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Abstract: After a brief review of previous frequentist and Bayesian approaches

to multiple change-points, we describe a Bayesian model for multiple parameter

changes in a multiparameter exponential family. This model has attractive sta-

tistical and computational properties and yields explicit recursive formulas for the

Bayes estimates of the piecewise constant parameters. Efficient estimators of the

hyperparameters of the Bayesian model for the parameter jumps can be used in

conjunction, yielding empirical Bayes estimates. The empirical Bayes approach is

also applied to solve long-standing frequentist problems such as significance testing

of the null hypothesis of no change-points versus multiple change-point alterna-

tives, and inference on the number and locations of change-points that partition

the unknown parameter sequence into segments of equal values. Simulation studies

of performance and an illustrative application to the British coal mine data are also

given. Extensions from the exponential family to general parametric families and

from independent observations to genearlized linear time series models are then

provided.
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1. Introduction

We consider herein multiple change-point problems based on independent
observations y1, . . . ,yn such that yi is a d × 1 vector with density function fθi

,
in which the θi are unknown parameters that are piecewise constant. There is
an extensive literature on the case in which the θi can undergo at most one
change, for which the frequentist approach dates back to the seminal works of
Page (1955), Quandt (1958, 1960) and Hinkley (1970), while the Bayesian ap-
proach dates back to Shiryaev (1963). Carlin, Gelfand, and Smith (1992) review
subsequent developments and propose a hierarchical Bayesian model and an as-
sociated Gibbs sampler. Extension to the multiple change-point setting has been
hampered by the computational complexity of the problem. Several tractable
models and computational methods have been developed in the literature to
address these issues and the closely related matter of determining the number
of change-points. For the frequentist approach, Bai (1997a,b), Bai and Perron
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(1998, 2003), and Qu and Perron (2007) consider regression models with mul-
tiple change-points, using dynamic programming to compute the least squares
estimates of the piecewise constant regression parameters when it is assumed that
there are k(≥ 2) change-points. An alternative approach that is computationally
more convenient, especially when k is not small, is the binary segmentation pro-
cedure of Vostrikova (1981) and its recent refinement by Olshen et al. (2004). The
choice of k for this approach is carried out by a model selection criterion dating
back to Yao (1988), who simply applied Schwarz’s Bayesian Information Crite-
rion (BIC). However, for change-point problems, the likelihood functions do not
satisfy the regularity conditions that are needed to derive the BIC, as noted by
Siegmund (2004) and Zhang and Siegmund (2006), who propose modifications of
the BIC for change-point problems. Earlier, Birgé and Massart (2001), Broman
and Speed (2002), and Lavielle (2005) have used penalized likelihood methods
that involve a shrinkage-type parameter to be chosen by the user, e.g., by cross
validation. Davis, Lee, and Rodriguez-Yam (2006) use the minimum description
length principle to choose p and the number and locations of change-points in
their piecewise autoregressive AR(p) models.

The Bayesian approach to multiple change-points dates back to the seminal
paper of Chernoff and Zacks (1964). McCulloch and Tsay (1993) extended the
Chernoff-Zacks model of normal mean shift to Gaussian autoregressive models
with possible changes in level and error variance, and used the Gibbs sampler
to approximate the posterior distribution of the time-varying parameters. Barry
and Hartigan (1992, 1993) proposed a product partition model as the prior dis-
tribution for the sequence of the piecewise constant parameters and used the
Gibbs sampler to approximate the posterior means of the parameters. Sub-
sequent developments of the Bayesian approach make use of reversible jump
Markov chain Monte Carlo (MCMC) introduced by Green (1995), or Gibbs sam-
pling used in conjunction with Metropolis-Hastings steps, as in Albert and Chib
(1993), Chib (1998), Liu and Lawrence (1999), Wang and Zivot (2000), Chib,
Nardari and Shephard (2002). In particular, the reversible jump MCMC extends
the Metropolis-Hastings method to include jumps between parameter spaces of
different dimensions. All these methods assume conjugate priors for the prior
distribution of parameters and provide simulation-based inference via MCMC
algorithms.

Section 2 considers a multiparameter exponential family of density functions
fθ(y) = exp{θ′y−ψ(θ)} with respect to some measure ν on Rd, and introduces
a Bayesian model for multiple change-points in the multiparameter exponential
family. In contrast with the aforementioned Bayesian models that require MCMC
implementation, explicit recursive formulas for the Bayes estimates of the piece-
wise constant parameters are available for our Bayesian model and are given in
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Section 2, which also describes how the hyperparameters of the Bayesian model
can be estimated. Section 3 reports simulation studies of the performance, from
both frequentist and Bayesian viewpoints, of these estimates of the piecewise
constant parameter vectors in a multinomial distribution. In Section 4 we use
the empirical Bayes estimates of the piecewise constant parameters to develop
procedures with attractive statistical and computational properties for such chal-
lenging frequentist problems as segmentation and significance testing of the null
hypothesis of no change-points versus multiple change-point alternatives. We also
review other segmentation and testing procedures in the literature and carry out
simulation studies comparing their performance with ours, from both statistical
and computational viewpoints.

To illustrate the proposed methodology, we apply it in Section 5 to the
time series of annual numbers of coal-mine disasters between 1851 and 1962,
which has been analyzed by different methods in the change-point literature. We
also compare our results with those obtained by more complex Bayesian change-
point models that are implemented by MCMC, and conduct further simulation
studies for sensitivity analysis of our results under various fitted change-point
models. Although we have focused so far on independent random vectors from
an exponential family, because of analytic tractability, we can easily extend the
proposed Bayesian change-point model to much more general parametric families
of time series models, thereby greatly broadening its applicability. The details
are given in Section 6, where we also generalize previous work of McCulloch and
Tsay (1993) and Lai, Liu, and Xing (2005) on Gaussian autoregressive models
to change-point generalized linear autoregressive models.

Although our approach assumes a parametric model and superimposes on
it a Bayesian change-point model, it uses the assumed model only as a working
model to derive the Bayesian smoothers (which involve model averaging) and
the frequentist segmentation procedures (which involve model selection). Quite
remarkably, this working model is able to tackle both the Bayesian and the
frequentist problems efficiently, as shown in Section 4. Moreover, although the
working model uses a parametric formulation to perform model averaging, it leads
to estimates and tests that compare favorably to nonparametric change-point
procedures that do not assume parametric working models, as shown in Section
4. Further discussion of this and other issues and some concluding remarks are
given in Section 7.

2. A Bayesian Model for Multiple Change-points in Exponential Fam-

ilies

Consider a multiparameter exponential family of densities

fθ(y) = exp{θ′y − ψ(θ)} (2.1)
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with respect to some measure ν on Rd, and the prior density π (with respect to
Lebesgue measure) on Θ := {θ :

∫
eθ′ydν(y) < ∞} given by

π(θ; a0,µ0) = c(a0, µ0) exp
{
a0µ

′
0θ − a0ψ(θ)

}
, θ ∈ Θ, (2.2)

where 1/c(a0, µ0) =
∫
Θ exp

{
a0µ

′
0θ − a0ψ(θ)

}
dθ and µ0 ∈ (∇ψ)(Θ), in which

∇ denotes the gradient vector of partial derivatives. The posterior density of θ

given the observations y1, . . . ,ym drawn from fθ is

π
(
θ; a0 + m,

(a0µ0 +
∑m

i=1 yi)
(a0 + m)

)
; (2.3)

see Diaconis and Ylvisaker (1979, p.274). Therefore, (2.2) is a conjugate family
of priors and (2.3) shows that a0 can be interpreted as an additional sample size
associated with the prior and µ0 is the prior mean of the yi. Moreover,∫

Θ
fθ(y)π(θ; a, µ)dθ =

c(a, µ)
c(a + 1, (aµ + y)/(a + 1))

. (2.4)

Suppose that, instead of being time-invariant, the parameter vector θt may un-
dergo occasional changes such that for t > 1, the indicator variables

It := 1{θt 6=θt−1} (2.5)

are independent Bernoulli random variables with P (It = 1) = p. When there
is a parameter change at time t (i.e., It = 1), the changed parameter θt is
assumed to be sampled from π. The simplicity of the conjugate family (2.2)−(2.3)
plays an important role in the explicit formulas for the sequential (filtering)
estimates E(µt|Yt) and for the fixed-sample (smoothing) estimates E(µt|Yn),
where µt = ∇ψ(θt) and Yt denotes (y1, . . . ,yt). We also use Yi,j to denote
(yi, . . . ,yj) for i ≤ j.

2.1. Recursions for the filter θt|Yt

An important ingredient in the development of these explicit formulas is
the most recent change-time Kt up to t, i.e., Kt = max{s ≤ t : Is = 1}. Let
pit = P (Kt = i|Yt). Denoting conditional densities by f(·|·), note that

f(θt|Yt) =
t∑

i=1

pitf(θt|Yi,t,Kt = i). (2.6)

It follows from (2.3) that

f(θt|Yi,t,Kt = i) = π(θt; a0 + t − i + 1, Ȳi,t), (2.7)
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where Ȳi,j = (a0µ0 +
∑j

k=i yk)
/
(a0 + j − i + 1) for j ≥ i. Combining (2.6) and

(2.7) yields

f(θt|Yt) =
t∑

i=1

pitπ(θt; a0 + t − i + 1, Ȳi,t). (2.8)

We next provide a recursive formula for pit by noting that
∑t

i=1 pit = 1 and

pit ∝ p∗it :=

{
pf(yt|It = 1) if i = t,

(1 − p)pi,t−1f(yt|Yi,t−1,Kt = i) if i ≤ t − 1.
(2.9)

Combining f(yt|Yi,t−1,Kt = i) =
∫

fθt
(yt)f(θt|Yi,t, Kt = i)dθt with (2.1), (2.4),

and (2.6) yields

p∗it =

{ pπ0,0

πt,t
if i = t,

(1 − p)pi,t−1
πi,t−1

πi,t
if i < t,

(2.10)

where π0,0 = c(a0,µ0) and πi,j = c(a0 + j − i + 1, Ȳi,j).

2.2. Explicit formulas for E(θt|Yn), 1 ≤ t ≤ n

Following Yao (1984), who considered the case of univariate normal yt with
known variance 1, and Lai, Liu, and Xing (2005), who extended Yao’s approach to
the case where the variance of yt is unknown and may also undergo jumps, and to
change-point autoregressive models, we derive the posterior distribution of θt|Yn

by using Bayes’ theorem to combine the forward filter θt|Yt and the backward
filter θt|Yt+1,n. The backward filter is obtained by reversing time, noting that
the Ĩt = 1{θt 6=θt+1} are still independent Bernoulli. Using the time-reversed

counterpart K̃t = min{s > t : Ĩs = 1} of Kt and P (θt ∈ A|Yt+1,n) =
∫

P (θt ∈
A|θt+1)dP (θt+1|Yt+1,n), the backward (time-reversed) filter can be expressed as

f(θt|Yt+1,n) = pπ(θt; a0, µ0)+ (1− p)
n∑

j=t+1

qj,t+1π(θt; a0 + j − t, Ȳt+1,j), (2.11)

where qjt ∝ q∗jt,
∑n

j=t qjt = 1 and

q∗j,t =

{ pπ0,0

πt,t
if j = t,

(1 − p)qj,t+1
πt+1,j

πt,j
if j > t.

(2.12)

By Bayes’ theorem,

f(θt|Yn) ∝ f(θt|Yt)f(θt|Yt+1,n)
π(θ; a0, µ0)

. (2.13)
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Combining (2.11) with (2.8), and noting that

π
(
θ; a0+t−i+1, Ȳi,t

)π
(
θ; a0 + j − t, Ȳt+1,j

)
π
(
θ; a0, µ0

) =
πitπt+1,j

πijπ00
π
(
θ; a0+j−i+1, Ȳij

)
,

we obtain from (2.13) that

f(θt|Yn) =
∑

1≤i≤t≤j≤n

βijtπ(θt; a0 + j − i + 1, Ȳi,j), (2.14)

where βijt = β∗
ijt

/
Pt, Pt = p +

∑
1≤i≤t<j≤n β∗

ijt, and

β∗
ijt =

{
ppit if i ≤ t = j,

(1 − p)pitqj,t+1
πitπt+1,j

πijπ00
if i ≤ t < j.

(2.15)

From (2.15), it follows that

P (It+1 = 1|Yn) =
p

Pt
, E(µt|Yn) =

∑
1≤i≤t≤j≤n

βijtȲi,j . (2.16)

2.3. Estimation of hyperparameters for empirical Bayes approach

The Bayes estimates E(µt|Yt) and E(µt|Yn) involve the hyperparameters p,
a0, and µ0, which are replaced by their estimates in the empirical Bayes approach.
From the definition (2.9) of p∗it, it follows that the likelihood function of p, a0,
and µ0 is

n∏
t=1

f(yt|Yt−1) =
n∏

t=1

( t∑
i=1

p∗it

)
, (2.17)

in which p∗it is a function of p, a0, and µ0 given by (2.10). Since the yt are
exchangeable random vectors with mean µ0 in the Bayesian model, we can es-
timate µ0 by the sample mean µ̂ = n−1

∑n
t=1 yt. The hyperparameter a0 is

used to weight the sample mean µ̂ with the sample data between change-points
in (2.8); we recommend the choice a0 = 1, which can be interpreted as having
an additional observation at µ̂ at a change-time when there is little information
on the changed parameter. The important hyperparameter in the change-point
model is the relative frequency p of change-points. Putting the above simple
choice of the hyperparameters a0 and µ0 in (2.17), we can estimate p by maxi-
mizing the log-likelihood function l(p) =

∑n
t=1 log(

∑t
i=1 p∗it), which can be con-

veniently computed by grid search. For reasons that will be explained in the
first paragraph of Section 4, the grid which we use to search for p has the form
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{2j/n : j0 ≤ j ≤ j1}, where j0 < 0 < j1 are integers; see the next section for an
illustrative example.

3. Simulation Studies

This section presents two simulation studies of the performance, from both
frequentist and Bayesian viewpoints, of the empirical Bayes estimates of the
piecewise constant parameter vectors in a multinomial distribution M(p1, p2, p3,
p4) that corresponds to a 3-parameter exponential family with mean vector
(p1, p2, p3) and p4 = 1 − (p1 + p2 + p3), and whose conjugate family of prior
distributions is Dirichlet. We use the Bayesian change-point model of Section
2 as a working model. The first simulation study covers eight scenarios, only
two of which are generated from the assumed Bayesian model, to evaluate the
robustness of the empirical Bayes estimates. From each scenario, 500 samples of
size n =1,000 were generated to evaluate the performance of p̂t.

Scenario 1. The data were generated from a frequentist change-point model
with two change-points at 301 and 701, and pt = (0.1, 0.2, 0.3, 0.4) for 1 ≤ t ≤
300, pt = (0.3, 0.3, 0.2, 0.2) for 301 ≤ t ≤ 700, and pt = (0.2, 0.1, 0.4, 0.3) for
701 ≤ t ≤ 1,000.

Scenario 2. The data were generated from a frequentist change-point model
with three change-points at 101, 301 and 701, and pt = (0.1, 0.1, 0.4, 0.4) for
1 ≤ t ≤ 100, pt = (0.2, 0.3, 0.25, 0.25) for 101 ≤ t ≤ 300, pt = (0.4, 0.4, 0.1, 0.1)
for 301 ≤ t ≤ 700, pt = (0.2, 0.1, 0.4, 0.3) for 701 ≤ t ≤ 1,000.

Scenario 3. The data were generated from a frequentist change-point model
with no change-points and pt ≡ (0.2, 0.3, 0.2, 0.3).

Scenarios 4 and 5. The data were generated from the Bayesian change-point
model, with pt ∼ Dirichlet(1,1,1,1) at each change-point t, p = 0.002 for Scenario
4 and p = 0.02 for Scenario 5.

Scenario 6. Instead of i.i.d. It in Scenarios 4 and 5, the actual Bayesian
model assumed Markovian It defined by P (It = 1|It−1 = 1) = 0.001 and P (It =
1|It−1 = 0) = 0.01, and pt ∼ Dirichlet(1,1,1,1) at each change-point t.

Scenarios 7 and 8. The actual Bayesian model generating the data assumed
pt ∼ Dirichlet(1, 1, 1, 1) at each change-point t, and had two (for Scenario 7) and
four (for Scenario 8) change-points that were independent and uniformly sampled
from {1, . . ., 1,000}.

We used the Kullback-Leibler (KL) divergence and the mean Euclidean error
(EE) to assess the estimation error of the empirical Bayes estimate p̂t of pt:

KL(pt, p̂t) = E
{ 4∑

i=1

pti log
pti

p̂ti

}
, EE(pt, p̂t) = E

{ 4∑
i=1

(pti − p̂ti)2
}1/2

. (3.1)



546 TZE LEUNG LAI AND HAIPENG XING

Table 1. Smoothing estimates under eight scenarios

Scenario 1 2 3 4 5 6 7 8

KL Bayes 0.0081 0.0120 0.0015 0.4814 0.6822 0.6528 0.0086 0.0147

(1.40e-4) (2.04e-4) (5.71e-5) (2.02e-2) (1.62e-2) (1.65e-2) (1.78e-4) (2.48e-4)

BCMIX 0.0073 0.0120 0.0015 0.4810 0.6818 0.6528 0.0078 0.0133

(1.61e-4) (2.27e-4) (5.70e-5) (2.02e-2) (1.62e-2) (1.65e-2) (1.93e-5) (2.26e-4)

Oracle 0.0046 0.0062 0.0015 0.5617 0.8372 0.7539 0.0047 0.0078

(0.97e-4) (1.14e-4) (5.70e-5) (2.52e-2) (2.32e-2) (2.16e-2) (1.16e-4) (1.53e-4)

EE Bayes 0.0474 0.0556 0.0252 0.3300 0.4741 0.4551 0.0401 0.0530

(5.03e-4) (5.30ee-4) (4.97e-4) (8.18e-3) (4.45e-3) (5.47e-3) (5.91e-4) (5.78e-4)

BCMIX 0.0482 0.0580 0.0247 0.3300 0.4742 0.4552 0.0411 0.0540

(5.47e-4) (6.58e-4) (4.87e-4) (8.17e-3) (4.45e-3) (5.70e-3) (6.40e-4) (6.28e-4)

Oracle 0.0422 0.0463 0.0252 0.3600 0.4861 0.4637 0.0347 0.0443

(4.76e-4) (4.58e-4) (4.97e-4) (8.73e-3) (4.32e-3) (5.41e-3) (4.86e-4) (4.72e-4)

We also compared p̂t with the “oracle” estimate p∗
t that assumes the change-

points to be known and estimates the pt in each known segment by maximum
likelihood in Scenarios 1, 2 and 7 and by the posterior mean in the other sce-
narios. Table 1 gives the Monte Carlo estimates of n−1

∑n
t=1 KL(pt, p̂t) and

n−1
∑n

t=1 EE(pt, p̂t) and their standard errors (in parentheses) for each of the
eight scenarios; each result is based on 500 simulations. The results show that
the Bayesian change-point working model gave estimates of the true signals that
were sometimes even better than (because of the use of empirical Bayes rather
than maximum likelihood estimation) and not much inferior to the oracle esti-
mates. Table 1 also includes results for the BCMIX estimates, introduced in
Section 4.2, showing that BCMIX is nearly Bayes in the Bayesian scenarios and
may even be slightly better than Bayes in the frequentist scenarios. To illustrate
the shape of the log-likelihood function l(p), Figure 1 gives a plot of l(p) for
0 < p ≤ 0.03 based on a sample of size n =1,000 generated from Scenario 5,
yielding the maximizer p̂ = 0.002.

The second simulation study used 500 simulated samples of size n = 1,000
under Scenario 1, which is a frequentist rather than a Bayesian model, to in-
vestigate the sensitivity of the Bayes estimates that assume fixed p, to different
choices of p. Here we considered Bayes rather than empirical Bayes estimates
and assumed pt ∼ Dirichlet(1, 1, 1, 1) at each change-point t for the Bayesian
model. Table 2 shows that as p changes from 0.00025 to 0.032 over the grid
{2j/1,000: −2 ≤ j ≤ 5}, the KL divergence and the Euclidean error between
true parameter pt and the Bayes estimate p̂t change little.

4. Applications to Segmentation and a Bootstrap Test

As noted in the second paragraph of Section 1, the frequentist approach to
multiple change-point problems involves minimizing the sum of squared residu-
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Figure 1. Log-likelihood a function of p.

Table 2. Smoothing estimates in Scenario 1 with different p’s.

p × 103 2−2 2−1 1 2 22 23 24 25

KL 0.0079 0.0077 0.0076 0.0076 0.0076 0.0079 0.0086 0.0107

(2.10e-4) (1.90e-4) (1.74e-4) (1.65e-4) (1.62e-4) (1.70e-4) (1.95e-4) (2.57e-4)

EE 0.0499 0.0494 0.0491 0.0491 0.0491 0.0497 0.0511 0.0553

(6.25e-4) (5.95e-4) (5.68e-4) (5.50e-4) (5.41e-4) (5.36e-4) (5.52e-4) (5.96e-4)

als or maximizing the log-likelihood over the locations of the change-points and
the piecewise constant parameters when it is assumed that there are k change-
points. This optimization problem can be solved by dynamic programming and
constitutes only the inner loop of an algorithm whose outer loop is another min-
imization, over k, of a model selection criterion to determine k. Besides the
computational complexity, there are additional complications in the frequentist
approach to inference on change-points because the usual χ2-approximations and
other asymptotic properties of generalized likelihood ratio statistics or residual
sum of squares no longer hold. The relative simplicity of the posterior distribution
of θt given Yn in our Bayesian model opens up new possibilities in resolving some
long-standing difficulties in the frequentist problems of testing for change-points
and determining the segmentation. In this section we use an appropriately cho-
sen hyperparameter p in our Bayesian model to tackle these frequentist problems.
Note that the frequentist approach typically assumes that k is small relative to n

and that adjacent change-points are sufficiently far apart so that the segments are
identifiable except for relatively small neighborhoods of the change-points; see
e.g., Bai and Perron (1998). Motivated by this assumption, in our Bayesian ap-
proach we restrict p to an interval [c1/n, c2/n] for some positive constants c1 < c2

so that the arrival of change-points is approximately Poisson. The reason why
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we choose a grid of the form {2j/n : j0 ≤ j ≤ j1} instead of {j/n : j0 ≤ j ≤ j1},
say, is that as p → 0, the behavior of µ̂t|n(ap) − µt is asymptotically equivalent
to that of µ̂t|n(p) − µt for any given a > 1, as can be shown by an argument
similar to that used in the Appendix to prove Theorem 2.

4.1. A bootstrap test for no change-points

To begin with, consider the simpler problem in which the yt are i.i.d. with
common density function fθ . There is a one-to-one correspondence between θ

and µ = ∇ψ(θ), whose inverse function will be denoted by θ(µ), i.e., ∇ψ(θ(µ)) =
µ. The maximum likelihood estimate of θ is θ(µ̂), where µ̂ = n−1

∑n
t=1 yt as

in Section 2.3. The classical generalized likelihood ratio (GLR) test of θ ∈ Θ0

rejects this null hypothesis if the GLR statistic

Λn =
n∑

t=1

log fθ(bµ)(yt) − sup
θ∈Θ0

n∑
t=1

log fθ(yt) (4.1)

exceeds c, where the threshold c can be determined from the prescribed type I
error probability by using the χ2-approximation, with d − dim(Θ0) degrees of
freedom, of the null distribution of 2Λn.

We next consider the more general setting in which yt has parameter θt, and
the null hypothesis assumes the θt to be time-invariant, i.e., H0 : θ1 = · · · = θn.
In the univariate case yt ∼ N(θt, 1), James, James, and Siegmund (1987) studied
the GLR test of H0 versus the single change-point alternative θ1 = · · · = θm 6=
θm+1 = · · · = θn for some m0 ≤ m ≤ m1, with m0 ≥ 1 and m1 < n with m

unknown. The GLR statistic involves maxm0≤m≤m1 and consequently its null
distribution no longer has the χ2-approximation. By developing a new approxi-
mation to the null distribution of the GLR statistic under certain assumptions on
m0 and m1, they implemented the test and compared its performance to a score
test proposed by Pettitt (1980) and another test proposed by Brown, Durbin
and Evans (1975) based on recursive residuals. Bai and Perron (1998) consid-
ered the GLR test of H0 versus the alternative that assumes k change-points
at unknown locations t

(n)
1 < · · · < t

(n)
k . Computation of the GLR statistic in

this case, denoted by GLR(k), involves dynamic programming, details of which
are given by Bai and Perron (2003), who also extended the GLR statistic to
max1≤k≤K GLR(k) for the more general alternative in which the number k of
change-points is unknown but bounded above by K.

The computational complexity of the preceding GLR tests, even in the simple
univariate N(θt, 1) case, is due to the complexity of the GLR statistics and the
determination of the critical values, since standard χ2 approximations are no
longer applicable. We propose to use the Bayesian change-point model of Section
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2 to provide a Bayesian counterpart of the GLR statistic for general multiple
change-point alternatives. Note that the counterpart of the second term on
the right hand side of (4.1) for the null hypothesis H0 : θ1 = · · · = θn(= θ)
is supθ

∑n
t=1 log fθ(yt) =

∑n
t=1 log fθ(bµ)(yt). Hence the Bayesian change-point

model in Section 2, with the hyperparameter p estimated by maximum likelihood
and µ0 estimated by the sample mean µ̂ as in Section 2.3, suggests the statistic

Ln = sup
p∈{2j/n:j0≤j≤j1}

n∑
t=1

lt(p; a0, µ̂) −
n∑

t=1

log fθ(bµ)(yt) (4.2)

for testing H0 versus a Bayesian change-point alternative parameterized by p,
where lt(p; a0, µ̂) = log(

∑t
i=1 p∗it), with p∗it given by (2.10) that involves p, a0,

and µ0 which is estimated by µ̂. Instead of maximizing
∑n

t=1 lt(p; a0, µ̂) over
0 < p < 1 in (4.2), we maximize it over a grid of the form {2j/n : j0 ≤ j ≤ j1} as
in Section 2.3, where j0 < 0 < j1 are integers. An important advantage of (4.2)
over the GLR statistic max1≤k≤K GLR(k) is its computational simplicity. The
high-dimensional parameter space {(θ1, . . . , θn) : t 7→ θt is piecewise constant}
suggests that some regularization is needed to estimate the parameters, and
putting a constraint K on the number of change-points, as in Bai and Perron
(1998), can be regarded as regularization. Our Bayesian model “regularizes”
by putting a stochastic structure, involving the parameter p, on the sequence
(θ1, . . . , θn).

Although the null hypothesis H0 is composite, it only involves the common
value θ of θ1, . . . , θn, whose maximum likelihood estimate is θ(µ̂). Therefore we
can use the parametric bootstrap to test H0. Specifically, generate B bootstrap
samples of independent random vectors y∗

1,b, . . . ,y
∗
n,b from fθ(bµ), and compute

from each bootstrap sample the test statistic L∗
n,b, b = 1, . . . , B. Letting α̂ =

B−1
∑B

b=1 I{L∗
n,b≥Ln}, the bootstrap test rejects H0 if α̂ ≤ α. Note that α̂ can

be regarded as the p-value of the bootstrap test. In the Appendix we prove the
following result on the type I error of the test.

Theorem 1. As n → ∞ and B → ∞, Pθ1=···=θn
(Bootstrap test rejects H0)=

α + O(n−1/2) + O(B−1/2).

Example 1. We compared the above bootstrap test (abbreviated by BOOT)
with the CUSUM test and the tests of H0 proposed by James, James, and
Siegmund (1987, abbreviated by JJS), Pettitt (1980, abbreviated by P), and
Brown, Durbin and Evans (1975, abbreviated by BDE) in a simulation study
for the univariate normal setting yt ∼ N(θt, 1), 1 ≤ t ≤ n = 80. The nominal
significance level was α = 0.05. For the bootstrap test, we used B = 1,000
bootstrap samples and j1 = 5 = −j0 in (4.2). The results are given in Table
3, which considers the type I error of the tests at θ1 = θ2 = · · · = θ80 = 0,
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Table 3. Type I error at (a) the null hypothesis θ1 = · · · = θ80 = 0, and
power at the alternatives given by (b) single change-point at 41, θ1 = −0.5,
θ41 = 0.5, (c) two change-points at 33 and 65, θ1 = −0.7, θ33 = 0, θ65 = 0.7,
(d) two change-points at 33 and 65, θ1 = 0, θ33 = 0.8, θ65 = −0.8.

Case BOOT JJS P BDE CUSUM
(a) 0.0470 (0.0067) 0.0490 (0.0068) 0.0500 (0.0068) 0.0480 (0.0067) 0.0440 (0.0065)
(b) 0.9790 (0.0045) 0.9910 (0.0030) 0.9940 (0.0024) 0.8310 (0.0118) 0.9710 (0.0053)
(c) 0.9830 (0.0041) 0.9970 (0.0017) 0.9960 (0.0020) 0.8880 (0.0010) 0.9780 (0.0046)
(d) 0.9890 (0.0033) 0.1710 (0.0119) 0.2050 (0.0128) 0.5300 (0.0158) 0.8900 (0.0100)

and their power at three parameter configurations, two with 2 change-points and
the other with only 1 change-point. Each result in Table 3 is based on 1,000
simulations and the standard errors are given in parentheses. The bootstrap test
had high power (0.82 and above) at alternatives labeled (b)−(d), whereas JJS, P
and BDE had low power (between 0.17 and 0.53) at the alternative (d), for which
the first mean change is an increase and the second mean change is a decrease
of the baseline mean. In this connection, note that for the alternative labeled
(c), the mean increases at both change-points. The last column of Table 3 is
about the CUSUM test that will be decribed more fully in the next example.
Here, we use the fact that the variance of εt is known to be 1 to modify the
usual CUSUM statistic in Example 2 to n−1/2 max1≤k≤n |

∑k
t=1(yt− µ̂)|, in which

µ̂ = n−1
∑n

t=1 yt as in Section 2.3.

Example 2. While Example 1 considers the case of known σ for normal mean
shifts, nonparametric tests such as the CUSUM test have been introduced to test
for mean shifts without assuming normality and prespecified σ; see Csörgö and
Horvath (1998). The CUSUM statistic n−1/2 max1≤k≤n |

∑k
t=1(yt − µ̂)|

/
σ̂ has

limiting null distribution max0≤t≤1 |Bt| as n → ∞, where Bt, t ≥ 0, is Brownian
motion, µ̂ = n−1

∑n
t=1 yt as in Section 2.3, and σ̂2 = n−1

∑n
t=1(yt − µ̂)2 is a

consistent estimate of σ2 under the null hypothesis. The same weak convergence
theory can also be applied to derive the limiting null distribution of (4.2) that
assumes a Bayesian normal mean shift model as the alternative hypothesis, with
p restricted to a range between n−12j0 and n−12j1 . Since this limiting null dis-
tribution is the same as that when the yt are normal, the parametric bootstrap
test is still asymptotically valid even though the yt may be non-normal. The
common variance σ2 of the yt in the mean shift model can also be unknown and
consistently estimated by σ̂2, noting that the yt are exchangeable random vari-
ables under the Bayesian mean shift model and under the null hypothesis. Table
4 compares the type I error and the power of this bootstrap test, abbreviated
by BOOT, with those of the CUSUM test when the yt were normal (left panel,
denoted by N(·)) and when the yt were exponentially distributed with means θt
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Table 4. Left panel (normal case): Type I error and power at the parameter
configurations (a) and (b) of Table 3 when σ2 is unknown and estimated by
σ̂2. Right panel (exponential case): Type I error at (a′) θ1 = · · · = θ80 = 1,
and power at (b′) θ1 = 0.5, θ41 = 1.5 for change-point at 41, (c′) θ1 = 1, θ34 =
1.5, θ65 = 2 for change-points at 34 and 65, (d′) θ1 = 1, θ34 = 2, θ65 = 0.6
for change-points at 34 and 65, (e′) θ1 = 1, θ10 = 1.5 and θ72 = 0.5 for
change-points at 10 and 72.

Test N(a) N(b) Exp(a′) Exp(b′) Exp(c′) Exp(d′) Exp(e′)
BOOT 0.0450 0.9790 0.0540 0.9540 0.8500 0.7460 0.8770

(0.0066) (0.0045) (0.0072) (0.0066) (0.0113) (0.0137) (0.0104)
CUSUM 0.0440 0.9710 0.0460 0.9700 0.7980 0.4250 0.3330

(0.0065) (0.0053) (0.0067) (0.0053) (0.0127) (0.0156) (0.0149)

(right panel, denoted by Exp(·)). As in Table 3, the nominal significance level
was α = 0.05 and each result was based on 1,000 simulations, with the standard
error given in parentheses. Table 4 shows that BOOT and CUSUM had type I
error near α even when the yt were non-normal and that BOOT had substantially
higher power than CUSUM for the last two columns of Table 4.

4.2. BCMIX smoothers

Although the Bayes filter uses a recursive updating formula (2.10) for the
weights pit ∝ p∗it (1 ≤ i ≤ t), the number of weights increases with t, resulting
in unbounded computational complexity and memory requirements in estimating
θt as t keeps increasing. A bounded complexity mixture (BCMIX) approximation,
having M(p) components and keeping the most recent m(p) weights pj,n (with
n − m(p) < j ≤ n and m(p) < M(p)) of the posterior density (2.8) can be
obtained as follows. Let Kt−1(p) be the set of indices i for which pi,t−1 is kept at
stage t−1; thus, Kt−1(p) ⊃ {t−1, . . . , t−m(p)}. At stage t, define p∗i,t as in (2.10)
for i ∈ {t}∪Kt−1(p), and let it be the index not belonging to {t, . . . , t−m(p)+1}
such that

p∗it,t = min{p∗j,t : j ∈ Kt−1(p) and j ≤ t − m(p)},

choosing it to be the minimizer farthest from t if the above set has two or more
minimizers. Define Kt(p) = {t} ∪ (Kt−1(p) − {it}), and let

pi,t =
( p∗i,t∑

j∈Kt(p) p∗j,t

)
, i ∈ Kt(p).

Similarly, to obtain a BCMIX approximation to the backward filter θt|Yt+1,n,
let K̃t+1(p) denote the set of indices j for which qj,t+1 in (2.11) is kept at stage
t + 1; thus, K̃t+1(p) ⊃ {t + 1, , . . . , t + m}. At stage t, define q∗j,t as in (2.12) for
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j ∈ {t} ∪ K̃t+1(p), and let jt be the index not belonging to {t, . . . , t + m(p) − 1}
such that

q∗jt,t = min{q∗j,t : j ∈ K̃t+1(p) and j ≥ t + m(p)},

choosing jt to be the minimizer farthest from t if the above set has two or more
minimizers. Define K̃t(p) = {t}∪(K̃t(p)−{jt}) and let qj,t =

(
q∗j,t

/∑
j∈eKt(p)

q∗j,t

)
,

j ∈ K̃t(p), which yields a BCMIX approximation to the backward filter θt|Yt+1,n.
The BCMIX approximation to the smoother can be obtained by combining

the forward and backward BCMIX filters via Bayes’ theorem:

f(θt|Yn) ≈
∑

i∈Kt(p), j∈eKt+1(p)

β̃ijtπ(θt; a0 + j − i + 1, Ȳi,j), (4.3)

in which β̃ijt = β∗
ijt/P̃t, P̃t = p +

∑
1≤t≤n,i∈Kt(p),j∈eKt+1(p)

β∗
ijt, and β∗

ijt given by

(2.15) for i ∈ Kt(p) and j ∈ K̃t+1(p). The BCMIX approximation to E(µt|Yn) is
therefore

µ̂t|n(p) =
∑

i∈Kt(p), j∈eKt+1(p)

β̃ijtȲi,j . (4.4)

The following theorem, whose proof is given in the Appendix, assumes conditions
similar to those of Yao (1988) for piecewise constant normal means:

(C1) The true change-points occur at t
(n)
1 < · · · < t

(n)
k such that lim infn→∞ n−1

(t(n)
i − t

(n)
i−1) > 0 for 1 ≤ i ≤ k + 1, with t

(n)
0 = 0 and t

(n)
k+1 = n.

(C2) There exists δ > 0, which does not depend on n, such that min1≤i≤k ||µt
(n)
i

−
µ

t
(n)
i−1

|| ≥ δ for all large n.

Theorem 2. Assume (C1), (C2), and that m(p) ∼ | log p|1+ε and 1 ≤ M(p) −
m(p) = O(1) as p → 0, for some ε > 0. Then

max
1≤t≤n : min1≤i≤k |t−t

(n)
i |≥m(p)

||µ̂t|n(p) − µt||
P−→ 0 as n → ∞,

uniformly in a1/n ≤ p ≤ a2/n.

As noted in Section 2.3, the hyperparameter µ0 can be estimated by the
sample mean and the important hyperparameter p can be estimated by maximum
likelihood. We can use the BCMIX approximation of the forward filter to replace∑t

i=1 p∗it by
∑

i∈Kt(p) p∗it in the likelihood function (2.17), and thereby estimate
p by maximizing the approximate likelihood function over a grid {2j/n : j0 ≤
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j ≤ j1}. Putting this estimated p in µ̂t(p) in (4.4) yields the empirical Bayes
estimator µ̂t, which by Theorem 2 also satisfies the consistency property

max
1≤t≤n : min1≤i≤k |t−t

(n)
i |≥m(p)

||µ̂t − µt||
P−→ 0 as n −→ ∞. (4.5)

4.3. A new approach to choosing the number of segments

The second paragraph of Section 1 has reviewed frequentist methods in the
literature for determining the number of change-points. These methods involve
the log-likelihood statistic (under the assumption of k change-points)

ln(k) = sup
1≤t1<···<tk<n, θ(1),...,θ(k+1)

k+1∑
j=1

tj−1∑
t=tj−1

log f
θ(j)(yt), (4.6)

in which t0 = 1 and tk+1 − 1 = n, together with a penalized likelihood criterion
that subtracts some penalty term from ln(k). For example, the BIC penalty term
is (1/2)(k+1)d log n, which is used by Yao (1988) for the univariate normal mean
shift model. The optimization problem involved in (4.6) can be solved by dy-
namic programming as in Bai and Perron (1998, 2003), but it is computationally
intensive when k is not small. Zhang and Siegmund (2006) propose to approxi-
mate ln(k) by using the circular binary segmentation procedure of Olshen et al.
(2004) to determine the maximizer (t1, . . . tk) in (4.6). Earlier Davis, Lee, and
Rodriguez-Yam (2006) approximate it by using genetic algorithms.

Let µ̂t be a BCMIX approximation of E(µt|Yn) and let

∆t = ||µ̂t+b(p) − µ̂t−b(p)||2, (4.7)

where b(p) is a “bandwidth” whose choice will be given later. Instead of us-
ing dynamic programming to determine the k change-points by maximizing the
likelihood function (4.6) in a model with k + 1 segments, we estimate the k

change-points sequentially by making use of {∆t : b(p) < t < n − b(p)}. Let
τ̂1 be the maximizer of ∆t over b(p) < t < n − b(p). After τ̂1, . . . , τ̂j−1 have
been defined, we can define τ̂j as the maximizer of ∆t over t that lies outside the
b(p)-neighborhoods of τ̂i for 1 ≤ i ≤ j − 1, i.e.,

∆
bτj

= max{∆t : b(p) < t < n − b(p), min
1≤i≤j−1

|t − τ̂i| ≥ b(p)}. (4.8)

Note that whereas (C1) orders the change-points t
(n)
1 , . . . , t

(n)
k , the estimates

τ̂j of the locations of the change-points in (4.8) are unordered and do not depend
on k. Under the model of k change-points, we can take τ̂1, . . . , τ̂k and order
them as t̂(1),k < · · · < t̂(k),k to provide estimates of the k change-points. We can
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then estimate the common parameter θ(j) over [t(n)
j−1, t

(n)
j − 1] by the maximum

likelihood estimator θ̂
(j)

over the estimated segment [t̂(j−1),k, t̂(j),k − 1], 1 ≤ j ≤
k+1, where t̂(0),k = 1 and t̂(k+1),k−1 = n. This yields the following approximation
to (4.6):

Λn(k) =
k+1∑
j=1

bt(j),k−1∑
t=bt(j−1),k

log f
bθ

(j)(yt). (4.9)

With an upper bound K on the number k of change-points in (C1), we propose
to estimate k by

k̂n = argmax1≤k≤K{Λn(k) − (k + 1)Cn}, (4.10)

where Cn is the common penalty for each segment and satisfies

Cn → ∞ and Cn/n → 0 as n → ∞. (4.11)

Theorem 3. Under (4.11) and the assumptions of Theorem 2, together with
b(p) ∼ βm(p) for some β > 0, k̂n

P−→ k.

The proof of Theorem 3 is given in the Appendix. The choice of Cn that cor-
responds to BIC is Cn = (d/2) log n, which clearly satisfies (4.11). The following
simulation study considers the finite-sample performance of k̂n with this choice
of Cn, and also of the BCMIX estimator µ̂t introduced in the preceding section.

Example 3. Figure 2 illustrates the performance of the BCMIX estimator µ̂t|n
in the normal mean shift model yt ∼ N(µt, 1), 1 ≤ t ≤ n =2,500. The top left
panel shows a random sample generated from the model with four change-points:

µt = I{1≤t≤500} + 1.8I{501≤t≤1,000} + 0.5I{1,001≤t≤1,500}

+I{1,501≤t≤1,750} + 0.6I{1,751≤t≤2,500}. (4.12)

The top right panel, which has 22 change-points, shows a random sample gener-
ated from the Bayesian model µt = (1− It)µt−1 + Itzt, in which It is Bernoulli(p)
independent of zt, where p = 0.006 and zt has the conditional distribution of
a standard normal random variable given that it exceeds 1 in absolute value;
this restriction is introduced to avoid small jumps in the Bayesian model. The
bottom panels plot µt (solid line) and the BCMIX estimate µ̂t (dotted line),
and show that µ̂t is close to µt in both cases. We use the criterion (4.10) with
Cn = (1/2) log n to choose the number k of change-points. The preceding method
estimates that there are 4 change-points located at 5,00, 1,004, 1,495, 1,775 for
the left panel. The estimated number of change-points for the right panel is the
actual number 22.
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Figure 2. Top: Time series generated from the mean-shift models in the
frequentist (left panel) and the Bayesian framework (right panel). Bottom:
True (solid line) and estimated means (dotted line).

Table 5 compares the BCMIX procedure with three other methods in the
literature. The first is the circular binary segmentation (CBS) method of Olshen
et al. (2004), which determines k via the type I error of a change-point test and
certain pruning procedures; it is widely regarded as one of the fastest segmen-
tation methods in genomic studies. The CBS method can be implemented by
using the DNAcopy package from the Bioconductor Web site

http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html.

The second method, due to Davis, Lee, and Rodriguez-Yam (2006), and denoted
by MDLg, uses the minimum description length (MDL) criterion to choose k and
a variant of the genetic algorithm to approximate (4.6). We have used in Table 5
the canonical genetic algorithm instead of its faster variant used by Davis et al.
The third method, due to Bai and Perron (1998, 2003), estimates k by minimizing
BIC and uses dynamic programming (DP) to evaluate (4.6). We implement it
by using the strucchange package from the R Project Web site

http://cran.r-project.org/web/packages/strucchange/index.html.

http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html
http://cran.r-project.org/web/packages/strucchange/index.html
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Table 5. Segmentation using different methods.

Model (4.12) Bayesian Model
Method MSE k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 MSE E|k̂ − k|
BCMIX 15.93 (0.27) 10% 4.1% 81.2% 4.7% 0% 33.71 (0.39) 0.079 (0.009)
CBS 33.71 (0.39) 2.5% 0.1% 91.4% 1.4% 4% 48.53 (0.71) 0.850 (0.027)
MDLg 22.13 (0.48) 15.6% 1.1% 83.3% 0% 0% 175.65 (2.72) 0.401 (0.023)
DP 18.97 (0.42) 7.1% 2.5% 90.4% 0% 0% 379.95 (5.66) 1.574 (0.043)

Let MSE=E{
∑n

t=1(µ̂t − µt)2}. Based on 1,000 simulations, Table 5 gives the
MSE of BCMIX, CBS, MDLg, and DP for model (4.12), and for the Bayesian
mean shift model described in the preceding paragraph. Also given in Table 5
are the percentages of k̂ = 2, 3, 4, 5, 6 of the 1,000 simulations in model (4.12),
and the mean of |k̂ − k| in the Bayesian model for each method.

We ran all simulations on an Intel(R) Pentium (R) 4 CPU 2.80GHz computer
with 2GB memory. The average CPU times per simulation of BCMIX, CBS,
and MDLg were 0.43 seconds, 0.87 seconds, and 10 minutes, respectively. To
implement the DP method, we set the minimum distance between two adjacent
change-points to be 250 for model (4.12), and to be 125 for the Bayesian model.
The corresponding average CPU times per simulation were 67 and 98 minutes,
respectively. Note that choosing a smaller minimum distance in the DP method
for the Bayesian model would reduce the MSE but increase the lengthy CPU
time.

5. Application to British Coal Mine Data

In this section we use the method developed in Sections 2 and 4.3 to analyze
the time series of annual numbers Yt of British coal mine disasters from 1850
to 1962. Previous works that used change-point methods to analyze these data
assumed that Yt were independent Poisson random variables with means θt; see
Green (1995, p.723) for a summary of previous Bayesian analyses. We also
assume that Yt are independent Poisson random variables with means θt, in
conjunction with the change-point model in Section 2, for which a conjugate
prior Gamma(γ, λ) is assumed for θt at the time of a jump, which occurs with
probability p. As shown in Section 2.2, the posterior distribution of θt given
Y1, . . . , Yn is a mixture of Gamma(γij , λij) distributions, where

γij = γ +
j∑

k=i

Yk, λij = (λ−1 + j − i + 1)−1.

Moreover, the πi,j in (2.15) can be expressed as πi,j = [Γ(γij)]−1λ
−γij

ij . To esti-
mate the hyperparameters p, γ and λ, we calculate the likelihood function (2.17)
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Figure 3. The British coal mine data and posterior means of the Poisson rates.

for p = 2i/n (−10 ≤ i ≤ 5), λ = 0.5j, and γ = 0.1 + 0.2k (1 ≤ j, k ≤ 10).
The maximum likelihood estimates (over this grid) are p̂ = 0.0357, λ̂ = 1.0, and
γ̂ = 1.7, which we use as the estimated hyperparameters. Here n = 112, so
np̂ is still small and we can use the BCMIX smoother θ̂t (for which we choose
m = 10 and M = 20) to estimate θt. Figure 3 plots Yt and θ̂t; the plot of θ̂t

is similar to that of Green (1995) based on daily (instead of yearly) data and a
different Bayesian model. Figure 4 plots the posterior probability that θt+1 6= θt

for 1 ≤ t < n; see (2.16). Combining both figures suggests three change-points
around 1891, 1929 and 1947. We also apply (4.10) with Cn = (1/2) log n, which
yields 3 as the estimated number of change-points. Moreover, the method in
Section 4.3 estimates the locations of the three change-points to be 1891, 1929
and 1947.

Assuming yt ∼ Poisson(θt), 1 ≤ t ≤ n = 112, and θt to be piecewise con-
stant, we performed a simulation study of our method to estimate θt generated
from three frequentist and Bayesian models that differ from our working Bayesian
model. The first, denoted by W, is Worsley’s (1986) fitted change-point model
that has a single change-point at the 45th observation and estimates θ1 and
θ45 by maximum likelihood. We simulated the yt from the fitted model. The
second model is the Bayesian model for a single change-point considered by
Raftery and Akman (1986) and is denoted by RA. We simulated the θt from
the posterior distribution of the change-point and the pre- and post- change
values of θt. The third model, denoted by BH, is Barry and Hartigan’s (1992;
1993) product partition model, in which we use the cohesion cij = (j − i + 1)−3,
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Figure 4. Posterior probability of occurrence of change-point.

Table 6. Performance of θ̂t and k̂ in change-point Poisson models.

Model KL EE E(∆) (∆ = |k̂ − k|) ∆ = 0 ∆ = 1 ∆ = 2
W 0.0724 (7.27e-4) 0.2946 (2.70e-3) 0.0470 (0.008) 96.4% 2.5% 1.1%
RA 0.0269 (5.73e-4) 0.2034 (2.49e-3) 0.0450 (0.007) 96.1% 3.3% 0.6%
BH 0.0287 (5.87e-4) 0.2094 (2.50e-3) 0.1640 (0.012) 84.3% 15% 0.7%

1 ≤ i < t ≤ j ≤ n, and impose an additional constraint that there are at most
3 change-points. Using the posterior distribution of (θ1, . . . , θn) from these data,
we simulated data from the fitted BH model and used the simulated data to com-
pute the BCMIX estimate based on our working Bayesian change-point model
that differs from the actual BH model. We use the Kullback-Leibler divergence
KL(θt, θ̂t) = E

{
θt(log θt−log θ̂t)−(θt−θ̂t)

}
and the mean absolute error E|θ̂t−θt|

to assess the estimation error of the empirical Bayes estimate θ̂t of θt. Table 6
gives the results of KL= n−1

∑n
t=1 KL(θt, θ̂t) and EE= n−1

∑n
t=1 E|θ̂t−θt| based

on 1,000 simulations. Besides the estimation error of θ̂t, it also gives E|k̂ − k|
and the percentages of |k̂ − k| = 0, 1, 2 in the 1,000 simulations.

6. General Parametric Families and Change-point Generalized Linear
Models

We can apply the same change-point model and use the same ideas to de-
velop recursive estimators for more general parametric families fθ(yt) than the
exponential family (2.1). In particular, corresponding to a prior density func-
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tion that is proportional to g(θ), the conditional density function gi,t of θt given
Kt = i and Yt is

gi,t(θ) ∝ g(θ)
t∏

k=i

fθ(yi),

and therefore (2.8) can be generalized to f(θt|Yt) =
∑t

i=1 pitgi,t(θt), with pit =
p∗it

/∑t
k=i p

∗
kt, where p∗it is given by (2.10) but with

1
π0,0

=
∫

g(θ)dθ,
1

πij
=

∫ [ j∏
k=i

fθ(yk)
]
g(θ)dθ. (6.1)

The argument of Section 2.2 yields f(θt|Yn) =
∑

1≤i≤t≤j≤n βijtgi,j(θt), in which
βijt is proportional to β∗

ijt given by (2.15), with the modification for pit, qjt, and
πi,j given by (6.1). An advantage of the exponential family and the conjugate
prior density function is that the integrals in (6.1) can be explicitly evaluated.
For general parametric families that do not have explicit formulas for (6.1), we
can use Laplace’s asymptotic formula to evaluate (6.1) when j − i is sufficiently
large; see Lemma 1 in the Appendix for details.

Another important extension of these ideas is to generalized linear models
with piecewise constant parameters. By incorporating lagged covariates in the
generalized linear model, we can extend the Gaussian autoregressive model with
piecewise constant regression parameters and error variances, introduced by Lai,
Liu, and Xing (2005), to generalized linear models. Suppose that at time t, yt

has density function

fθt,φt
(yt) = c(θt, φt) exp

{[
θ′

tyt − ψ(θt)
]

a(φt)

}
, (6.2)

with respect to some measure ν on Rd, and that µt = β′
txt in which µt = ∇ψ(θt)

is the mean of yt and xt is the covariate vector at time t. The dynamics of (βt, φt)
are the same as in Section 2. At time t when a parameter change occurs, φt has
density function π(φ) and the conditional density function of βt given φt = φ is
π(β|φ), where

π(β|φ) = c1(a0,µ0) exp
{

a0β
′µ0 − a0ψ(β)

}
,

(6.3)
π(φ) = c2(b0, ν0) exp{b0ν0φ − b0λ(φ)},

in which c1(a0,µ0) and c2(b0, ν0) are normalizing constants, similar to (2.2). Note
that the arguments in Section 2 can be applied here with obvious modifications;
in particular, the πi,j can be computed by numerical integration or Laplace’s
approximation.
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Table 7. Performance of BCMIX and Oracle estimates under two scenarios.

Estimate Scenario A Scenario B
KL BCMIX 0.0051 (3.56e-4) 0.0066 (1.54e-5)

Oracle 0.0030 (5.60e-5) 0.0040 (6.36e-5)
EE BCMIX 0.1176 (3.56e-3) 0.1073 (1.24e-3)

Oracle 0.0979 (1.15e-3) 0.0915 (8.71e-4)

Example 4. Consider a Poisson autoregressive model for counts data yt ∼
Poisson(µt), with

log(µt) = αt + γt log(y∗t−1), (6.4)

where y∗t−1 = max(yt−1, c) and c = 0.5 is used to determine the probability that
yt > 0 given yt−1 = 0; see Zeger and Qaqish (1988, p.1021). This is a special case
of the above change-point generalized linear model with a(φt) ≡ 1, βt = (αt, γt)′,
and xt = (1, log y∗t−1)

′. We consider two scenarios for the piecewise constant βt

with 1 ≤ t ≤ n =1,000.

Scenario A : β′
t = (0.1, 0.1)I{1≤t≤200} + (−0.5, 0.3)I{201≤t≤600}

+(0.5,−0.5)I{601≤t≤1,000}.

Scenario B : β′
t = (0.5,−0.2)I{1≤t≤200} + (−0.2, 0.3)I{201≤t≤500}

+(0.3,−0.3)I{501≤t≤800} + (0.3, 0.7)I{801≤t≤1,000}.

We use the Kullback-Leibler divergence and the mean Euclidean error to assess
the estimation error of the empirical Bayes estimate β̂t of βt:

KLt = E
{

µt(log µt − log µ̂t) − (µt − µ̂t)
}

, EEt = E
{

(βt − β̂t)
′(βt − β̂t)

}1/2
.

We also compare β̂t with the “oracle” estimate β∗
t that assumes the change-

points to be known and estimates the common βt in each segment by max-
imizing the likelihood function. Table 7 gives the Monte Carlo estimates of
KL=n−1

∑n
t=1 KLt and EE=n−1

∑n
t=1 EEt and their standard errors (in paren-

theses) for scenarios A and B; each result is based on 1,000 simulations. The table
shows that the BCMIX estimates are not much inferior to the oracle estimates.

7. Conclusion

By making use of Kt and K̃t in Sections 2.1 and 2.2, we have derived explicit
recursive formulas for the posterior estimates of θt given Yt or Yn in our Bayesian
model of occasional parameter jumps in the multiparameter exponential family
(2.1). The BCMIX smoothers (4.4) and the associated empirical Bayes estimators
µ̂t in Section 4.2 are shown to provide simple approximations that perform nearly
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as well as their fully Bayesian counterparts. We have also shown in Sections 4.1
and 4.3 how this empirical Bayes approach, with its computationally attractive
recursive estimators, can be used to address challenging frequentist problems.
A commonly used method to estimate piecewise constant signals θt is to first
segment the data and then to estimate the constant signal for each segment. Since
our empirical Bayesian approach already provides a relatively simple estimate of
the signal without segmentation, it seems that this approach makes segmentation
superfluous. Although this is the case when there are many possible but no
clear-cut segments, there are sometimes subject-matter reasons for segmentation,
especially if the signal actually consists of a few long segments as prescribed
by conditions (C1) and (C2); see Siegmund (2004), Olshen et al. (2004) and
Lai, Xing, and Zhang (2008). Determining the number and locations of change-
points in these situations is an important problem even though we can estimate
the signal θt well by using the empirical Bayes approach.

The comparative study in Section 4 shows the computational and statistical
advantages of the BCMIX smoother and the associated segmentation method
over the widely used CBS algorithm in genomic studies. For on-line (sequential)
estimation and detection problems, the BCMIX filter can be extended beyond
the exponential family to provide recursive estimators and detection schemes. In
connection with ongoing work in this direction, Lai, Liu, and Xing (2009) have
made use of BCMIX filters to develop efficient sequential surveillance schemes
for detecting multiple parameter changes in multivariate exponential families.
In Section 6 we extended the change-point model and its associated methodol-
ogy from the independent exponential family to generalized linear autoregres-
sive models whose regression and dispersion parameters may undergo occasional
jumps. This extension greatly broadens the scope of previous work by Bai, Per-
ron, and Qu on regression models with multiple change-points, and by McCulloch
and Tsay, Lai, Liu, and Xing on Gaussian autoregressive models with piecewise
constant regression and volatility parameters (see Section 1).

Although the relatively simple Bayesian model we have used seems to miss
certain features incorporated in previous more complicated Bayesian change-
point models that require MCMC methods for their implementation, the simu-
lation studies in Sections 3 and 5 suggest that our method based on the simple
Bayesian change-point model still performs well when the data are generated from
these more complicated Bayesian models. A heuristic explanation is that there
is not much information around the unknown change-points, where the Bayesian
model serves as a working model to smooth the data. On the other hand, the
constant parameter vector over a long segment between change-points can be
estimated well. Moreover, our empirical Bayes approach adjusts the hyperpa-
rameters of the Bayesian change-point model to the data and thereby accounts
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for the robustness of the working model. This also explains the results of Exam-
ple 2 in which the bootstrap test assuming a Bayesian normal mean shift model
for the alternative hypothesis is compared to the nonparametric CUSUM test.
Our test statistic can be viewed as a general type of the scan statistics consid-
ered in Chan and Lai (2003, 2006), to which functional central limit theorems
and moderate deviation approximations can be used to establish the “invariance
principle” that the yt can be treated as normal, similar to the arguments for
the CUSUM and other nonparametric test statistics for mean shifts (Csörgö and
Horvath (1998)).
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Appendix

Proof of Theorem 1. Let Ac denote the event {Ln ≥ c} and let θ0 denote the
common value of θ1 = · · · = θn under H0. In view of the asymptotic normality
of θ(µ̂), we can write

θ(µ̂) = θ0 +
zn√
n

, (A.1)

where zn has a limiting normal distribution with mean 0. By Lemma II.1.1 and
Theorem II.1.2 of Ibragimov and Has’minskii (1981)∣∣∣Pθ0+dn/

√
n(Ac)− Pθ0(Ac)

∣∣∣ =
∣∣∣Eθ0

{[∏n
i=1 fθ0+dn/

√
n(yi)

fθ0(yi)

]
− 1

}
IAc

∣∣∣ = O(n−1/2)

(A.2)
uniformly in dn ∈ D, for any compact subset D of Rd such that θ0 + n−1/2D ⊂
Θ0. Combining (A.2) with (A.1), and noting that the bootstrap test uses B

independent samples drawn from Pθ(bµ) to estimate Pθ(bµ)(Ac), we obtain the
desired conclusion.

To prove Theorems 2 and 3, we first prove the following lemmas, which
make the same assumptions as those in Theorem 2. The first three lemmas are
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used to analyze the weights pit, i ∈ Kt(p), in the forward BCMIX filter. A
similar analysis yields corresponding results for the weights qj,t, j ∈ K̃t(p), in
the backward BCMIX filter. Lemma 4 combines these results to provide the
asymptotic behavior of the weights β̃ijt in (4.4), which we use to prove Theorem
3.
Lemma 1. Let θµ = (∇ψ)−1(µ), I(µ) = θ′

µµ−ψ(θµ), h(µ) = det
(
∇2ψ(θµ)

)
,

where ∇2(ψ) denotes the Hessian matrix of second partial derivative ∂2ψ/∂θi∂θj.
Define Ȳi,j and πi,j for i ≤ j as in Section 2.1. Then as j − i → ∞,

π−1
i,j ∼ (2π)d/2e(a0+j−i+1)I(Ȳi,j){

(a0 + j − i + 1)dh(Ȳi,j)
}1/2

(A.3)

uniformly in Ȳi,j ∈ Γ, for every compact subset Γ of ∇ψ(Θ).

Proof. Note that

π−1
i,j =

∫
Θ

exp
{

(a0 + j − i + 1)
[
θ′Ȳi,j − ψ(θ)

]}
dθ. (A.4)

Moreover, I(µ) = maxθ

(
θ′µ−ψ(θ)

)
. Hence (A.3) is simply Laplace’s asymptotic

formula for the above integral.

The BCMIX weights pit, i ∈ Kt(p), are difficult to analyze directly because
they are defined recursively via (2.9) for which there is renormalization (from p∗it
to pit) at every stage t. We approximate them by a more tractable version in
Lemmas 2 and 3. To fix the ideas, first assume that M(p) − m(p) = 1, which is
tantamount to allowing one more change-point prior to t besides the most recent
possibilities t, . . . , t−m(p) + 1. Our approximation is similar to the AMOC (“at
most one change”) estimator of Chernoff and Zacks (1964, Sec. 6) and assumes
that at most one change can occur before the filter removes the “ancient” one of
the m(p)+ 1 components from the mixture. Denoting m(p) and M(p) simply by
m and M , we now describe the AMOC filter more precisely. First note that for
the Bayesian model in Section 2, for t − m + 1 ≤ i ≤ t,

P{Ij = 0 for 1 < j ≤ t|Yt} ∝ (1 − p)t−1 π0,0

π1,t
,

(A.5)
P{Ii = 1, Ij = 0 for 1 < j ≤ t and j 6= i|Yt} ∝ p(1 − p)t−2

π2
0,0

π1,i−1πi,t
.

Note that the sum of the above probabilities is P{t(n)
1 ≥ t − m + 1, t(n)

2 > t|Yt},
i.e., the posterior probability of at most one parameter change up to time t, which
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change can only occur at times t−m + 1, . . . , t. We can use the AMOC filter to
estimate t

(n)
1 by

τ1 = inf
{

t :
(1 − p)

π1,t
<

pπ0,0

(π1,t−mπt−m+1,t)

}
, (A.6)

and then repeat the same procedure, with Yt replaced by Yτ1,t, to estimate t
(n)
2

from {yt, t > τ1}. Proceeding inductively in this way yields the change-time
estimates τ1 < τ2 < . . . . In view of (A.5), the AMOC filter weights for t < τ1

are

pA
1,t =

1 − p

π1,tPA
t

, pA
i,t =

pπ0,0

π1,i−1πi,tPA
t

for t − m + 1 ≤ i ≤ t, (A.7)

where PA
t is the normalizing constant to make the m+1 weights in (A.7) add up

to 1. While keeping the most recent m indices as in BCMIX, (A.6) basically com-
pares P{Ij = 0 for 1 ≤ j ≤ t|Yt} with P{It−m = 1, Ij = 0 for 1 < j ≤ t and j 6=
t−m|Yt} and keeps the index with the larger posterior probability, analogous to
BCMIX. The AMOC filter weights for τi ≤ t < τi+1 are defined similarly, with
Yτi,t taking the place of Yt. The following lemma gives the asymptotic properties
of the AMOC filter.

Lemma 2. As n → ∞, P{max1≤i≤k |t
(n)
i − τi| ≤ m} → 1. Moreover, max

t<t
(n)
1

|pA
1,t − 1| P−→ 0 and max

τi<t<t
(n)
i+1

|pA
τi,t − 1| P−→ 0 for 1 ≤ i ≤ k + 1.

Proof. Let I(µ, γ) = (θµ−θγ)′µ−
(
ψ(θµ)−ψ(θγ)

)
denote the Kullback-Leibler

information number. We first show that as j → ∞ and t/j → ∞,

(a0 + t − j)I(Ȳ1,t−j) + (a0 + j)I(Ȳt−j+1,t) − (a0 + t)I(Ȳ1,t)

= j
{
I(Ȳt−j+1,t, Ȳ1,t−j) + O(

j

t
)
}
, (A.8)

in which the O(j/t) term is uniform over ||Ȳt−j+1,t|| + ||Ȳ1,t−j || ≤ B, for every
given B. To prove the asymptotic relation (A.8) for which the prior distri-
bution has a negligible effect, we drop a0 (by letting it approach 0) for nota-
tional simplicity so that Ȳ1,t becomes the sample mean, which can be written as{
(t − j)Ȳ1,t−j + jȲt−j+1,t

}/
t. Since ∇I(µ) = θµ, it follows that

I(Ȳ1,t) = I(Ȳ1,t−j) +
j

t

(
Ȳt−j+1,t − Ȳ1,t−j

)′
θY1,t−j + O

((j

t

)2
)

(A.9)

uniformly over ||Ȳt−j+1,t||+ ||Ȳ1,t−j || ≤ B. Putting I(µ) = µ′θµ − ψ(θµ), with
µ = Ȳ1,t−j and µ = Ȳt−j+1,t, into (A.9) yields (A.8).
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First consider t ≤ t
(n)
1 +2m. By applying the Law of Large Numbers together

with Lemma 1 and (A.8) to π1,t, π1,i−1, and πi,t for t−m + 1 ≤ i ≤ t, we obtain

that max
t<t

(n)
1

∣∣pA
1,t − 1| P−→ 0, P{τ1 ≤ t

(n)
1 } → 0 and

P{τ1 ≤ t
(n)
1 + m} → 1 as p → 0. (A.10)

In particular, to derive (A.10), first apply Lemma 1 to obtain

log(π−1
1,t−mπ−1

t−m+1,t) − log(π−1
1,t )

= (a0 + t − m)I(Ȳ1,t−m) + (a0 + m)I(Ȳt−m+1,t)

−(a0 + t)I(Ȳ1,t) − log
([(a0 + t − m)(a0 + m)

(a0 + t)
]d/2

)
+ OP (1). (A.11)

For t > t
(n)
1 , combining (A.11) with (A.8) yields

log(π−1
1,t−mπ−1

t−m+1,t) − log(π−1
1,t ) + log p

= m{I(Ȳt−m+1,t, Ȳ1,t−m) + O(
m

t
)} − log(

1
p
) + OP (log m). (A.12)

Recalling (C1) and (C2) and applying the Law of Large Numbers to (A.12), we
obtain that, for t ≥ t

(n)
1 + m,

log
( pπ1t

π1,t−mπt−m+1,t

)
= m

{
I(µ

t
(n)
1

, µ1)+oP (1)
}
− log

(1
p

)
+OP (log m). (A.13)

In view of (C2) and m ∼ | log p|1+ε, (A.13) shows that its left hand side becomes
infinite in probability as p → 0. Hence, in view of the definition (A.6) of τ1,
(A.10) follows.

Replacing Yt in the preceding argument by Yτ1,t then proves the correspond-
ing results for τ2 and max

τ1<t<t
(n)
2

|pA
τ1,t − 1|. Proceeding inductively in this way

then completes the proof.

Note that the AMOC filter weights (A.7) can be represented recursively
by using Kt = max{s ≤ t : It = 1}, as in (2.9) and (2.10) but with pA

it in
place of pit. The analog of the set Kt−1(p) for the AMOC filter is KA

t−1(p) =
{t − 1, . . . , t − (m ∨ τ(t)), τ(t)}, where τ(t) is the largest τj that is ≤ t − 1.
Thus, the main difference between AMOC and the more flexible BCMIX is that
AMOC allows one additional index τ(t) to be included in KA

t−1(p) besides the
most recent t− 1, . . . , t−m, while BCMIX allows M −m more previous indices
that need not be τ(t), thereby removing the “at most one change” requirement.
Whereas AMOC filter weights have the explicit formula (A.7), which plays an
important role in the proof of Lemma 2, the recursive representation (2.9)−(2.10)



566 TZE LEUNG LAI AND HAIPENG XING

of BCMIX does not have a similar explicit formula. On the other hand, in view
of (C1), (C2), and that p = O(1/n), “at most one change” dominates “more than
one change” in probability, and Lemma 2 and its proof can be used to prove the
following lemma for BCMIX, in which we also weaken the assumption M−m = 1
for AMOC to 1 ≤ M − m = O(1).

Lemma 3. As n → ∞,
max
t<t

(n)
1

|p1,t − 1| P−→ 0. (A.14)

Moreover, for 1 ≤ j ≤ k and 1 < η < 1 + ε,

max
t
(n)
j +| log p|η≤t<t

(n)
j+1

∣∣∣ ∑
i∈Kt(p), t

(n)
j ≤i≤t

(n)
j +M(p)

pi,t − 1
∣∣∣ P−→ 0. (A.15)

Proof. First note that (A.14) basically says that p1,t−1 behaves asymptotically
like pA

1,t−1 so that even though BCMIX allows M − m ≥ 1 (instead of M =
m + 1), the additional weights are negligible compared with p1,t−1. Since the
pi,t are defined recursively, (A.14) and (A.15) can be proved by induction on
t. Concerning (A.15) with j = 1, we can use an argument similar to that in
(A.11)-(A.13) to show that the weight p1,t is eliminated by time t

(n)
1 + | log p|η,

with probability approaching 1 as n → ∞. For t ≥ t
(n)
1 + | log p|η, the weight pA

τ1,t

in Lemma 2 is now replaced by the sum of weights pi,t in the set
{
i ∈ Kt(p) :

t
(n)
1 ≤ i ≤ t

(n)
1 + M(p)

}
. We can then modify the induction proof of (A.14) to

prove (A.15) with j = 1 for the range t
(n)
1 + m(p) ≤ t < t

(n)
2 , and then proceed

to j = 2, . . . , k.

For the backward BCMIX filter, a time-reversal argument establishes the
analogs of (A.14) and (A.15) for qi,t. In particular, the analog of (A.14) is

max
t>t

(n)
k

|qn,t − 1| P−→ 0. Combining these results on the forward and backward

BCMIX filter weights via (2.13) yields the following.

Lemma 4. Let 1 ≤ ν ≤ k and 1 < η < 1 + ε. Then as n → ∞,

max
t<t

(n)
1

∣∣∣ ∑
j∈eKt(p), t

(n)
1 −M(p)≤j≤t

(n)
1

β̃1jt − 1
∣∣∣ P−→ 0,

max
t>t

(n)
k

∣∣∣ ∑
i∈Kt(p), t

(n)
k ≤i≤t

(n)
k +M(p)

β̃int − 1
∣∣∣ P−→ 0,

max
t
(n)
ν +| log p|η≤t≤t

(n)
ν+1−| log p|η

∣∣∣ ∑
i∈Kt(p), j∈eKt(p), t

(n)
ν ≤i≤t

(n)
ν +M(p), t

(n)
ν+1−M(p)≤j≤t

(n)
ν+1

β̃ijt−1
∣∣∣

P−→ 0.
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Proof of Theorem 2. From large deviation bounds in the exponential family,
it follows that for 1 ≤ ν ≤ k,

max
t
(n)
ν ≤i≤t

(n)
ν +M(p), t

(n)
ν+1−M(p)≤j≤t

(n)
ν+1

||Ȳi,j − µ
t
(n)
ν

|| P−→ 0,

and that max
t
(n)
1 −M(p)≤j<t

(n)
1

||Ȳ1,j −µ1||
P−→ 0. Combining this with Lemma 4,

(C1) and (4.4) then yields the desired conclusion.

Proof of Theorem 3. Let δ
(n)
i = ||µ

t
(n)
i

− µ
t
(n)
i−1

|| and order them as δ
(n)
[1] ≥

δ
(n)
[2] ≥ · · · ≥ δ

(n)
[k] . This ordering induces a corresponding ordering t

(n)
[j] of the t

(n)
i ;

in case of ties with δ[j1] = · · · = δ[jl], we can choose an appropriate permutation

of [j1], . . . , [jl] to order the corresponding t
(n)
[j] . We next show that

max
1≤j≤k

∣∣∣τ̂j − t
(n)
[j]

∣∣∣
m(p)

P−→ 0. (A.16)

Recall that the τ̂j are defined by (4.8) which involves ∆t = ||µ̂t+b(p) − µ̂t−b(p)||2.
By (4.5) (which follows from Theorem 2), ∆t = ||µt+b(p) − µt−b(p)||2 + op(1), in

which the op(1) term is uniform in t ∈ {1, . . . , n} such that min1≤i≤k |t − t
(n)
i | ≥

| log p|η. Since I(µ) = θ′
µµ − ψ(θµ), we can write

Σ
bt(j),k−1

t=bt(j−1),k
log f

bθ
(j)(yt) =

(
t̂(j),k − t̂(j−1),k

)
I

( Σ
bt(j),k−1

t=bt(j−1),k
yt(

t̂(j),k − t̂(j−1),k

))
, (A.17)

Putting (A.17) into the right hand side of (4.9) that defines Λn(j), apply the
Law of Large Numbers to Λn(j) with j < k, and the Functional Central Limit
Theorem to Λn(j) with j ≥ k, to conclude from (A.16) and a variant of (A.8)
that k̂n

P−→ k.
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Birgé, L. and Massart, P. (2001). Gaussian model selection. J. European Math. Soc. 3, 203-268.

Broman, K. W. and Speed, T. P. (2002). A model selection approach for the identification of
quantitative trait loci in experiment crosses. J. Roy. Statist. Soc. Ser. B 64, 641-656.

Brown, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for testing the constancy of
regression relationships over time (with discussion). J. Roy. Statist. Soc. Ser. B 37, 149-
192.

Carlin, B. P., Gelfand, A. E. and Smith, A. F. M. (1992). Hierarchical Bayesian analysis of
changepoint problems. Appl. Statist. 41, 389-405.

Chan, H. P. and Lai, T. L. (2003). Saddlepoint approximations for Markov random walks and
nonlinear boundary crossing probabilities for Markov random walks. Ann. Appl. Probab.
13, 395-429.

Chan, H. P. and Lai, T. L. (2006). Maxima of asymptotically Gaussian random fields and mod-
erate deviation approximations to boundary crossing probabilities for sums of random
variables with multidimensional indices. Ann. Probab. 34, 80-121.

Chernoff, H. and Zacks, S. (1964). Estimating the current mean of a Normal distribution which
is subject to changes in time. Ann. Statist. 35, 999-1018.

Chib, S. (1998). Estimation and comparison of multiple change-point models. J. Econometrics
86, 221-241.

Chib, S., Nardari, F. and Shephard, N. (2002). Markov chain Monte Carlo methods for stochastic
volatility models. J. Econometrics 108, 281-316.
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