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Abstract: We propose an asymptotic likelihood-based LASSO approach for model

selection in regression analysis when data are subject to validation sampling. The

method makes use of an initial estimator of the regression coefficients and their

asymptotic covariance matrix to form an asymptotic likelihood. This “working”

objective function facilitates the formulation of the LASSO and the implementation

of a fast algorithm. Our method circumvents the need to use a likelihood set-up that

requires full distributional assumptions about the data. We show that the resulting

estimator is consistent in model selection and that the method has lower prediction

errors than a model that uses only the validation sample. Furthermore, we show

that this formulation gives an optimal estimator in a certain sense. Extensive

simulation studies are conducted for the linear regression model, the generalized

linear regression model, and the Cox model. Our simulation results support our

claims. The method is further applied to a dataset to illustrate its practical use.
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1. Introduction

Non-standard sampling techniques are common in applied research. In
studying the relationship between a response y and a set of covariates x ∈ Rp

via a parametric model f(y;x, β), the variables of interest can be so difficult or
expensive to obtain that a cost-effective design must be implemented. Validation
sampling designs, where the true response and covariate information is collected
only on a subset and some proxy or surrogate measurements (ỹ, x̃) are available
for all the subjects, arise naturally in this context. The subset with observations
on (y,x, ỹ, x̃) is usually referred to as the validation sample, whereas the subset
with observations only on (ỹ, x̃) is referred to as the non-validation sample. The
dimensionality of x̃ is allowed to be different from that of x. Surrogate response
or covariates are commonly used in biomedical research. For example, Ellenberg
and Hamilton (1989) and Wittes, Lakatos, and Probstfield (1989) discussed their
application in clinical trials involving cancer and cardiovascular diseases; Alonzo,
Pepe, and Lumley (2003) used them in mental health surveys.
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Intuitively, crude proxy covariates that are correlated with the covariates of
interest might help derive more efficient estimates for the parameters of interest,
thus contributing to a better understanding of the relationship between the re-
sponse and the covariates. The problem can be seen as a problem with missing
data, a topic studied by Pepe (1992), Reilly and Pepe (1995), and Chen and
Chen (2000), among others. Reviews of related methods can be found in Carroll,
Ruppert, and Stefanski (1995) for auxiliary covariates, and in Leung (2001) for
surrogate response. In this article, we only consider the situation where the vali-
dation sample is a simple random sample. The proposed method can be applied
to other situations with some modifications; discussion of this is deferred to the
conclusion of the paper.

If p is large, it would be useful to select a subset from x that explains most
of the variation in the response without losing too much information. In other
words, the interest is in determining the nonzero elements in β. The purpose
of selecting the important covariates, or variable selection, is two-fold. First,
identifying significant variables helps interpretation. Second, and maybe more
importantly, the predictive performance of the fitted model can be improved by
using only a subset of the covariates. Traditional variable selection tools usually
suffer from instability and low accuracy (Breiman (1995)). But the recently de-
veloped penalized likelihood methods, noticeably the LASSO (Tibshirani (1996))
and the SCAD (Fan and Li (2001)), have been shown to produce competitive re-
sults. Their favorable performance can be attributed to the fact that variable
selection and coefficient estimation are carried out simultaneously. Penalized
likelihood methods have undergone rapid developments, for example in survival
analysis (Tibshirani (1997); Fan and Li (2002)), semiparametric longitudinal data
analysis (Fan and Li (2004)) and time series models (Wang, Li and Tsai (2007)).
However, to our knowledge, variable selection under validation sampling has not
been addressed.

The attractiveness of LASSO and other penalized likelihood methods in stan-
dard data situations naturally motivates their use in validation sampling situa-
tions. In order to use these methods, the likelihood or the loss function must be
properly modeled. One method to model the likelihood is to use a fully para-
metric approach (Suh and Schafer (2002)), whereby the relationship between
(y,x, ỹ, x̃) is fully parametrized, but this approach is non-robust to model mis-
specification. Another approach is to model (y,x) parametrically, while leaving
the relationship between (y,x, ỹ, x̃) unspecified and modelling it using a non-
parametric method such as density estimation (e.g., Pepe (1992) and Wang and
Rao (2002)). The semi-parametric method is robust but is computationally inten-
sive, especially when the dimension of x is high, which is precisely the situation
of interest here.
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Whether a parametric or semi-parametric approach is used to model the
likelihood, the goal is to combine information about β from the validation and
the non-validation samples. An alternative method (Chen and Chen (2000))
of combining information uses the regression estimation. The method assumes
that information relating y and x is summarized in a set of estimating equations
involving the unknown parameter β. There is a second set of estimating equations
that summarizes the relationship between the surrogate response (ỹ) and the
surrogate covariates (x̃) in terms of another set of parameters φ. The two sets
of equations are individually solved using the data in the validation sample. If β̂

and φ̂ represent the solutions to the equations, the estimate of β is the conditional
mean of β̂ given φ̂. We refer to this as the Chen-Chen method.

From a penalized model selection point of view, the Chen-Chen method has
the estimator defined as the solution to a set of estimating equation, and, the
usual loss function-based LASSO or SCAD are not applicable. We propose an
asymptotic likelihood-based LASSO (ALL) method; it uses a preliminary esti-
mate of β and its corresponding covariance matrix as input to a linear regression
LASSO framework. The resulting estimate is consistent in model selection, and
can be more efficient than the preliminary estimate; in particular, the proposed
ALL estimator is shown to possess an asymptotic optimality property. In this
paper, we discuss ALL estimators based on estimating equations from a linear
regression model, a generalized linear model and a Cox model; the idea can be
extended to other contexts.

The rest of this paper is organized as follows. Section 2 reviews the Chen-
Chen estimator and the LASSO method. The asymptotic likelihood LASSO
(ALL) is introduced in Section 3. Theoretical properties of the ALL estimator are
given in Section 4. In Section 5, the finite sample behavior of the ALL estimator
is compared to that of other estimators, using simulations. We also illustrate the
practical application of the ALL estimator using a data set. Concluding remarks
are given in Section 6. All proofs are relegated to the Appendix.

2. Background

2.1. The Chen-Chen estimator

Let V and V̄ denote, respectively, the validation and the non-validation
samples, both of which are simple random samples. Denote by (yi,xi, ỹi, x̃i), i ∈
V , the observations in V and (ỹj , x̃j), j ∈ V̄ , the observations in V̄ . Let the
sample size of V be n and the sample size of V̄ be N , and 0 < ρ = lim n/N < 1
be the validation fraction. Suppose the conditional mean of y given x is E(y|x) =
g(X;β). The true value of β is denoted by β0. The goal is to estimate β using
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the data in V and V̄ . Using only data in V , the estimating equation approach
estimates β by solving

0 =
∑
i∈V

si(β) =
∑
i∈V

wi{yi − g(xi; β), }, (2.1)

where wi ∈ Rp is a weight that may depend on xi. We denote the solution to
(2.1) as β̂. Since V is a random sample from the population, solving (2.1) gives
an unbiased estimate of β. The estimating function reduces to the usual score
function if the generalized linear model is assumed.

To improve the efficiency in estimating β, Chen and Chen (2000) proposed
incorporating the data in V̄ in the following way. Suppose for the moment that
a working model relating ỹ and x̃ is postulated, E(ỹ|x̃) = h(x̃; γ). We may
estimate γ by solving

0 =
∑
i∈V

s̃i(γ) =
∑
i∈V

w̃i{ỹi − h(x̃i; γ)},

where w̃i ∈ Rq is a weight that may depend on x̃i. The solution γ̂ is a con-
sistent estimate of γ that satisfies the moment condition E[w̃{ỹ − h(x̃; γ)}]=0,
where the expectation is taken with respect to γ. The asymptotic distribution
of n1/2{(β̂ − β0)′, (γ̂ − γ0)′}′ can easily be shown to be N(0, D−1CD−1), where
D = diag(D1, D2) and

C =
(

C11 C12

C21 C22

)
.

These matrices are consistently estimated by

D̂1=n−1
∑
i∈V

∂si(β̂)
∂β

, D̂2 = n−1
∑
i∈V

∂s̃i(γ̂)
∂γ

,

Ĉ=n−1
∑
i∈V

{s′i(β̂), s̃′i(γ̂)}′{s′i(β̂), s̃′i(γ̂)}=


n−1

∑
i∈V

si(β̂)s′i(β̂) n−1
∑
i∈V

si(β̂)s̃′i(γ̂)

n−1
∑
i∈V

s̃i(γ̂)s′i(β̂) n−1
∑
i∈V

s̃′i(γ̂)s̃i(γ̂)

.

Therefore the asymptotic conditional distribution of n1/2(β̂ −β0) given n1/2(γ̂ −
γ0) is multivariate normal with mean n1/2D−1

1 C12C
−1
22 D2(γ̂ − γ0).

To exploit the information in the non-validation data set, another estimate
γ̄ of γ can be obtained by solving

0 =
∑
j∈V̄

s̃j(γ) =
∑
j∈V̄

w̃j{ỹj − h(x̃j ; γ)}.
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By replacing γ0 by γ̄ and equating n1/2(β̂ − β0) to its conditional mean, an
improved estimate of β is given by β̄ = β̂−D̂−1

1 Ĉ12Ĉ
−1
22 D̂2(γ̂− γ̄), where n1/2(β̄−

β0) is asymptotically normal with an asymptotic covariance matrix

Σ = D−1
1 C11D

−1
1 − (1 − ρ)D−1

1 C12C
−1
22 C ′

12D
−1
1 ; (2.2)

this can be consistently estimated by

Σn = D̂−1
1 Ĉ11D̂

−1
1 − (1 − n

N
)D̂−1

1 Ĉ12Ĉ
−1
22 Ĉ ′

12D̂
−1
1 . (2.3)

It can be shown that the variance of n1/2β̂ is D−1
1 C11D

−1
1 , and that D−1

1 C12C
−1
22

C ′
12D

−1
1 is non-negative definite. Therefore, using β̄ instead of β̂ leads to a re-

duction of variance in the estimate, which is dependent on the validation fraction
ρ.

Chen (2002) extended Chen and Chen’s method to survival data. Let Ti, δi

be the (possibly censored) failure time and the censoring indicator, respectively,
for the i-th subject. Let yi(t) = I(Ti ≥ t) be the at-risk process. Associated with
each subject is a set of possibly time dependent covariates x(t). The notations
T̃ , x̃(t), ỹ(t) = I(T̃ ≥ t) are defined as in Section 2, but we allow them to depend
on time t. To estimate the unknown parameter, the standard score function of
the partial likelihood can be used,

Q(β) =
∑
i∈V

δi

{
xi(Ti) −

S(1)(Ti, β)
S(0)(Ti, β)

}
, (2.4)

where S(p)(β, ·) = n−1
∑

i∈V yi(·) exp{β′xi(·)}xi(·)p, p = 0, 1. Take the solution
to (2.4) as β̂. Finally, β̂ can be updated by β̄ = β̂− D̂−1

1 Ĉ12Ĉ22D̂2(γ̂ − γ̄), where
γ̂ and γ̄ are solutions to

Q̃(γ) =
∑
i∈V

δi

{
x̃i(T̃i) −

S̃(1)(T̃i, γ)
S̃(0)(T̃i, γ)

}
, and Q̄(γ) =

∑
i∈V̄

δi

{
x̃i(T̃i) −

S̄(1)(T̃i, γ)
S̄(0)(T̃i, γ)

}
,

respectively, and the matrices D̂−1
1 , Ĉ12, Ĉ22 and D̂2 can be estimated as in Chen

(2002). The details are omitted. Here

S̃(p)(·, γ) = n−1
∑
i∈V

ỹi(·) exp{γ′x̃i(·)}x̃i(·)p, p = 0, 1,

S̄(p)(·, γ) = N−1
∑
i∈V̄

ỹi(·) exp{γ′x̃i(·)}x̃i(·)p, p = 0, 1.

Furthermore,
√

n(β̄ − β) is asymptotically N(0,Ω), where Ω can be consistently
estimated by a formula similar to (2.3).
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2.2. The LASSO method

The least absolute shrinkage and selection operator (LASSO) introduced
by Tibshirani (1996) has become an attractive approach to variable selection,
as it permits simultaneous variable selection and parameter estimation. In a
likelihood formulation, the LASSO estimator is the solution to the penalized
likelihood objective function

l(β) + λ

p∑
j=1

|βj |,

where l(β) stands for a negative log-likelihood function or, more generally, a
loss function, and λ is a tuning parameter that is usually determined by some
information criterion, cross validation or one of its variants. In least squares
regression, l(β) is a quadratic function of β, and the whole solution path of β,
denoted as β̂λ, can be effectively found with a computational complexity of a
single ordinary least squares fit (Efron et al. (2004)). The fast computational
algorithm referred to as the least angle regression (LARS) (Efron et al. (2004)) is
largely responsible for the popularity of the LASSO. However, it is more difficult
to develop fast implementation of the LASSO when l(β) is a not a quadratic
function, and various attempts have been made to identify the whole solution
path (Rosset and Zhu (2007)). A related discussion can be found, for example,
in Wang and Leng (2007), and references therein. From a computational point
of view, it is attractive to develop a LASSO type of estimator in the context of
validation sampling that effectively shares the computational advantage of the
LARS algorithm.

A simple approach to implementing the LASSO method is to formulate a
likelihood on the validation sample after discarding the surrogate data. How-
ever, such an analysis is guaranteed to give less efficient estimates. On the other
hand, it is difficult or even impossible to write a complete likelihood using the
validation and non-validation samples, as it requires the knowledge of several con-
ditional distributions. This provides a strong motivation to develop alternative
approaches to variable selection in this context.

3. The Asymptotic Likelihood-based LASSO

Based on the preliminary estimator β̄ and a consistent estimator of its asymp-
totic covariance, we propose using the the asymptotic likelihood-based LASSO
(Wang and Leng (2007)) that seeks to minimize

(β − β̄)′Σ−1
n (β − β̄) +

p∑
j=1

λj |βj | (3.1)
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with respect to β. The λj are tuning parameters to be determined later. Follow-
ing (Wang and Leng (2007)), λj can be replaced by λ|β̄j |−δ, where δ > 0 (Zou
(2006); Zhang and Lu (2007); Yuan and Lin (2007)). An advantage of this sub-
stitution is that we effectively reduce a p-dimensional optimization problem to
one that is one-dimensional, which is important for easy implementation and fast
computation. We fix δ = 1, as suggested by Zou (2006). An important consider-
ation in formulating the least squares optimization problem in (3.1) comes from
the fact that the LARS algorithm developed by Efron et al. (2004) can be directly
applied to obtain the whole solution path, which greatly facilitates the selection
of a judicious tuning parameter. Indeed, Efron et al. (2004) showed that the so-
lution β̂ to (3.1) as a function of λ is piecewise linear with finite many connecting
points. More remarkably, the connecting points can be identified via the LARS
algorithm whose computational complexity is equivalent to that of an ordinary
least squares fit. Thus, the implementation of this new approach is extremely
easy. For convenience, we call formulation (3.1) the asymptotic likelihood-based
LASSO, as (β − β̄)′Σ−1

n (β − β̄) comes from the asymptotic distribution of β̄.
For choosing the tuning parameter λ, we propose the BIC criterion

BICλ = (β̄λ − β̄)′Σ−1
n (β̄λ − β̄) + log(N + n) × dfλ

(n + N)
,

where β̄λ is the estimate based on (3.1) when λ is used, and dfλ is the number
of nonzero entries in β̄λ (Zou, Hastie, and Tibshirani (2007)). The “effective”
sample size in this approach is larger than n, since both the non-validation and
the validation samples are used to determine β̄. We use N + n here because the
validation sample is used twice.

4. Theoretical Properties

Without loss of generality, we assume that the nonzero index set is A =
{1, . . . , d}, and the zero index set is B = {d+1, . . . , p} such that β0 = (β0

1 , . . . , β0
d ,

0, . . . , 0)′ =
(
(β0

A)′, (β0
B)′

)′. Furthermore, we partition β̄λ as (β̄λA, β̄λB) and Σ as(
ΣAA ΣAB
ΣBA ΣBB

)
.

Let
√

n(β̄ − β0) →p N(0, Σ), where Σ can be consistently estimated by Σn to be
discussed later. Define an = max{λj , j ≤ d} and bn = min{λj , j > d}. Then we
have the following.

Theorem 1. (
√

n-consistency) If
√

nan →p 0, then β̄λ − β0 = Op(n−1/2).

Theorem 2. (Selection consistency) If
√

nan →p 0 and
√

nbn → ∞, then
Pr(β̄λB = 0) → 1.
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Theorem 3. (Asymptotic normality) If
√

nan →p 0 and
√

nbn → ∞, then√
n(β̄λA − β0

A) → N(0, Γ), where Γ = ΣAA − ΣABΣ−1
BBΣBA.

For λj = λ|β̄j |−1, as long as λ satisfies
√

nλ → 0 and nλ → ∞, the conditions
in Theorem1-3 are satisfied. In practice, to estimate the variance of β̄λA, we
propose to use the sample version of Γ,

Γn = ΣnAA − ΣnABΣ−1
nBBΣnBA. (4.1)

Theorems 1 and 2 still hold if we replace Σn by any stochastic positive definite
matrix Sn ∈ Rp×p, as long as Sn →p S, where S is positive definite. The
proofs follow trivially from those of Theorem 1 and 2 in Wang and Leng (2007).
However, the choice Σn is asymptotically optimal in the following sense.

Theorem 4. (Asymptotic optimality) Assume
√

nan →p 0 and
√

nbn → ∞. Let
β̌λ be the solution to

(β − β̄)′Sn(β − β̄) +
p∑

j=1

λj |βj |, (4.2)

where Sn ∈ Rp×p is a positive definite matrix and Sn →p S for a positive definite
matrix S. Then,

√
n(β̌λA − β0

A) → N(0, Λ), and Λ − Γ is non-negative definite.
Additionally, Λ = Γ when Sn = Σ−1

n .

Remark 1. If we take Sn to be an identity matrix, the resulting estimator
becomes a version of the soft-thresholding estimator. The jth element of the
estimator in this case is easily seen as to be sgn(β̄j)(|β̄j |−λj/2)+, where (s)+ = s

if s > 0 and 0 otherwise. The rate of convergence and the selection consistency is
not affected, but the asymptotic variance becomes ΣAA. According to Theorem
4, ΣAA − Γ is non-negative definite. Therefore, the ALL estimator gives smaller
asymptotic variance than the soft-thresholding estimator.

The proposed BIC criterion can be shown to be consistent in terms of variable
selection. The proof is similar to that of Theorem 4 in Wang and Leng (2007),
and is omitted.

5. Simulations and Data Analysis

We conducted extensive numerical studies. The purpose was to compare the
proposed approach with a few alternatives in terms of variable selection and esti-
mation accuracy. The ALL method was further applied to a child psychopathol-
ogy data set to illustrate its usefulness. To implement the ALL method, we made
use of existing routines for fitting the linear regression model or any other mode
to extract the estimating equations. After obtaining β̄ and its asymptotic covari-
ance Σn, we formed a LASSO objective function (3.1) and exploited the LARS
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algorithm to compute the whole solution of β̂λ. The optimal λ was subsequently
identified by BIC. The implementation of the ALL method was extremely easy
and computationally fast.

5.1. Simulation studies

We compared the ALL estimator with the naive estimator (2.1) using the
validation sample alone and without variable selection (VS), with LASSO based
on (2.1) with only the validation sample (LASSO), and with Chen-Chen’s es-
timator without variable selection (CC). For the first simulation study, we also
included three estimator suggested by anonymous referees: the soft thresholding
estimator by setting Sn = I in (4.2) (ST); the covariance shrinkage estimator by
setting Sn = (aI + (1 − a)Σn)−1 for a ∈ R in (4.2) (CS); a hybrid estimator by
using β̂ in (3.1) (HE). For simplicity, we took a = 0.1 for the estimator. Though
we could have treated a as an additional tuning parameter in addition to λ. The
oracle estimate is the estimate obtained using the Chen-Chen’s estimator and
excluding the zero covariates.

Two simulation studies were done. For each, 500 simulations were used
for each scenario considered. For each estimator, βest, we report the model er-
ror, ME(βest) = (βest − β0)′E(xx′)(βest − β0), the median relative model error
(MRME) compared to the oracle, the average model size (MS), and the percent-
age of correct models identified (CM). Here the oracle estimator refers to the
estimator one would use if the true sparsity pattern was known in advance (Fan
and Li (2001)).
Simulation Study 1. For the first simulation study, we considered a linear
model

y = x′β + σε,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)′ and ε ∼ N(0, 1). We set σ = 2, 4, and x such
that each covariate xi was standard normal and the correlation between two
covariates xi and xj was (0.5)|i−j|. The non-validation sample was generated such
that ỹ = y and x̃i = xi+ei, where (a) e ∼ N(0, 0.52) or (b) log(e) ∼ N(−0.5, 0.5).
The non-validation sample size was taken to be N = 50, 200, 500 or 1,000, and
the validation sample size was n = 25, 50 or 100. The working model for γ was
the usual linear regression model. The MRME results are summarized in Table
1, and the MS and CM results for LASSO and ALL are presented in Table 2.
The MS and CM results for ST, CS, and HE are omitted to save space.

A few observations can be made from Tables 1 and 2. First, ALL generally
outperformed other methods in terms of MRME. Second, in terms of variable
selection, ALL was generally better than LASSO when the error variance was
high (σ = 4). When the error variance was small (σ = 2), the variable selection
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Table 1. Median relative model errors for Simulation Study 1. Standard
errors (in parentheses) are estimated via 500 bootstrap replications.

σ/e N/n ALL LASSO CC VS ST CS HE

4/(a) 50/25 3.92(0.25) 3.90(0.19) 4.88(0.33) 5.56(0.29) 5.08(0.31) 3.97(0.25) 4.17(0.23)

200/50 2.47(0.10) 4.46(0.23) 3.83(0.19) 6.24(0.28) 3.73(0.22) 2.92(0.18) 4.66(0.26)

200/100 1.54(0.06) 2.43(0.18) 3.07(0.10) 4.32(0.19) 2.60(0.18) 1.94(0.10) 2.56(0.16)

500/50 2.40(0.16) 5.09(0.31) 3.88(0.25) 6.80(0.33) 3.87(0.28) 2.99(0.18) 4.95(0.25)

500/100 1.57(0.07) 3.62(0.19) 3.60(0.20) 6.94(0.38) 2.98(0.21) 2.02(0.17) 4.01(0.17)

1000/50 2.34(0.14) 5.92(0.41) 4.16(0.22) 7.69(0.40) 4.13(0.30) 3.10(0.24) 5.21(0.42)

1000/100 1.49(0.05) 4.19(0.33) 3.33(0.15) 6.89(0.36) 2.52(0.16) 1.92(0.17) 4.23(0.27)

/(b) 50/25 3.40(0.15) 3.98(0.28) 4.74(0.25) 6.12(0.31) 4.91(0.26) 3.57(0.19) 4.44(0.23)

200/50 2.01(0.10) 5.42(0.29) 3.57(0.16) 7.38(0.36) 3.17(0.16) 2.33(0.12) 5.55(0.39)

200/100 1.62(0.08) 3.13(0.17) 3.15(0.16) 5.31(0.25) 2.32(0.14) 1.88(0.11) 3.12(0.15)

500/50 1.96(0.10) 7.70(0.40) 3.85(0.21) 9.94(0.41) 3.52(0.18) 2.62(0.17) 7.71(0.52)

500/100 1.48(0.06) 4.81(0.37) 3.50(0.18) 8.57(0.44) 2.73(0.21) 1.92(0.13) 5.31(0.31)

1000/50 1.93(0.10) 8.11(0.63) 4.12(0.32) 12.13(0.62) 3.78(0.26) 2.61(0.16) 8.22(0.73)

1000/100 1.34(0.07) 6.49(0.41) 3.57(0.13) 10.73(0.57) 2.48(0.11) 1.91(0.12) 7.02(0.39)

2/(a) 50/25 2.46(0.20) 2.49(0.11) 4.88(0.27) 4.38(0.24) 4.44(0.27) 3.49(0.15) 2.95(0.16)

200/50 1.79(0.06) 2.28(0.13) 3.72(0.17) 4.85(0.32) 2.91(0.16) 2.38(0.12) 2.63(0.12)

200/100 1.36(0.04) 1.68(0.09) 3.21(0.14) 4.05(0.23) 1.88(0.10) 1.50(0.07) 1.83(0.10)

500/50 1.73(0.11) 2.37(0.13) 3.80(0.17) 5.18(0.26) 2.71(0.13) 2.16(0.21) 2.71(0.20)

500/100 1.40(0.05) 1.87(0.09) 3.41(0.12) 4.76(0.25) 1.97(0.10) 1.63(0.08) 2.13(0.12)

1000/50 1.91(0.09) 2.23(0.17) 3.91(0.22) 5.30(0.35) 2.68(0.18) 2.31(0.16) 2.96(0.16)

1000/100 1.26(0.04) 1.73(0.09) 3.09(0.19) 4.71(0.22) 1.78(0.09) 1.52(0.05) 2.10(0.13)

/(b) 50/25 2.95(0.17) 2.84(0.23) 4.33(0.26) 4.87(0.25) 3.69(0.28) 2.91(0.18) 3.48(0.25)

200/50 1.66(0.07) 2.42(0.13) 3.52(0.18) 5.43(0.33) 2.23(0.13) 1.66(0.07) 3.11(0.14)

200/100 1.29(0.03) 1.76(0.09) 2.99(0.12) 3.99(0.19) 1.78(0.08) 1.51(0.05) 1.92(0.09)

500/50 1.61(0.08) 2.88(0.18) 3.72(0.15) 5.75(0.35) 2.38(0.16) 1.86(0.09) 3.73(0.20)

500/100 1.21(0.03) 2.16(0.15) 3.18(0.12) 5.71(0.23) 1.77(0.09) 1.51(0.05) 2.73(0.18)

1000/50 1.76(0.07) 3.28(0.20) 3.82(0.17) 7.13(0.34) 2.68(0.16) 2.10(0.12) 4.19(0.20)

1000/100 1.26(0.04) 2.60(0.11) 3.24(0.16) 6.11(0.29) 1.75(0.07) 1.47(0.07) 3.03(0.16)

performances of ALL and LASSO were comparable. When n = 25 and N = 50,
ALL outperformed LASSO for σ = 4 but was comparable when σ = 2. Third, the
accuracy of ALL was higher when N or n was large. Fourth, LASSO performed
better than CC when the error variance was small, but the reverse was true when
the error variance was large. In addition, ST generally outperformed LASSO, but
was inferior to ALL. CS, although inferior to ALL, was the second best in terms
of performance. HE used a less efficient estimate of β, which was outperformed
by ALL and CS in general. These observations confirm the theoretical results
that higher efficiency can be achieved when the more efficient estimator of β and
the optimal covariance matrix are used.

From Table 2, we note that the model selection results of ALL and LASSO
were comparable when σ = 2. However, ALL was better than LASSO in model
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Table 2. Average model sizes (MS) and proportions of the model which are
correctly identified (CM) for Simulation Study 1.

ALL LASSO
σ e n N = 200 N = 500 N =1,000
4 (a) 50 CM 44.8 46.8 50.6 37.0

MS 3.46 3.40 3.34 3.03
100 CM 71.0 78.0 82.2 65.2

MS 3.23 3.22 3.16 3.18
(b) 50 CM 54.0 57.2 60.8 34.4

MS 3.39 3.50 3.43 3.01
100 CM 70.4 79.0 82.2 57.8

MS 3.27 3.22 3.19 3.22

2 (a) 50 CM 63.4 65.2 68.0 71.2
MS 3.52 3.48 3.42 3.35

100 CM 81.2 82.4 87.2 82.8
MS 3.23 3.20 3.15 3.18

(b) 50 CM 67.8 68.6 69.0 72.4
MS 3.42 3.50 3.44 3.31

100 CM 85.4 88.4 89.6 83.8
MS 3.17 3.13 3.12 3.18

selection for σ = 4 because the non-validation sample was also used in ALL, an
intuitive result.

Simulation Study 2. In this study, we considered two error-in-variables models.
For the first, the true model was

g(x) = Pr(y = 1|x) =
1

1 + exp(−x′β)
,

where β = (3, 0, 0, 1.5, 0, 0, 2, 0, 0)′ and x was generated according to the first
simulation study. The proxy variable x̃i followed a normal distribution with mean
xi and variance = 0.52. Therefore, the non-validation sample had observations
on (y, x̃) and the validation sample had observations on (y,x, x̃). To estimate γ,
we used a generalized linear model h(x̃; γ) = 1/{1 + exp(x̃′γ)} as the working
model.

The second case was a surrogate response problem, where y was generated
according to

y = x′β + ε, (5.1)

with β = (3, 0, 0, 1.5, 0, 0, 2, 0, 0)′, ε ∼ N(0, 32) and x was generated as in the
first simulation study. The surrogate variable ỹ was binary with Pr(ỹ = 1|y) =
1/{1+exp(−3y)}. The non-validation data consisted of (ỹ,x) and the validation
data consisted of (y,x). We estimated β via ordinary least squares and γ using the
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Table 3. Median relative model errors for Simulation Study 2.

Case N n ALL LASSO CC VS
(a) 1,000 100 2.90 (0.31) 10.50 (1.08) 5.41 (0.43) 6.88 (0.47)

200 1.91 (0.18) 2.93 (0.33) 2.56 (0.12) 4.01 (0.24)
400 1.81 (0.13) 2.13 (0.15) 2.28 (0.10) 3.10 (0.18)

2,000 100 2.83 (0.21) 10.97 (1.00) 4.67 (0.30) 6.41 (0.47)
200 2.25 (0.19) 3.23 (0.23) 2.68 (0.13) 4.01 (0.22)
400 1.80 (0.20) 2.55 (0.20) 2.20 (0.08) 3.28 (0.19)

(b) 1,000 100 1.49 (0.06) 2.40 (0.15) 3.56 (0.14) 4.75 (0.22)
200 1.23 (0.03) 1.61 (0.07) 3.35 (0.16) 4.64 (0.21)
400 1.13 (0.03) 1.41 (0.05) 3.13 (0.17) 4.28 (0.22)

2,000 100 1.48 (0.07) 2.08 (0.10) 3.70 (0.22) 5.12 (0.21)
200 1.20 (0.03) 1.84 (0.07) 3.36 (0.13) 4.63 (0.16)
400 1.08 (0.03) 1.47 (0.06) 2.94 (0.10) 4.26 (0.26)

Table 4. Standard deviations of estimators for Simulation Study 2 (n = 400).

β1 β4 β7

Case N SD SDm SD SDm SD SDm

(a) 1,000 0.310 0.294 0.205 0.189 0.261 0.221
2,000 0.269 0.273 0.224 0.175 0.224 0.204

(b) 1,000 0.145 0.134 0.139 0.131 0.140 0.131
2,000 0.139 0.130 0.116 0.127 0.151 0.125

score function in the generalized linear model, that is, h(x̃; γ) = 1/{1+exp(x̃′γ)}.
The non-validation sample size was either N =2,000 or 4,000, and the validation
sample size was either n = 200 or n = 400. The two cases are denoted as
(a) and (b) subsequently. From Table 3, we see that ALL outperformed other
methods significantly in estimation accuracy. We also tested the accuracy of
the asymptotic variance matrix in (4.1). The median absolute deviation divided
by 0.6745, denoted by SD in Table 4, of 500 estimated coefficients in the 500
simulations can be regarded as the true standard error (Fan and Li (2001)).
The median of the 500 estimated SD’s, denoted by SDm, measures the overall
performance of the variance formula in (4.1). Although the formula (4.1) slightly
underestimated the true standard deviation, it can be seen that the extent of
underestimation was small. Thus, we conclude that the asymptotic covariance
matrix estimation was satisfactory.

Simulation study 3. We considered an extension of the double sampling
idea in the Cox model. Here independent observations were generated accord-
ing to h(ti|xi) = exp(x′

iβ), where ti is the i-th subject’s survival time and
β = (0.8, 0, 0, 1, 0, 0, 0.6, 0)′. Again, xi was generated in the same manner as in
the previous simulation study. Furthermore, independent censoring times were
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Table 5. Median relative model errors for Simulation Study 3.

Case N n ALL LASSO CC VS
(a) 200 100 1.95 (0.09) 2.17 (0.15) 2.83 (0.12) 3.74 (0.14)

200 1.35 (0.06) 1.35 (0.06) 2.33 (0.08) 2.33 (0.08)
500 100 1.95 (0.11) 2.85 (0.16) 2.91 (0.13) 4.65 (0.19)

200 1.40 (0.08) 2.01 (0.11) 2.48 (0.09) 3.35 (0.15)
1,000 100 2.21 (0.13) 2.79 (0.17) 3.22 (0.15) 4.79 (0.27)

200 1.64 (0.08) 2.15 (0.14) 2.71 (0.11) 3.79 (0.22)

(b) 200 100 1.88 (0.09) 1.94 (0.14) 2.83 (0.19) 3.35 (0.17)
200 1.33 (0.06) 1.36 (0.06) 2.51 (0.09) 2.51 (0.09)

500 100 1.96 (0.11) 2.15 (0.14) 2.77 (0.12) 3.38 (0.19)
200 1.45 (0.08) 1.56 (0.08) 2.45 (0.11) 2.82 (0.12)

1,000 100 1.82 (0.08) 2.09 (0.10) 2.76 (0.11) 3.61 (0.17)
200 1.44 (0.05) 1.75 (0.09) 2.54 (0.11) 3.34 (0.16)

generated from an exponential distribution with mean u exp{x′
iβ}, where u was

uniform on [1, 3]. The censoring mechanism gave about 30% censored data. The
non-validation sample was generated such that x̃ = (x3,x4,x6,x7,x8)′, a sub-
set of the validation covariates. The value of T̃ was generated according to (a)
T̃ = T ; or (b) T̃ = T +ε, where ε ∼ N(0, 1). For this simulation, some covariates
were completely missing. The results are summarized in Table 5. We observe
from Table 5 that the proposed ALL approach dominated other estimators in
estimation accuracy. In terms of variable selection, the ALL method performed
better than LASSO (results not shown).

5.2. Data analysis

We applied the proposed method to a dataset in child psychopathology.
The data was from a study that was carried out between 1986-1989 in Eastern
Connecticut, USA (Zhaner et al. (1993)). A goal of the study was to examine
the geographical variation of psychopathology in rural-urban children. We fo-
cused on one of the main measures of psychopathology in children: behavioral
(“externalizing”) disturbances. In the study, the subjects (children) were first
identified. One of the parents or the primary care provider was then contacted
to provide a report on the child. With the consent of the parents and the school
board, the child’s teacher was also approached for rating. Information from each
parent/primary care provider was gathered using the Child Behavioral Check-
list (CBCL) (Achenbach and Edelbrock (1983)) while that from the teacher was
obtained using the Teacher’s Report Form (TRF) (Achenbach and Edelbrock
(1986)). With over 3,500 published studies using the CBCL as of August 2001,
the CBCL and TRF are arguably the most widely used measure in child psy-
chopathology. Both CBCL and TRF are continuous scales ranging from 1 to 100,
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with a higher score on either scale indicating more severe disturbance. CBCL and
TRF scales were obtained on externalizing disturbance. The primary response
was the rating of externalizing disturbance provided by the TRF. The parent’s
rating (CBCL rating) was used as the surrogate.

In total, 2,519 children, aged 6 - 11, were studied, with 2, 501 complete
parent (CBCL) reports. The missing parent reports were due to un-scorable
forms. There were 1, 433 children with complete teacher reports (TRFs). Most
of the missing teacher reports were due to permission denied by the parents
and/or the school board. The rest were due to non-response. As discussed in
Horton and Lipsitz (2001), missingness of this magnitude is not uncommon in
large surveys. The non-validation data therefore consist of the parents ratings
and the covariates while the validation data consist of the parents and teachers
ratings as well as the covariates. Based on the analysis in Leung and Qin (2006),
we can assume that the two samples are random samples from the population.

There were eight covariates in this study: child’s sex (CSEX: 1=boy, 0=girl);
area (AREA: 1=cities, 0= rural-suburban); social economic status (SES: 1= high,
2=middle, 3=low); single mother (MOMSING: 1=yes, 0=no); mother distress
(MOMSTRS: 1=yes, 0=no); family distress (FAMSTRS: 1=yes, 0=no); child
with health problems (HLTHPRO: 1=yes, 0=no); child with academic problems
(ACADPRO: 1=yes, 0=no). For AREA, “Large cities” and “Small cities” were
combined as “Cities”, and “Suburban” and “Rural” became “Rural-suburban”.
For SES, two binary dummy variables were created, with “High” as the baseline.
Therefore, after re-coding, there were a total of nine binary covariates.

The mean externalizing rating in the teacher reports (TXEXT) was 50.9
(range 39-89), and that in the parent reports (PXEXT) was 49.3 (range 30-89).
A summary of the raw data is given in Table 6. Linear regression was used to
model the conditional means of TXEXT and PXEXT. Residuals (not shown)
from the linear models based on either TXEXT or PXEXT showed no departure
from normality.

We applied the four approaches to this data set. The solutions paths of ALL
and LASSO, where the individual coefficients of β̄ as functions of λ were plotted
against the L1 norm of β̄, were presented in Figure 1, whereas the coefficient
estimates were given in Table 7. The paths are obviously piecewise linear as
the ALL estimator uses a quadratic objective function. LASSO and ALL gave
similar estimates for AREA4, SES3 and ACADPRO. However, LASSO selected
one more important variable, MOMSTRS, compared to ALL. Note that ALL is
based on the Chen-Chen method, which also gave an insignificant MOMSTRS
coefficient; while LASSO is based on the validation data alone, and the validation-
only coefficient estimator for MOMSTRS was significant. In this example, the
gain in using the surrogate is not that great, as evidenced by the similar values of
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Table 6. Summary statistics for data in the psychopathology study.

Parameter Total % Validation non-validation
sample sample

AREA
Cities 1,199 47.9 725 577

Rural-Suburbs 1,302 52.1 708 491

SES
High 1,240 49.6 728 512

Middle 949 37.9 528 421
Low 312 12.5 177 135

MOMSING
No 1,982 79.2 1,161 821
Yes 519 20.8 272 247

MOMSTRS
No 2,110 84.4 1,199 911
Yes 391 15.6 234 157

HLTHPRO
No 1,329 53.1 735 594
Yes 1,172 46.9 698 474

ACADPRO
No 1,594 63.7 917 677
Yes 907 36.3 516 391

CSEX
Girl 1,294 51.7 726 568
Boy 1,207 48.3 707 500

FAMSTRS
No 905 36.2 515 390
Yes 1,596 63.8 918 678

PXEXT
Mean(SD) 48.97 (10.13) 49.6 (10.49)

the parameter standard errors in the analysis with/without the surrogate data.
This result is due to a relatively low correlation between the teacher’s and the
parents’ ratings (r = 0.37). However, as pointed out by Kraemer et al. (2003),
this type of correlation is common in studies of child psychopathology using
multiple informants.

6. Conclusion

We have proposed a new asymptotic likelihood-based LASSO (ALL) for vari-
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Figure 1. The solution paths for ALL and LASSO. The vertical lines indicate
the fit via BIC.

Table 7. Analysis of the psychopathology data.

Variable ALL LASSO CC VS
INTERCEPT 48.14 (0.32) 48.10 (0.35) 47.01 (0.58) 46.91 (0.63)

AREA - - 0.27 (0.59) 0.30 (0.59)
SES2 - - 0.71 (0.60) 0.67 (0.60)
SES3 2.06 (0.84) 2.14 (0.81) 2.96 (1.00) 2.82 (0.96)

MOMSING - - -0.44 (0.84) -0.36 (0.78)
MOMSTRS - 1.03 (0.72) 1.32 (0.81) 1.52 (0.74)
HLTHPRO - - 0.57 (0.53) 0.69 (0.54)
ACADPRO 3.44 (0.56) 3.45 (0.56) 3.33 (0.59) 3.42 (0.57)

CSEX - - -0.03 (0.53) -0.00 (0.54)
FAMSTRS - - 0.56 (0.54) 0.60 (0.56)

able selection and coefficient estimation when data are collected via validation
sampling. In contrast to other regularized model selection methods, such as the
conventional LASSO and SCAD, the method requires neither a likelihood func-
tion nor a loss function. With simple preliminary estimates of the coefficients and
their covariance matrix, the method is consistent in model selection. The ALL
estimator has smaller asymptotic variance than Chen-Chen’s estimator without
variable selection, and that ALL is asymptotically optimal under the conditions
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of our Theorem 4. In the finite sample situations we studied, ALL was superior to
its competitors in all dimensions considered. The ALL estimator is very general
and can be applied to other areas where a likelihood formulation is difficult.

In the paper, we took the validation and non-validation samples to be random
subsets of the population. In practice, it is possible that the validation sample
be selected using biased sampling techniques, where the probability of selection
is dependent on some observable covariates. Thus if u(xi) = ui is the probabil-
ity of selection of the i-th observation, and assuming that it can be estimated
consistently by the data, then (2.1) is replaced by

0 =
∑
i∈V

si(β) =
∑
i∈V

1
ui

wi{yi − g(xi;β)}.

Furthermore, take

0 =
∑
i∈V

s̃i(γ) =
∑
i∈V

1
ui

w̃i{ỹi − h(x̃i; γ)},

0 =
∑
j∈V̄

s̃j(γ) =
∑
j∈V̄

1
1 − uj

w̃j{ỹj − h(x̃j ; γ)},

where in this case h(x̃j ; γ) can be estimated by a method such as the inverse
probability weighting method (Horvitz and Thompson (1952)). Then our method
proceeds as before. Methods other than Chen and Chen’s can also be used; see,
for example, Chen, Leung, and Qin (2008), and the references therein. We will
explore this direction in a future paper. In this paper, we have mainly focused on
fixed dimensional problems with p < n. How to extend the current methodology
to high dimensional data is another interesting topic.

Appendix: Proofs

The proofs of Theorem 1 and Theorem 2 follow straightforwardly from Wang
and Leng (2007). Here we outline the proofs for Theorems 3 and 4.

Proof of Theorem 3. According to Theorem 2, with probability one, β̄λB = 0.
Since β̄λ is the minimizer of the objective function

(β − β̄)′Σ−1
n (β − β̄) +

∑
λj |βj |,

taking partial derivatives with respect to βA shows that β̄λA satisfies (Wang and
Leng (2007))

ΩAA(βA − β̄A) − ΩABβ̄B + D(β̄A) = 0, (A.1)
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where Ω = Σ−1
n and D(β̄A) is a d-dimensional vector with the jth component

given by (1/2)λjsgn(βj). Note that
√

nλjsgn(βj) = op(1) as
√

nan →p 0. There-
fore, √

n(βλA − β0
A) =

√
n(β̄A − β0

A) + Ω−1
AAΩAB(

√
nβ̄B) + op(1).

Since Ω = Σ−1, it is easy to see that Ω−1
AAΩAB = −ΣnABΣ−1

nBB. Thus, we can
write

√
n(βλA − β0

A) =
√

n(β̄A − β0
A) − ΣnABΣ−1

nBB(
√

nβ̄B) + op(1).

The asymptotic distribution of β̄λA follows by noting that the asymptotic distri-
bution of β̄ is N(0, Σ) and that Σn →p Σ.

Proof of Theorem 4. We partition Sn as(
SnAA SnAB
SnBA SnBB

)
.

Denote the estimator as β̌λ. It follows from the proof of Theorem 3 that
√

n(β̌λA − β0
A) =

√
n(β̄A − β0

A) + S−1
nAASnAB(

√
nβ̄B) + op(1).

Since
√

n(β̄ − β0) follows N(0, Σ), therefore,
√

n(β̌λA − β0
A) →d N(0, Λ), where

Λ = ΣAA + S−1
AASABΣBBSBAS−1

AA + 2S−1
AASABΣBA. We can write

Λ = Γ + (S−1
AASAB + ΣABΣ−1

BB)ΣBB(S−1
AASAB + ΣABΣ−1

BB)′.

Therefore Λ − Γ is a non-negative definite matrix for any S, and Λ = Γ if
S−1
AASAB = −ΣABΣ−1

BB, which is satisfied by taking Σ = S−1 and, correspondingly,
Sn = Σ−1

n .
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