)—
and therefore also θ̂n,3α̂n(2, 2)—vanishes asymptotically. All details are provided
in Section 6, where we prove both Theorem 3.3 and Corollary 3.1.

In general, it may be difficult to decide whether a given series of observations
is a realization of a stationary or nonstationary process. Corollary 3.1, however,
implies that statistical inference about the parameter ϕ can be performed without
specifying the type of solution to (2.1). The same method applies to all cases
without further knowledge of the probabilistic structure of the observations. In
the remainder of this section, we introduce a similarly appealing procedure to
estimate jointly the values of ϕ and ω2. Here, however, the transition case
E[ln |ϕ + b1|] = 0 has to be excluded from our considerations. Let

g′j(θ) =
(

∂gj(θ)
∂s

,
∂gj(θ)

∂x
,

∂gj(θ)
∂y

)T

and set A = E[g′1(θ)(g′1(θ))T ] with T denoting the transpose. We refer to the
entries of A as Ai,k, i, k = 1, . . . , 3.

Theorem 3.4. Let (Xj : j ∈ N) be a solution to (2.1) such that E[ln |ϕ+b1|] 6= 0.

Then,
√

n
[
θ̃n − (ϕ, ω2)

] D−→ N2(0,Σ) as n → ∞, where

Σ =



[
ω2 E[b3

1]

E[b3
1] Var(b2

1)

]
if E[ln |ϕ + b1|] > 0,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
if E[ln |ϕ + b1|] < 0,

with

Σ1,1 =
4

α2(2, 1)
[
ω2α(4, 2) + σ2α(2, 2)

]
, (3.2)

Σ1,2 =
1

2Dα(2, 1)
[A1,2α(0, 2) − A1,3α(2, 2)] = Σ2,1, (3.3)

Σ2,2 =
1

D2

[
A2,2α

2(0, 2) − 2A2,3α(0, 2)α(2, 2) + A3,3α
2(2, 2)

]
, (3.4)

and D = α(4, 2)α(0, 2) − α2(2, 2).

To estimate the covariance matrix Σ in both the stationary and nonstation-
ary environment, we utilize the moment estimators α̂n(κ, γ) and estimate the
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components of the matrix A by

Ân,i,k =
1
n

n∑
j=1

∂gj(θ̂n)
∂i

∂gj(θ̂n)
∂k

, i, k = 1, 2, 3,

where ∂i stands for ∂s, ∂x or ∂y depending on whether i = 1, i = 2 or i = 3. Now
we form the covariance estimator Σ̂n by substituting the theoretical values α(κ, γ)
and Ai,k in (3.2)–(3.4) by their respective estimated counterparts α̂n(κ, γ) and
Ân,i,k, and by replacing ω2 and σ2 with θ̂n,2 and θ̂n,3. This leads to the following
corollary of Theorem 3.4.

Corollary 3.2. Suppose that the assumptions of Theorem 3.4 are satisfied.
Then,

√
nΣ̂−1/2

n

[
θ̃n − (ϕ, ω2)

] D−→ N2(0, I) as n → ∞, where I denotes the
2 × 2 identity matrix.

We give the proofs of Theorem 3.4 and Corollary 3.2 in Section 6 below.
The intuition as to what enables the unified estimation of the parameters ϕ

and ω is the following. First, Theorem 3.4 establishes a central limit theorem
for the QMLE estimator θ̃n with the normalizations that are different for the
stationary and nonstationary subcases. It is therefore paramount to utilize one
estimator for the limiting covariance matrix that converges in probability to the
right limit in each of the two possible scenarios. The proposed moment-based
estimator Σ̂n obviously possesses this quality in the stationary case. That it also
works under nonstationarity is, as pointed out after Corollary 3.1., a consequence
of the exponential growth of the RCA process that cancels undesired effects due
to the noninformativeness of the QMLE for σ2. For more details we refer to the
proofs in Section 6.

4. Further Implications and Empirical Results

4.1. The unit root phenomenon or the lack thereof

Of particular interest is the statistical inference about the deterministic au-
toregressive parameter ϕ. Without the additional random perturbations (bj : j ∈
Z), the nonlinear model (3.1) reduces to the classical first-order autoregressive,
AR(1), model. As we have already pointed out briefly in the previous sections, a
voluminous body of literature has been devoted to what is known as the unit root
problem or random walk hypothesis: To what extent can econometric time series
such as (logarithms of changes in) stock market prices be modeled by AR(1)
processes with parameter ϕ = 1? Commonly, this question is tackled by using
derivatives of the popular test statistics introduced by Dickey and Fuller (1979,
1981) that can, for example, be based on the likelihood procedure. These tests,
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however, feature low power because they lack the ability to significantly discrim-
inate between the random walk hypothesis and the possible alternatives such as
ϕ 6= 1, |ϕ| < 1 and ϕ > 1. Refinements have led to near-integrated settings in
which the parameter ϕ is allowed to tend to unity with increasing sample size (see
Phillips (1988), Phillips and Magdalinos (2007) , and Aue and Horváth (2007)).

Our results are in stark contrast to the AR(1) case; there is no “knife-edge”
effect for RCA(1) processes. On the contrary, their probabilistic structure is
irrelevant for parameter estimation via quasi-likelihood. The sole requirement
for the applicability of, say, Theorem 3.3 is that E[ln+ |ϕ + b1|] < ∞, which
is a rather mild condition. In other words, and perhaps surprisingly, the unit
root phenomenon does not pertain to the RCA(1) process. As long as the deter-
ministic parameter ϕ is accompanied by only a moderate random perturbation
(that is, a small variance parameter ω2), it can be consistently estimated even in
the vicinity of unity. It is worthwhile mentioning that the processes themselves
exhibit different probabilistic structures; see Aue (2008).

4.2. Stationarity tests

While the main aim of this paper is to provide a unified estimation theory
independent of stationarity issues of the underlying RCA process, the result of
Theorem 3.1 can also be utilized to design a novel type of stationarity test. It has
been shown in Nicholls and Quinn (1982) that the RCA equations (2.1) allow
for a weakly stationary solution if and only if ϕ2 + ω2 < 1. This combined
with Assumption 2.1 yields also strict stationarity, so that we henceforth do not
make a distiction between the two concepts. To check for stationarity without
prior information on the underlying RCA process, it is now natural to check
the estimated counterpart θ̂2

n,1 + θ̂n,2 provided n observations X1, . . . , Xn are
available. As a straightforward consequence of Corollary 3.2, we obtain the
convergence,

√
n

v̂n

[
θ̂2
n,1 + θ̂n,2 − (ϕ2 + ω2)

]
D−→ N(0, 1) as n → ∞, (4.1)

where v̂2
n = 4θ̂n,1(Σ̂n,1,1 + Σ̂n,1,2) + Σ̂n,2,2 with the Σ of Corollary 3.2. The

hypothesis of stationarity would now be rejected at the asymptotic level α ∈ (0, 1)
if θ̂2

n,1 + θ̂n,2 > 1 + cαv̂n/
√

n, where cα satisfies Φ(cα) = 1−α. If the innovations
(ej : j ∈ N) are normal, then condition (2.2) can be rewritten as the integral
criterion

−∞ ≤ I(ϕ, ω2) =
1√

2πω2

∫ ∞

−∞
ln |ϕ + z| exp

(
− z2

2ω2

)
dz < 0. (4.2)
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Using the same strategy as before, one can utilize I(θ̂n,1, θ̂n,2) as a proxy for the
true I(ϕ, ω2). Consequently, (4.1) implies that

√
n

ŵn

[
I(θ̂n,1, θ̂n,2) − I(ϕ, ω2)

]
D−→ N(0, 1) as n → ∞, (4.3)

where ŵ2
n = [∇I(θ̂n,1, θ̂n,2)]T Σ̂n[∇I(θ̂n,1, θ̂n,2)]. Stationarity would be rejected

at the asymptotic level α ∈ (0, 1) if I(θ̂n,1, θ̂n,2) > cαŵn/
√

n, where cα satisfies
Φ(cα) = 1 − α.

4.3. Simulation results

In this subsection, we provide the results of a simulation study that further
supports the unified estimation theory established in Section 3. We have per-
formed simulations with the following types of RCA(1) processes (Xj : j ∈ N)
given by (2.1) with centered normal noise sequences (bj : j ∈ N) and (ej : j ∈ N).

1. (X(1)
j : j ∈ N) is strictly stationary with finite variance. The model parameters

are ϕ = 0.5, ω2 = 0.25, and σ2 = 1. To mimic the stationary and ergodic dis-
tribution, X0 was obtained after a burn-in period of 500 repetitions initialized
with a standard normal variable.

2. (X(2)
j : j ∈ N) is strictly stationary with infinite variance. The model param-

eters are ϕ = 0.5, ω2 = 1.5, and σ2 = 1. The initial value of X0 was obtained
as before.

3. (X(3)
j : j ∈ N) is nonstationary. The model parameters are ϕ = 1, ω2 = 3, and

σ2 = 1. The initial value is X0 = 0.

4. (X(4)
j : j ∈ N) is nonstationary. The model parameters are ϕ = 1.5, ω2 = 1,

and σ2 = 1. The initial value is X0 = 0.

It can easily be checked that (X(1)
j : j ∈ N) and (X(2)

j : j ∈ N) are strictly sta-
tionary RCA(1) processes with respective finite and infinite variances, while
(X(3)

j : j ∈ N) and (X(4)
j : j ∈ N) are nonstationary. Typical sample paths of

length n =1,000 for these four processes are displayed in Figure 1. It can be seen
that a wide range of dynamics is covered by these choices.

We use the QMLE procedure to estimate the parameters of the processes
(X(`)

j : j ∈ N), ` = 1, . . . , 4. To get an impression of the form of the likelihood
as a function of the unknown model parameters, we first display the likelihood
surfaces for the first and third RCA(1) processes using the profile likelihood
as given in displays (4.2.7)–(4.2.9) of Nicholls and Quinn (1982). This profile
likelihood is obtained by concentrating out one of the variance parameters and
is a function of ϕ and ρ = ω2/σ2. Figure 2 exhibits that this profile likelihood
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Figure 1. Time series plots of length n =1,000 for the RCA(1) processes used
in Subsection 4.3. The two processes in the upper panel are the finite vari-
ance, strictly stationary (X(1)

j : j ∈ N) (left) and the infinite variance, strictly

stationary (X(2)
j : j ∈ N) (right). The lower panel displays (ln |X(3)

j | : j ∈ N)

(left) and (ln |X(4)
j | : j ∈ N) (right), indicating the exponential growth of the

nonstationary processes.

has a very pronounced peak around the true value of ϕ, but is rather flat in
the direction of the parameter ρ. The likelihood surfaces for the remaining two
RCA processes are similar and hence omitted. The foregoing indicates that the
numerical nonlinear optimization problem associated with the quasi-likelihood
procedure needs a set of reliable initial estimates.

In the strictly stationary case, selecting initial estimators does not pose a
major problem as one can choose the least squares estimates (LSE) provided in
Nicholls and Quinn (1980). These are strongly consistent and asymptotically
normal provided that RCA(1) process possesses finite fourth order moments and
finite eighth order moments, respectively. Even though this requirement is not
satisfied in the case of (X(2)

j : j ∈ N), we used the LSE to initialize the QMLE
procedure. In the nonstationary cases, it is only known from Hwang and Basawa
(2005) that the weighted least squares estimator may be utilized to obtain consis-
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Figure 2. Profile likelihood surfaces of the processes (X(1)
j : j ∈ N) (upper

panel) and (X(3)
j : j ∈ N) (lower panel) with n =1,000. The left panels are

viewed from the ϕ direction, the right panels from the ρ = ω2/σ2 direction.
The true parameter values are always in the middle of the respective axes.

Table 1. The likelihood estimators of the unknown parameters for the pro-
cesses (X(`)

j : j ∈ N), ` = 1, . . . , 4. The simulated processes were of length
n =1,000 and the estimated values were based on N =1,000 repetitions,
with standard deviations given in brackets. Note that for ` = 3, 4, the vari-
ance parameter σ2 could be estimated.

ϕ ω2 σ2

` true estimated true estimated true estimated
1 0.5000 0.4985 (0.0344) 0.2500 0.2483 (0.0516) 1.0000 0.9991 (0.0865)
2 0.5000 0.5010 (0.0569) 1.5000 1.4913 (0.0991) 1.0000 1.0043 (0.1070)
3 1.0000 0.9998 (0.0572) 3.0000 2.9965 (0.1379) 1.0000 1.4067 (1.9154)
4 1.5000 1.4991 (0.0318) 1.0000 0.9954 (0.0448) 1.0000 1.3283 (1.4056)

tent estimates of ϕ. For practical applications, however, this estimator requires√
n-consistent estimators for the variance parameters ω2 and σ2 as well. These

are not available in the literature and we propose to use the following estimators.
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First note that

ρ̂n,1 =
1

0.6n

n∑
j=.4n+1

(Xj − Xj−1)2

X2
j−1

and ρ̂n,2 =
1

0.6n

n∑
j=.4n+1

X2
j

X2
j−1

are consistent estimators for (ϕ− 1)2 + ω2 and ϕ2 + ω2, respectively. Therefore,
one can utilize the initial estimators θ̃n,1 = (ρ̂n,2 − ρ̂n,1 + 1) /2 and θ̃n,2 = ρ̂2

n,2 −
θ̃2
n,1 in the nonstationary case. Notice that we have used only the last 60% of

the observations to compute ρ̂n,1 and ρ̂n,2 due to superior performance in the
simulation study. The consistency of all estimators follows immediately from the
exponential growth of nonstationary RCA(1) processes.

Table 1 gives the summary statistics for the Monte Carlo study conducted
with simulated versions of (X(`)

j : j ∈ N), ` = 1, . . . , 4, each of which have length
n =1,000. The results are based on N =1,000 repetitions. The parameters ϕ

and ω2 were in all four cases very reasonably estimated. As predicted by the
unified estimation theory, the quality of the estimation was unaffected by the
nature of the RCA(1) process. The form of the histograms for ϕ and ω2 (not
shown here) indicate that normality was approximately approached for the finite
sample size under consideration. It can also be conjectured from the simulations
that the speed of convergence to the limiting normal law is indeed faster under
nonstationarity than under stationarity. For the processes given by ` = 1, 2, the
third parameter σ2 was consistently estimated, which is again according to the
theory. For nonstationary RCA(1) processes, the likelihood is noninformative
for σ2. This is clearly reflected in the estimated values for ` = 3, 4 which were
respectively 41% and 33% too large.

4.4. Applications

In this section, we discuss two applications of the RCA(1) likelihood pro-
cedure to illustrate its performance on data. Due to space constraints, we only
highlight the main features without presenting a more detailed analysis.

We considered the daily log volume of IBM stock for the ten year trading
period 01/01/1993–12/31/2002, of sample size n = 2,520. The corresponding
time series plot is provided in the first panel of Figure 3. The same data has
been analyzed in Wang and Ghosh (2009) in the context of Bayesian estimation
techniques. An application of the RCA(1) likelihood procedure initialized with
the least squares estimators yields the parameter estimates

ϕ̂ = θ̂n,1 = 0.5306, ω̂2 = θ̂2
n,2 = 0.3088, and σ̂2 = θ̂n,3 = 0.1211.

These estimates imply that ϕ̂2 + ω̂2 = 0.5904, so that the daily log volume can
be regarded as stationary and the estimator σ̂2 as informative. An application
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Figure 3. Ten years of detrended daily log volume of the IBM stock (upper
panel), and ten years of simulated data using the RCA(1) fit (lower panel).

Figure 4. Annual changes in world GDP (left panel) and the corresponding
simulated RCA(1) data (right panel).

of the stationarity test based on (4.1) obviously confirms this assertion. One
can also use the same limit result to obtain asymptotic confidence intervals for
ϕ̂2 + ω̂2. For a given significance level α ∈ (0, 1), these have the form ϕ̂2 +
ω̂2 ± z1−α/2v̂n/

√
n, where z1−α/2 denotes the 1 − α/2 quantile of the standard

normal distribution and v̂2
n = 4ϕ̂2Σ̂n,1,1 +4ϕ̂Σ̂n,1,2 +Σ̂n,2,2. The estimators Σ̂n,i,k
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are the sample counterparts of the Σn,i,k in equations (3.2)–(3.4). These can be
computed utilizing the equalities of derivatives related to the log-likelihood

∂gj(u)
∂s

= 2Yj−1(u, 1, 1)(Xj − sXj−1),

∂gj(u)
∂x

= Yj−1(u, 2, 2)(Xj − sXj−1)2 − Yj−1(u, 2, 1),

∂gj(u)
∂y

= Yj−1(u, 0, 2)(Xj − sXj−1)2 − Yj−1(u, 0, 1),

where the quantitites Yj−1(u, κ, γ) is defined in (5.1). The latter equations can
be verified with displays (18)–(20) in Aue, Horváth, and Steinebach (2006). The
foregoing leads then to the 90% confidence interval

0.5904 ± 1.6448

√
1.9936
2520

= (0.5441, 0.6366)

for ϕ2 + ω2. An application of Corollary 3.1 gives in a similar fashion the 90%
confidence interval (0.4942, 0.5670) for the autoregressive parameter ϕ. The sec-
ond panel of Figure 3 contains 2,500 simulated data points using the RCA(1)
specifications. The time series plot exhibits a high degree of similarity with the
original data plot, displaying occasional bursty periods. While we do not pursue
further diagnostic checking of the model fit, we conclude that the RCA(1) ap-
proach seems to be leading to a satisfactory outcome. Wang and Ghosh (2009)
found (somewhat) different parameter estimates, namely ϕ̂ = 0.871, ω̂2 = 0.165,
and σ̂2 = 0.565. This leads consequently to ϕ̂2 + ω̂2 = 0.924, which is much
closer to the boundary than our estimate. Simulated data using the parameter
estimates of Wang and Ghosh (2009), however, appeared to perform worse than
our set of estimates.

As a second application, we considered data consisting of annual changes in
world GDP between 1970 and 2008, with sample size n = 39. The corresponding
time series plot is displayed in the left panel of Figure 4. As before, we apply the
least squares initialized RCA(1) likelihood procedure to the data to obtain the
parameter estimates

ϕ̂ = θ̂n,1 = 0.3274, ω̂2 = θ̂2
n,2 = 0.8376, and σ̂2 = θ̂n,3 = 0.8563.

In the GDP case, we therefore have ϕ̂2 + ω̂2 = 0.9448. For comparison, we have
included in the right panel of Figure 4 a typical realization of an RCA(1) process
using the GDP specifications. A visual inspection confirms that the simulated
data seems to capture the main features of the original data.
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5. The Consistency Proofs

Proof of Theorem 3.1. Suppose that (Xj : j ∈ N) is the strictly stationary
solution to (2.1). Following the arguments in Aue, Horváth, and Steinebach
(2006), we obtain that supu∈Γ

∣∣`n(u) − `(u)
∣∣ → 0 a.s. as n → ∞, where `(u) =

E[`n(u)]. Since u = (v, y), it holds with probability one that, for any y > 0,

supv∈ΓR
`n(u)→supv∈ΓR

`(u) and consequently `n

(
θ̂

(R)

n (y), y
)
→supv∈ΓR(y) `(u)

a.s. as n → ∞.

Observe next that `n(u) = [g1(u) + . . . + gn(u)]/n. The partial derivatives
of the gj(u)’s with respect to s and x are at (18) and (19) of Aue, Horváth, and
Steinebach (2006), respectively. Utilizing these derivatives and the Dominated
Convergence Theorem, we obtain that ∂`(u)/∂s = 2(ϕ − s)E [Y1(u, 2, 1)] and

∂`(u)
∂x

=(ϕ−s)2E[Y1(u, 4, 2)]+ω2E[Y1(u, 4, 2)]+σ2E[Y1(u, 2, 2)]−E[Y1(u, 2, 1)],

where we have used the notation

Yj(u, κ, γ) =
Xκ

j

(xX2
j + y)γ

, κ = 0, 1, . . . , 2γ, γ ∈ N. (5.1)

If (ϕ, ω2) were indeed the location of the maximum, the partial derivatives of
`(u) with respect to s and x evaluated at this point must vanish. (Notice that
(ϕ, ω2) is assumed to be an inner point of the parameter space ΓR.) This is
clearly the case for the partial derivative with respect to s. On the other hand,
the partial derivative with respect to x is

∂`(u)
∂x

∣∣∣∣
v=(ϕ,ω2)

= E

[
X2

1 (ω2X2
1 + σ2)

(ω2X2
1 + y)2

]
− E

[
X2

1

ω2X2
1 + y

]
= E

[
σ2 − y

(ω2X2
1 + y)2

]
which is nonzero whenever y and σ2 do not coincide. We consequently have with
probability one that

sup
v∈ΓR

`(u) > `(ϕ, ω2, y) for all y 6= σ2. (5.2)

Assume that θ̂
(R)

nk
(y) → (ϕ, ω2) with probability one along a subsequence

(nk : k ∈ N). Then `n(θ̂
(R)

nk
(y), y) needs to converge with probability one to

both supv∈ΓR
`(u) and `(ϕ, ω2, y), which is a contradiction in view of the strict

inequality in (5.2). The proof of Theorem 3.1 is complete.

Proof of Theorem 3.2. In the strictly stationary case E[ln |ϕ + b1|] < 0, the
result follows immediately from Theorem 2 in Aue, Horváth, and Steinebach
(2006). For the rest of the proof take E[ln |ϕ + b1|] ≥ 0. In the nonstationary
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case, it has been shown in Lemma 4.2 of Berkes, Horváth, and Ling (2009) that
`n(u) → ∞ for all u ∈ Γ, but that

sup
u∈Γ

∣∣`n(u) − `n(θ) − f(s, x)
∣∣ P−→ 0 as n → ∞, (5.3)

where the limit

f(s, x) = ln
ω2

x
+ 1 − ω2

x
− (ϕ − s)2

x

has a unique maximum in the point (s, x) = (ϕ, ω2). It is, moreover, independent
of the particular value of y. Using the Skorohod-Dudley-Wichura Representation
Theorem (see Theorem 4 of Shorack and Wellner (1986)). we can define the quan-
tities ¯̀

n(u) and θ̄n as supu∈Γ
¯̀
n(u) = ¯̀

n(θ̄n) with the additional requirement
that, for each n, (`n(u), θ̂n : u ∈ Γ) and (¯̀n(u), θ̄n : u ∈ Γ) coincide in distribu-
tion and such that (5.3) holds almost surely (instead of only in probability). To
prove the assertion of Theorem 3.2, we show that the first two coordinates of θ̄n,
denoted by (θ̄n,1, θ̄n,2), converge almost surely to (ϕ, ω2). To do so, assume the
contrary. Then there is a (random) subsequence (nk : k ∈ N) such that

(θ̄n,1, θ̄n,2) → (θ1, θ2) 6= (ϕ, ω2) as k → ∞. (5.4)

Since (5.3) is assumed to hold almost surely, it follows that supu∈Γ

[
`nk

(θ̄nk
) −

`nk
(θ)

]
→ supu∈Γ f(s, x) as k → ∞. Since f(s, x) has its unique maximum in

(ϕ, ω2), the convergence in (5.4) produces a contradiction. The proof of Theorem
3.2 is hence complete.

6. The Asymptotic Normality Proofs

6.1. The proofs of Theorems 3.3 and 3.4

Consider the stationary case with E[ln |ϕ + b1|] < 0. Since the QMLE θ̃

consists of the first two coordinates of the full QMLE θ̂ of Aue, Horváth, and
Steinebach (2006), we can base our analysis on their results.

Lemma 6.1.If (Xj : j ∈ N) satisfies −∞ ≤ E[ln |ϕ + b1|] < 0, then
√

n(θ̃n −
θ̃) D−→ N2(0, Σ) as n → ∞, where Σ is defined (for E[ln |ϕ+b1|] < 0) in Theorem
3.4.

Proof. It follows from Theorem 3 in Aue, Horváth, and Steinebach (2006)
(note the misprint in the covariance matrix) that

√
n(θ̂n − θ) is asymptotically

normal with mean vector zero and covariance matrix H−1AH−1, where A has
been defined before Theorem 3.4 and

H =

 2α(2, 1) 0 0
0 α(4, 2) α(2, 2)
0 α(2, 2) α(0, 2)

 .
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Consequently, Σ is given by the upper (left) 2 × 2 submatrix in H−1AH−1. To
verify that Σ as defined in Theorem 3.4 and this submatrix indeed conincide, one
utilizes the inversion formula for a partitioned matrix (see Seber and Lee (2003)),
to first compute H−1 and then performs the matrix multiplication. The proof is
complete.

In the nonstationary case, θ̂n may not converge in probability to θ, since
asymptotically the quasi-likelihood procedure does not contain information on
the value of σ2, or θ̂n may also be on the boundary of the admissible parameter
set Γ. The first two coordinates subsumed under θ̃n, however, do converge.
This means that the partial derivatives of the log-likelihood function `n(u) with
respect to s and x vanish in θ̂n. Let

`′n(u) =
(

∂`n(u)
∂s

,
∂`n(u)

∂x
,
∂`n(u)

∂y

)T

=
(
`′n,1(u), `′n,2(u), `′n,3(u)

)T
.

We work with the Mean Value Theorem for `′n,i(u), i = 1, 2, 3, about the true
parameter vector θ. It holds that

`′n,i(θ̂n) = `′n,i(θ) + dT
n,i(θ̂n − θ), i = 1, 2, 3, (6.1)

where dn,i consists of the derivatives of `′n,i(u) with respect to s, x, and y in a
random point θ∗

n,i satisfying ‖θ − θ∗
n,i‖ ≤ ‖θ − θ̂n‖. Introducing the matrix

An =


dT

n,1

dT
n,2

dT
n,3

 =
[
Ãn an

aT
n bn

]

and ˜̀′
n(u) = (`′n,1(u), `′n,2(u))T , (6.1) leads to the two-dimensional system

0 = ˜̀′
n(θ) + Ãn(θ̃n − θ̃) + an(θ̂n,3 − σ2). (6.2)

Our first result concerns the behavior of the 2× 2 matrix Ãn as n increases. We
write Ãn = (Ãn,i,j : i, j = 1, 2) and Ã−1 = (Ã(−1)

n,i,j : i, j = 1, 2).

Lemma 6.2. If (Xj : j ∈ N) satisfies E[ln |ϕ + b1|] ≥ 0, then

Ãn
P−→ −

[
2

ω2 0
0 1

ω4

]
= Ã as n → ∞. (6.3)

This implies that Ã−1
n = Ã−1

n (θ∗
n) exists with probability tending to one and

Ã−1
n

P−→ −

[
ω2

2 0
0 ω4

]
= Ã−1 as n → ∞. (6.4)
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Moreover,

Ãn,1,2 = Ãn,2,1 =
θ∗n,1 − ϕ

ω2
+ oP (1)|θ∗n,1 − ϕ| + oP

(
1√
n

)
as n → ∞, (6.5)

Ã
(−1)
n,1,2 = Ã

(−1)
n,2,1 =

2(ϕ − θ∗n,1)
ω4

+ oP (1)|θ∗n,1 − ϕ| + oP

(
1√
n

)
as n → ∞. (6.6)

Proof. Since θ̃n → θ̃ in probability as n → ∞, we study more generally the
properties of the second derivatives of `n(u) on the parameter set Γn = {u ∈
R3 : |s − ϕ| ≤ εn, |x − ω2| ≤ εn, y∗ ≤ y ≤ y∗}, where εn ↘ 0 as n → ∞. We
start with ∂2`n(u)/∂s2. Computing the second derivative of the log-likelihood
and equation (2.3), it holds that

∂2`n(u)
∂s2

= − 2
n

n∑
j=1

X2
j−1

xX2
j−1 + y

.

Now

sup
u∈Γn

∣∣∣∣∂2`n(u)
∂s2

+
2
ω2

∣∣∣∣ ≤ sup
u∈Γn

∣∣∣∣∣∣ 2n
n∑

j=1

y

(xX2
j−1 + y)x

∣∣∣∣∣∣ + sup
u∈Γn

∣∣∣∣ 2
ω2

− 2
x

∣∣∣∣ = oP (1),

since X2
j−1 → ∞ in probability (see Corollary 3.1 in Berkes, Horváth, and Ling

(2009)). We have further that

∂2`n(u)
∂s∂x

= −ϕ − s

n

n∑
j=1

Yj−1(u, 4, 2)− 1
n

n∑
j=1

bjYj−1(u, 4, 2)− 2
n

n∑
j=1

ejYj−1(u, 3, 2)

= Bn,1(u) + Bn,2(u) + Bn,3(u).

Now

sup
u∈Γ

∣∣∣∣∣∣ 1n
n∑

j=1

Yj−1(u, 4, 2) − 1
x2

∣∣∣∣∣∣
≤ 1

x∗n

n∑
j=1

X2
j−1

(x∗X2
j−1 + y∗)2

+
(y∗)2

(x∗)2n

n∑
j=1

1
(x∗X2

j−1 + y∗)2
= oP (1)

and therefore

sup
u∈Γn

∣∣∣∣Bn,1(u) − s − ϕ

x2

∣∣∣∣ = oP (1) sup
u∈Γn

∣∣∣∣s − ϕ

x2

∣∣∣∣ (n → ∞). (6.7)
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Next, write

√
nBn,2(u) =

1
x2

√
n

n∑
j=1

bj −
2

x
√

n

n∑
j=1

bjYj−1(u, 2, 2) − y2

x2
√

n

n∑
j=1

bjYj−1(u, 0, 2)

= B̃n,1(u) + B̃n,2(u) + B̃n,3(u). (6.8)

Clearly, supu∈Γn
|B̃n,1(u)| = OP (1). For n ≥ 1, let Zn(x, y) = xB̃n,2(u)/2.

Then, direct computations show that E[Zn(x, y)] = 0 and Var(Zn(x, y)) → 0 as
n → ∞, using the independence of bj and Xj−1. Consequently, we obtain for
any admissible x and y that

Zn(x, y) P−→ 0 as n → ∞. (6.9)

For x1 < x2 and y1 < y2 denote by ∆(x2,y2)
(x1,y1)Zn(u) the increment of Zn(u) over

the rectangle determined by the coordinates (x1, y1) and (x2, y2). Then,

E

[(
∆(x2,y2)

(x1,y1)Zn(u)
)2

]
=

ω2

n

n∑
j=1

E

[(
∆(x2,y2)

(x1,y1)Yj−1(u, 2, 2)
)2

]
≤ C(x2 − x1)2(y2 − y1)2,

where C > 0 is a suitable constant. Hence, Bickel and Wichura (1971) yields that
the sequence (Zn(u) : n ∈ N) is tight which, in combination with (6.9), implies
that |Zn(x, y)| = oP (1) uniformly in u ∈ Γ. We conclude that

sup
u∈Γn

|B̃n,2(u)| = oP (1) as n → ∞. (6.10)

By analogous reasoning, one shows that supu∈Γn
|B̃n,3(u)| = oP (1), resulting in

sup
u∈Γn

|Bn,2(u)| = oP

(
1√
n

)
as n → ∞. (6.11)

Similar arguments apply to the remaining term Bn,3(u) and (6.5) is established.
By (6.5) we have immediately that Ãn,1,2 = Ãn,2,1 → 0 in probability as n → ∞.

The last quantity to consider is Ãn,2,2(u). It can be shown that

∂2`n(u)
∂x2

= − 2
n

(ϕ − s)2
n∑

j=1

Yj−1(u, 6, 3) − 4
n

(ϕ − s)
n∑

j=1

bjYj−1(u, 6, 3)

− 2
n

n∑
j=1

b2
jYj−1(u, 6, 3) − 4

n

n∑
j=1

(ϕ − s + bj)Yj−1(u, 5, 3)

− 2
n

n∑
j=1

e2
jYj−1(u, 4, 3) +

1
n

n∑
j=1

Yj−1(u, 4, 2)

= Cn,1(u) + . . . + Cn,6(u).
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Using the arguments previously established in this proof, we can conclude that,
for i = 1, 2, 4, 5, Cn,i(u) converges in probability to 0 uniformly in u ∈ Γn as
n → ∞. It remains to investigate the asymptotic behavior of Cn,3(u) + Cn,6(u).
To this end, observe first that

sup
u∈Γn

∣∣∣∣Cn,3(u) +
2
ω4

∣∣∣∣ ≤ sup
u∈Γn

∣∣∣Cn,3 +
2ω2

n

n∑
j=1

Yj−1(u, 6, 3)
∣∣∣

+ sup
u∈Γn

∣∣∣ − 2ω2

n

n∑
j=1

Yj−1(u, 6, 3) +
2
ω4

∣∣∣
= oP (1).

For the first supremum, this follows similarly as above. For the second supremum,
it can be seen from Taylor expansions for the terms Yj−1(u, 6, 3) that [Y0(u, 6, 3)+
. . . + Yn−1(u, 6, 3)]/n converges in probability to −1/ω4 uniformly in u ∈ Γn. In
the same fashion, one shows that supu∈Γn

∣∣Cn,6(u) − 1/ω4
∣∣ = oP (1) as n → ∞.

The proof of (6.3) is now complete. By (6.3) and (6.5), the inverse formula for a
symmetric 2 × 2 matrix implies (6.6).

We return to the two-dimensional equation system given in (6.2). Since the
inverse Ã−1

n exists with probability approaching one according to Lemma 6.2, we
can solve (6.2) for θ̃n − θ̃. This yields

θ̃n − θ̃ = −Ã−1
n

˜̀′
n(θ) − Ã−1

n an(θ̂n,3 − σ2). (6.12)

It is our goal to establish the asymptotic normality in this section. We do so first
for the first coordinate in (6.12). The result is formulated as the next lemma.

Lemma 6.3. If (Xj : j ∈ N) satisfies E[ln |ϕ + b1|] ≥ 0, then
√

n(θ̂n,1 − ϕ) D−→
N(0, ω2) as n → ∞.

Proof. The first coordinate of (6.12) reads

θ̂n,1 − ϕ = −Ã
(−1)
n,1,1

∂`n(θ)
∂s

− Ã
(−1)
n,1,2

∂`n(θ)
∂x

−
[
Ã

(−1)
n,1,1an,1 + Ã

(−1)
n,1,2an,2

]
(θ̂n,3 − σ2)

= Dn,1 + Dn,2 + Dn,3, (6.13)

where an = (an,1, an,2)T . The proof is given in three steps. In the first step, we
show that the asymptotic normality is due to the term

√
nDn,1. In the remaining

two steps, we show that
√

nDn,2 and
√

nDn,3 vanish in the limit.

Step 1: Utilizing the partial derivative of gj(θ) with respect to s and the definition
of the log-likelihood function in (2.3), we get

√
n

∂`n(θ)
∂s

=
2√
n

n∑
j=1

bjYj−1(θ, 2, 1) +
2√
n

n∑
j=1

ejYj−1(θ, 1, 1) = En,1 + En,2.
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Easy computations using the independence of ej and Yj−1(θ, 1, 1) imply that

Var(En,2) → 0, and therefore that En,2
P→ 0 as n → ∞. On the other hand, it

holds that

En,2 =
2√
nω2

n∑
j=1

bj −
2σ2

√
nω2

n∑
j=1

bj

ω2X2
j−1 + σ2

.

The second term on the right-hand side of the latter array is negligible because
it has zero mean and its variance converges to zero. The first term on the right-
hand side clearly converges in distribution to a normal random variable with zero
mean and variance 4/ω2. This, combined with Ã

(−1)
n,1,1

P→ ω2/2 (see Lemma 6.2),
implies that

√
nDn,1 converges in distribution to a centered normal variate with

variance ω2.

Step 2: To prove that
√

nDn,2 does not contribute to the limit distribution, it
suffices to study the partial derivative of `n(θ) with respect to x. Now

∂`n(θ)
∂x

=
1
n

n∑
j=1

(b2
j − ω2)Yj−1(θ, 4, 2) +

2
n

n∑
j=1

bjejYj−1(θ, 3, 2)

+
1
n

n∑
j=1

e2
jYj−1(θ, 2, 2)+

1
n

n∑
j=1

[
ω2Yj−1(θ, 4, 2)−Yj−1(θ, 2, 1)

]
= Fn,1 + . . . + Fn,4.

Notice that elementary calculations yield E[Fn,1] = 0, Var(Fn,1) → 0, E[Fn,2] = 0
and Var(Fn,2) → 0, as well as E[Fn,3] → 0. This results in Fn,i = oP (1) for i =
1, 2, 3 as n → ∞. Moreover, the nonpositive Fn,4 can be transformed into Fn,4 =
−(σ2/n)

∑n
j=1 Yj−1(θ, 2, 2), thus showing that E[Fn,4] → 0 and consequently

Fn,4 = oP (1) as n → ∞. This completes the second part of the proof.

Step 3: That
√

nDn,3 = oP (1) is implied by (a)
√

nan,1 = oP (1) and (b) an,2 =
oP (1). As for (a), observe that an,1 = ∂2`n(θ∗

n)/(∂y∂s). We can write

√
n

∂2`n(u)
∂y∂s

=
2√
n

n∑
j=1

(ϕ − s + bj)Yj−1(u, 2, 2) +
2√
n

n∑
j=1

ejYj−1(u, 1, 2).

Repeating the arguments that led to (6.10), we get that both sums on the right-
hand side of the latter equation converge to zero in probability uniformly in
u ∈ Γn. The proof of (b) is similar and therefore omitted.

Combining the three steps of this lemma with (6.6) and (6.13) yields

√
n(θ̂n,1−ϕ) = −Ã

(−1)
n,1,1

√
n

∂`n(θ)
∂s

−
√

n(θ∗n,1−ϕ)oP (1)−Ã
(−1)
n,1,1

√
nan,1(θ̃n,3−σ2)

= −Ã
(−1)
n,1,1

√
n

∂`n(θ)
∂s

+ oP (1),
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where the last equality sign follows from
√

n|θ∗n,1 − ϕ| ≤
√

n|θ̂n,1 − ϕ| = OP (1)
and Step 3 above. Lemma 6.3 is established.

Proof of Theorem 3.3. The assertion follows from Lemmas 6.1 and 6.3.

In going back to display (6.12), we study the joint behavior of both coor-
dinates of θ̃n and state the following analogue of Lemma 6.3. Notice that the
transition case E[ln |ϕ + b1|] = 0 is excluded here.

Lemma 6.4. If (Xj : j ∈ N) satisfies E[ln |ϕ + b1|] > 0, then
√

n(θ̃n − θ̃) D−→
N2(0, Σ) as n → ∞, where Σ is (for E[ln |ϕ + b1|] > 0) defined in Theorem 3.4.

Proof. The proof is given in two steps. In the first step, we show that the term
−Ã−1

n
˜̀′
n(θ) in the decomposition (6.12) induces the asymptotic normality. In the

second step, it is shown that the remainder term −Ã−1
n an(θ̂n,3−σ2) is negligible.

Step 1: The first coordinate has already been studied in Lemma 6.3, where
it was shown that

√
n

∂`n(θ)
∂s

=
2√
nω2

n∑
j=1

bj + oP (1) as n → ∞.

The same arguments also give

√
n

∂`n(θ)
∂x

=
1√
nω4

n∑
j=1

(b2
j − ω2) + oP (1) as n → ∞.

The Multivariate Central Limit Theorem then implies that the vector `′n(θ) con-
verges in distribution to a bivariate normal random variate with mean zero and
covariance matrix

Ω =

 4
ω2

2E[b31]
ω6

2E[b31]
ω6

Var(b21)
ω8

 .

Using the matrix Ã−1 defined in Lemma 6.2, it is now easily established that
Ã−1ΩÃ−1 = Σ. Thus, −Ã−1

n
˜̀′
n(θ) D→ N2(0, Σ) as n → ∞, and the first step of

the proof is complete.

Step 2: The first coordinate of the remainder term −Ã−1
n an(θ̂n,3 − σ2) has

shown to be negligible in the proof of Lemma 6.3, Step 3. The second coordinate
reads as −

(
Ã−1

n,2,1an,1 + Ã−1
n,2,2an,2

)
(θ̂n,3−σ2). It follows from the proof of Lemma

6.2 that Ã−1
n,2,1 = OP (1/

√
n) and, from Step 3 in the proof of Lemma 6.3, that

an,1 = oP (1) as n → ∞. Hence, the first term in the last display disappears

in the limit. As for the second, it holds that Ã−1
n,2,2

P→ ω4. Thus, we need
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to prove that an,2 = oP (1/
√

n) to complete the proof. To this end, notice
that, if κ < 2γ and with probability one, supu∈Γn

∑n
j=1 b2

jYj−1(u, κ, γ) < ∞,

supu∈Γn

∑n
j=1 |bjej |Yj−1(u, κ, γ) < ∞ and supu∈Γn

∑n
j=1 e2

jYj−1(u, κ, γ) < ∞.
This implies that

sup
u∈Γn

an,2√
n

= sup
u∈Γn

1√
n

∣∣∣∣∣∣
n∑

j=1

∂2gj(u)
∂x∂y

∣∣∣∣∣∣ P−→ 0 as n → ∞,

and the proof of Lemma 6.4 is complete.

Proof of Theorem 3.4. The assertion follows from Lemmas 6.1 and 6.4.

6.2. The proofs of Corollaries 3.1 and 3.2

In the remaining subsection, we establish the consistency of the covariance
estimator Σ̂n that has been used in Corollary 3.2. Since its first entry is equal to
the estimator τ̂2

n of Corollary 3.1, both corollaries are immediate consequences of
the next two lemmas.

Lemma 6.5. If (Xj : j ∈ N) satisfies E[ln+|ϕ + b1|] < ∞, then τ̂2
n is a weakly

consistent estimator for τ2, where τ̂2
n and τ2 are defined in Corollary 3.1 and

Theorem 3.3.

Proof. We need to show that τ̂2
n

P→ τ2 holds both in the stationary and non-
stationary environment. Let E[ln |ϕ + b1|] < 0. It follows from an application
of the ergodic theorem that, uniformly in u ∈ Γn and with probability one,
(1/n)

∑n
j=1 Yj(u, κ, γ) → E[Y1(u, κ, γ)] as n → ∞. Since the limit is continuous

and θ̂n
P→ θ (even with probability one; see Theorem 2 in Aue, Horváth, and

Steinebach (2006)), we conclude that αn(κ, γ) P→ α(κ, γ). This proves consistency
in the stationary case.

Let E[ln |ϕ + b1|] > 0 and note that

1
n

n∑
j=1

Yj−1(u, 2, 1) =
1
x

+
1
n

n∑
j=1

(
X2

j

xX2
j−1 + y

− 1
x

)
=

1
x
− y

x

1
n

n∑
j=1

Yj(u, 0, 1),

where the last sum converges in probability to zero uniformly in u ∈ Γn. Since
θ̂n,2

P→ ω2, we get α̂n(2, 1) P→ 1/ω2 as n → ∞. Similarly one concludes that

α̂n(4, 2) P→ 1/ω4 and α̂n(2, 2) P→ 0 as n → ∞. Thus τ̂2
n

P→ ω2 in the nonstationary
case. This completes the proof.

Lemma 6.6. If (Xj : j ∈ N) satisfies E[ln |ϕ + b1|] 6= 0, then Σ̂n is a weakly
consistent estimator for the covariance matrix Σ defined in Theorem 3.4.
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Proof. The proof is similar to the proof of the preceding lemma, so we only give
an outline here. One verifies, with the Ergodic Theorem, that, uniformly in u,

1
n

n∑
j=1

∂gj(u)
∂i

∂gj(u)
∂k

P−→ E

[
∂g1(u)

∂i

∂g1(u)
∂k

]
as n → ∞

in the stationary case. Since the limit is continuous in u and since θ̂n
P→ θ,

it follows that Ân,i,k
P→ Ai,k. In the nonstationary case, similar arguments as

those applied in Step 2 of the previous proof lead to the conclusion. Details are
omitted.
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