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Abstract: We study the problem of variance estimation for a domain total when

auxiliary value imputation, sometimes called cold-deck or substitution imputation,

has been used to fill in missing data. We consider two approaches to inference which

lead to different variance estimators. In the first approach, the validity of an impu-

tation model is required. Our proposed variance estimator is nevertheless robust to

misspecification of the second moment of the model. Under this approach, we show

the somewhat counter-intuitive result that the total variance of the imputed estima-

tor can be smaller than the sampling variance of the complete-data estimator. We

also show that the näıve variance estimator (i.e. the variance estimator obtained

by treating the imputed values as observed values) is a consistent estimator of the

total variance when the sampling fraction is negligible. In the second approach, the

validity of an imputation model is not required but response probabilities need to

be estimated. Our mean squared error estimator is obtained using robust estimates

of response probabilities and is thus only weakly dependent on modeling assump-

tions. We also show that both approaches lead to asymptotically equivalent total

mean squared errors provided that the imputation model underlying the imputed

estimator is correctly specified and the sampling fraction is negligible. Finally, we

propose a hybrid variance estimator that can be viewed as a compromise between

the two approaches. A simulation study illustrates the robustness of our proposed

variance (mean squared error) estimators.
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model, response probability, robust variance estimator, self-efficiency.

1. Introduction

Auxiliary Value (AV) imputation, sometimes called cold-deck imputation
(e.g., Shao (2000)) or substitution imputation (Chambers (2005)), is frequently
used in surveys to compensate for item nonresponse. For a given nonrespond-
ing unit i, AV imputation consists of replacing the missing value of a variable
of interest y using only reported values coming from other auxiliary variables
of this unit i. Therefore, a unit with a missing y-value is never imputed using
reported y-values of other units when AV imputation is used. A special case of
this imputation method is historical imputation, which is particularly useful in
repeated economic surveys for variables that tend to be stable over time (e.g.,
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number of employees). A version of historical imputation, sometimes called pre-
vious value or carry-forward imputation, consists of replacing the missing value
yi for a given unit i by the value reported on a previous cycle of the survey by the
same unit i and for the corresponding variable of interest. Another special case
of AV imputation occurs in Statistics Canada’s business surveys in the context of
the tax replacement program. In an ongoing effort to not only reduce respondent
burden and collection cost but also improve data quality, Statistics Canada has
been working to increase the use of administrative data in its survey programs.
The idea is to identify a group of units that will be surveyed and another group
of units for which tax data will be used. For the latter group, AV imputation
is currently used for its simplicity. That is, a missing value yi is replaced by
the value of a conceptually similar or identical variable available in a tax file for
unit i. Although AV imputation is widely used in practice, the literature on the
theoretical properties of this imputation method is quite limited. One notable
exception is Shao (2000). Our goal is not to advocate the blind use of AVI; it
is simply to study the properties of this method in greater depth because it is
widely used in practice.

In Section 2, we introduce notation, assumptions, and the imputed estimator
of a domain total under AV imputation. Two approaches to inference are con-
sidered: the Imputation Model (IM) approach, originally proposed by Särndal
(1992), and the Nonresponse Model (NM) approach. Variance estimation under
the IM approach is discussed in Section 3. This approach requires the validity
of an imputation model. Our proposed variance estimator is nevertheless robust
to misspecification of the second moment of the model. Under this approach,
we show the somewhat counter-intuitive result that the total variance of the im-
puted estimator can be smaller than the sampling variance of the complete-data
estimator. This can be explained by noting that the complete-data estimator,
although quite useful, is not self-efficient. Self-efficiency, a concept introduced
by Meng (1994), is not required for the validity of our method but is required
for the validity of multiple imputation (see also Kim et al. (2006)). The use of
multiple imputation may thus lead to a substantial overestimation of the total
variance in this context. We also show that the näıve variance estimator (i.e.,
the variance estimator obtained by treating the imputed values as observed val-
ues) is a consistent estimator of the total variance when the sampling fraction
is negligible. This result can be explained using the reverse approach of Fay
(1991) (see also Shao and Steel (1999)). Note that it is well known that the
näıve variance estimator may grossly underestimate the total variance for other
imputation methods, especially when the response rate is low. The validity of
the näıve variance estimator seems to be a property specific to AV imputation.

Mean Squared Error (MSE) estimation under the NM approach is discussed
in Section 4. In this approach, the validity of an imputation model is not re-
quired but response probabilities need to be estimated. Our MSE estimator is
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obtained using robust estimates of response probabilities and is thus only weakly
dependent on modeling assumptions, contrary to the variance estimator obtained
using the IM approach. In Section 5, it is shown that both approaches lead to
asymptotically equivalent total MSE provided that the imputation model un-
derlying the imputed estimator is correctly specified and the sampling fraction
is negligible. If both conditions are satisfied, the choice of one approach or the
other should thus be determined from the validity/invalidity of the imputation
model and perhaps personal tastes in the interpretation of confidence intervals,
variances and so on. The results of a simulation study are described in Section 6
to illustrate the robustness of our proposed variance (MSE) estimators. Finally,
Section 7 contains a discussion on alternative estimators to the AV imputed
estimator.

2. Notation and Assumptions

Let U be a finite population of size N . Our goal is to estimate the population
domain total, tdy =

∑
i∈U diyi, for a variable of interest y and a domain of interest

d, where di = 1 if unit i is in the domain of interest and di = 0 otherwise. We
select a random sample s of size n according to a probability sampling design
p(s). The complete-data estimator under consideration is the Horvitz-Thompson
(HT) estimator

t̂dy =
∑
i∈s

widiyi, (2.1)

where wi = 1/πi is the sampling weight of unit i and πi is its selection probability.
The Horvitz-Thompson estimator is design-unbiased, i.e., Ep(t̂dy) = tdy, where
the subscript p indicates that the expectation is evaluated with respect to the
sampling design. It is well known that a design-unbiased estimator of the variance
of t̂dy, VSAM = Vp(t̂dy), is

V̂SAM =
∑
i∈s

∑
j∈s

∆ij(diyi)(djyj), (2.2)

where ∆ij = (πij −πiπj)/πijπiπj and πij is the joint selection probability of units
i and j.

Let ri be the response indicator of unit i such that ri = 1 if unit i responds
to variable y and ri = 0 otherwise. We assume that variable d is not subject to
nonresponse. We now define the imputed estimator under AV imputation by

t̂Idy =
∑
i∈s

widiỹi, (2.3)

where ỹi = riyi+(1−ri)xi and xi is the imputed value used to replace the missing
value yi. We assume that the auxiliary variable x is available for all the sample
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units (respondents and nonrespondents). For instance, the following three forms
of AV imputation are often used in business surveys: xi = zi, xi = y′i or xi =
y′izi/z′i, where y′i is the value of variable y for unit i observed at a previous cycle
of the survey, z is an auxiliary variable observed at the current cycle or coming
from an administrative source, and z′ is the corresponding variable observed at
a previous cycle.

To study the properties of the imputed estimator (2.3), we use the standard
decomposition of the total error of t̂Idy (e.g., Särndal (1992));

t̂Idy − tdy = (t̂dy − tdy) + (t̂Idy − t̂dy). (2.4)

The first term on the right-hand side of (2.4), t̂dy − tdy, is called the sampling
error of t̂Idy whereas the second term, t̂Idy − t̂dy, is called the nonresponse error of
t̂Idy. Under AV imputation, the nonresponse error can be expressed as

t̂Idy − t̂dy = −
∑
i∈s

widi(1 − ri)(yi − xi). (2.5)

This expression is useful later when the bias and variance of the imputed estima-
tor (2.3) are evaluated. Next, we describe two approaches to inference that are
used to obtain variance/MSE estimators in Sections 3 and 4: the IM approach
and the NM approach.

2.1. The nonresponse model approach

In the NM approach, inference is made with respect to the joint distribution
induced by the sampling design and the nonresponse model. The nonresponse
model is a set of assumptions about the unknown distribution of the response
indicators Rs = {ri; i ∈ s}, often called the nonresponse mechanism. The proba-
bility that sample unit i responds is denoted by pi = P (ri = 1 | s,Xs,X∗

s), where
Xs = {xi; i ∈ s}, X∗

s = {x∗
i ; i ∈ s}, and x∗ is a (potential) vector of additional

auxiliary variables available for all sample units. The probability that both sam-
ple units i and j respond is denoted by pij = P (ri = 1, rj = 1 | s,Xs,X∗

s). Under
the assumption that sample units respond independently, we have pij = pipj ,
for i 6= j. Expectations and variances taken with respect to the nonresponse
model are denoted by the subscript q to distinguish them from expectations and
variances taken with respect to the sampling design, which are denoted by the
subscript p.

In this approach, we assume that, after conditioning on s, Xs and (poten-
tially) X∗

s, the nonresponse mechanism is independent of (or unconfounded with)
all other variables involved in the imputed estimator (2.3) as well as the joint se-
lection probabilities. In other words, this assumption means that the distribution
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of Rs does not depend on Ds = {di, i ∈ s}, Ys = {yi; i ∈ s}, Ws = {wi; i ∈ s}
and Πs = {πij ; i ∈ s, j ∈ s}, after conditioning on s, Xs and X∗

s. As a result,
except for the response indicators ri, all variables involved in the imputed esti-
mator (2.3), as well as the joint selection probabilities, can be treated as fixed
when taking expectations and variances with respect to the nonresponse model.

From (2.5) and the above model assumptions, it is straightforward to see
that the q-expectation of the nonresponse error is

Eq(t̂Idy − t̂dy | s) = −
∑
i∈s

Bwi, (2.6)

where Bwi = widi(1 − pi)(yi − xi). If we further assume that the response
probabilities pi do not depend on s, then the pq-expectation of the total error of
t̂Idy can be written as

Epq(t̂Idy − tdy) = −
∑
i∈U

Bi, (2.7)

where Bi = di(1 − pi)(yi − xi). Note that the right-hand sides of (2.6) and (2.7)
are not necessarily negligible, which implies that the imputed estimator t̂Idy is
not necessarily unbiased under the NM approach.

2.2. The imputation model approach

In the IM approach, inference is made with respect to the joint distribution
induced by the imputation model, the sampling design, and the nonresponse
model. The imputation model is a set of assumptions about the unknown dis-
tribution of YU = {yi; i ∈ U}. With AV imputation, the following model m is
quite natural:

m : yi = xi + εi, (2.8)

where εi is a random error term uncorrelated with xi such that Em(εi) = 0,
Em(εiεj) = 0, for i 6= j, Vm(εi) = Em(ε2

i ) = σ2
i , and σ2

i is some unknown function
of xi (and, potentially, x∗

i ). The subscript m indicates that expectations and
variances are evaluated with respect to model m. It is implicit in our notation
that every expectation or variance with respect to model m is conditional on
XU = {xi; i ∈ U} and X∗

U = {x∗
i ; i ∈ U}. In this approach, we assume that

the distribution of the model errors εU = {εi; i ∈ U} does not depend on s,
sr, DU = {di; i ∈ U}, WU = {wi; i ∈ U}, and ΠU = {πij ; i ∈ U, j ∈ U},
after conditioning on XU and X∗

U , where sr = {i : ri = 1, i ∈ s} is the set of
respondents to variable y. As a result, except for the variable of interest y, all
variables involved in the imputed estimator (2.3), as well as the joint selection
probabilities, can be treated as fixed when taking expectations and variances
with respect to the imputation model m.
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From (2.5) and the model assumptions, it is straightforward to see that
Em(t̂Idy − t̂dy | s, sr) = 0. As a result, we also have Empq(t̂Idy − tdy) = 0 so that the
imputed estimator t̂Idy is mpq-unbiased. We emphasize that this unbiasedness
property requires the validity of the imputation model (2.8), that is quite restric-
tive and may not always hold in practice. If model (2.8) cannot be validated
using available data, then regression models involving unknown parameters to
be estimated may offer a more flexible alternative. For instance, Shao (2000)
used ratio-type imputation models to obtain an MSE estimator. Nevertheless,
we assume that model (2.8) holds when using the IM approach since this assump-
tion leads to an mpq-unbiased imputed estimator and, thus, AV imputation is
naturally justified under this model. Note that the NM approach is robust in the
sense that it does not require the validity of model (2.8), or that of any other
imputation model, unlike the IM approach.

It is worth clarifying the main difference between the two approaches to
inference at this stage. In the NM approach, YU is treated as fixed and we
are interested in estimating the fixed finite population parameter tdy; this is a
standard estimation problem. In the IM approach, YU is considered as random.
As a result, tdy is random as it involves the population y-values. In the IM
approach, we are thus interested in predicting the unknown random variable tdy;
this is now a prediction problem rather than an estimation problem. Note that
we are not interested in estimating the model expectation of tdy, Em(tdy) =
tdx. This distinction between estimating a fixed finite population parameter and
predicting a random variable is analogous to the distinction between the design-
based approach to inference and the model-based approach to inference (e.g.,
Valliant, Dorfman and Royall (2000)) in the full response case.

3. Variance Estimation: The IM Approach

In this section, we apply the method proposed by Särndal (1992) to AV
imputation. Using the decomposition (2.4) and the fact that Em(t̂Idy − t̂dy |
s, sr) = 0, it is straightforward to show that the total variance of the imputed
estimator t̂Idy can be expressed as

Vmpq(t̂Idy − tdy) = Empq(t̂Idy − tdy)2 = V m
SAM + V m

NR + V m
MIX , (3.1)

where V m
SAM = Em{Vp(t̂dy)} = Em(VSAM ) is the (anticipated) sampling variance

of the complete-data estimator t̂dy, V m
NR = EpqVm(t̂Idy − t̂dy | s, sr) is the non-

response variance of the imputed estimator t̂Idy, and V m
MIX = 2EpqCovm(t̂Idy −

t̂dy, t̂dy − tdy | s, sr) is a mixed component. Estimation of V m
SAM is discussed in

Section 3.1 while estimation of V m
NR and V m

MIX is discussed in Section 3.2. Section
3.3 adds some remarks about the estimation of the total variance.
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3.1. Estimation of the sampling variance V m
SAM

Let V̂ORD be the naive variance estimator of t̂Idy, i.e., the variance estima-
tor obtained by treating the imputed values as observed values. The variance
estimator V̂ORD is thus obtained by replacing yi by ỹi in (2.2), which leads to

V̂ORD =
∑
i∈s

∑
j∈s

∆ij(diỹi)(dj ỹj). (3.2)

It is well known that V̂ORD usually underestimates V m
SAM for deterministic re-

gression imputation methods. We show below that this is also true for AV
imputation. To overcome this difficulty, Särndal (1992) proposed to estimate
VDIF = Em(V̂SAM − V̂ORD | s, sr) by an m-unbiased estimator V̂DIF , i.e.,
Em(V̂DIF | s, sr) = VDIF . Then it is straightforward to show that an mpq-
unbiased estimator of V m

SAM is given by V̂ m
SAM = V̂ORD + V̂DIF . For AV imputa-

tion, under (2.8), it is easily seen that

VDIF =
∑
i∈s

wi(wi − 1)di(1 − ri)σ2
i . (3.3)

Note that V̂ORD underestimates V m
SAM since VDIF in (3.3) is a nonnegative quan-

tity. An estimator V̂DIF can be simply obtained by estimating σ2
i in (3.3), for

i ∈ s − sr. In the literature, an m-unbiased estimator of σ2
i is typically ob-

tained by parametrically modeling σ2
i (e.g., by assuming that σ2

i = σ2 or that
σ2

i = σ2xi, where σ2 is an unknown model parameter to be estimated). Since
σ2

i may be difficult to model in practice, we prefer using an asymptotically m-
unbiased nonparametric estimator σ̂2

i of Em(ε2
i ) = σ2

i . This leads to an asymp-
totically mpq-unbiased estimator V̂ m

SAM = V̂ORD + V̂DIF of V m
SAM that does not

require one to specify the form of the unknown variance σ2
i . It is thus robust

to a misspecification of the second moment of the imputation model (2.8). In
the simulation study in Section 6, σ̂2

i for the nonrespondents is obtained using
smoothing splines (e.g., Wegman and Wright (1983)). In practice, it may also be
useful to estimate σ2

i separately within imputation classes defined on the basis
of x∗, if additional auxiliary variables are available.

3.2. Estimation of the nonresponse variance V m
NR and the mixed com-

ponent V m
MIX

An estimator V̂ m
NR of V m

NR = EpqVm(t̂Idy − t̂dy | s, sr) can be simply obtained
by estimating Vm(t̂Idy − t̂dy | s, sr). From (2.5), we have

Vm(t̂Idy − t̂dy | s, sr) =
∑
i∈s

w2
i di(1 − ri)σ2

i . (3.4)
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Then, V m
NR is estimated by replacing σ2

i in (3.4) by an estimator σ̂2
i as in Section

3.1.
Finally, we obtain an estimator V̂ m

MIX of V m
MIX = 2EpqCovm(t̂Idy − t̂dy, t̂dy −

tdy | s, sr) by estimating 2Covm(t̂Idy − t̂dy, t̂dy − tdy | s, sr). Again from (2.5), we
have

2Covm(t̂Idy − t̂dy, t̂dy − tdy | s, sr) = −2
∑
i∈s

wi(wi − 1)di(1 − ri)σ2
i . (3.5)

Similarly as above, V m
MIX is estimated by replacing σ2

i in (3.5) by an estimator
σ̂2

i . It is worth noting that, assuming σ̂2
i > 0 for all i ∈ s, V̂ m

MIX is always
negative and not negligible compared to V̂DIF and V̂ m

NR, even in the case of self-
weighting designs. This is in contrast to random hot-deck imputation (Brick,
Kalton, and Kim (2004)) and ratio imputation (Särndal (1992)), where V̂ m

MIX

may be negligible. Indeed, we have V̂ m
MIX = −2V̂DIF and

V̂ m
MIX = −2V̂ m

NR + 2
∑
i∈s

widi(1 − ri)σ̂2
i .

The last term of the right-hand side of the previous equation is negligible com-
pared to 2V̂ m

NR if the following three conditions are satisfied, as both n and N

increase:

Condition 1: σ2
i = O(1) for i ∈ U , and σ̂2

i = σ2
i + op(1), for i ∈ s,

Condition 2: wi = O(N/n) for i ∈ U , and

Condition 3: n/N = o(1).

Using the first two conditions, we have: V̂ m
MIX/2V̂ m

NR = −1 + Op(n/N). As a
result, V̂ m

MIX ≈ −2V̂ m
NR if Condition 3 also holds.

The fact that V̂ m
MIX is not negligible is a consequence of the self-inefficiency

(Meng (1994)) of the complete-data estimator t̂dy, as pointed out in Meng and
Romero (2003) and Kim et al. (2006). This apparent inefficiency can only be due
to a failure to use the information contained in model (2.8) in the construction
of the complete-data estimator. It does not imply that t̂dy is useless. In fact,
the estimator t̂dy is widely used in surveys as the prototype estimator (i.e., the
estimator that one would use in the complete response case). The sign and mag-
nitude of V̂ m

MIX also has the implication that a multiple imputation procedure
based on model (2.8), with the complete-data estimator t̂dy, may lead to a signif-
icantly biased multiple imputation variance estimator with resulting confidence
intervals that are too long. This is due to the fact that the multiple imputa-
tion variance estimator completely ignores the mixed component (see Kim et al.
(2006); Meng and Romero (2003); and Kott (1995)). The methods we discuss
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in this paper have the advantage over multiple imputation of being valid even
if the mixed component is not negligible and the complete-data estimator is not
self-efficient.

3.3. Estimation of the total variance

From (3.1)−(3.5), an estimator V̂ m
TOT of the total variance V m

TOT = Vmpq(t̂Idy−
tdy) is given by

V̂ m
TOT = V̂ORD + V̂DIF + V̂ m

NR + V̂ m
MIX

= V̂ORD +
∑
i∈s

widi(1 − ri)σ̂2
i . (3.6)

Under Conditions 1 and 2 as well as

Condition 4: V̂ORD = Op(N2/n),

it is straightforward to see that∑
i∈s widi(1 − ri)σ̂2

i

V̂ORD

= Op(
n

N
).

This implies that V̂ m
TOT /V̂ORD = 1 + Op(n/N). Hence, V̂ m

TOT ≈ V̂ORD and the
näıve variance estimator V̂ORD is consistent when Condition 3 also holds (and
provided that V̂ m

TOT is consistent for V m
TOT ). This also means that V̂ m

TOT may
be smaller than V̂ m

SAM in many instances, which is a consequence of the self-
efficiency issue noted in Section 3.2. It is interesting to note that the total
variance estimator (3.6) is not dependent on the validity of σ̂2

i as an estimator of
σ2

i if Conditions 1−4 hold, since V̂ m
TOT ≈ V̂ORD and V̂ORD does not involve σ̂2

i .
The validity of the individual components V m

SAM , V m
NR, and V m

MIX may however
be quite dependent on the validity of σ̂2

i . Moreover, the validity of (3.6) remains
model-dependent as the imputed estimator is biased if the first moment of model
(2.8) does not hold. In such a case, the total MSE becomes a quantity to estimate
that is more meaningful than the total variance.

The reverse approach (Fay (1991)) provides an alternative way of obtaining
a variance estimator under the imputation model (2.8). Using the variance de-
composition in Shao and Steel (1999), the variance estimator for V m

TOT is given
by V̂ m,R

TOT = v1 + v2, where v1 = V̂ORD and v2 =
∑

i∈s widi(1 − ri)σ̂2
i . It is in-

teresting to note that this approach leads to a variance estimator identical to
(3.6). Also, using this approach, the näıve variance estimator v1 = V̂ORD can
be interpreted as an estimator of the sampling variance of t̂Idy conditional on the
response indicators ri, for i ∈ U .
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4. MSE Estimation: The NM Approach

When the imputation model (2.8) is not fully satisfactory, it may be desirable
to use an alternative approach to variance estimation that is less dependent on
it. The NM approach offers such an alternative. It uses a mean squared error
decomposition similar to (3.1):

Epq(t̂Idy − tdy)2 = VSAM + VNR + VMIX , (4.1)

where VSAM = Vp(t̂dy) is the sampling variance of the complete-data estimator
t̂dy, VNR = Epq(t̂Idy − tdy)2 is the nonresponse variance of the imputed estimator
t̂Idy, and VMIX = 2Epq(t̂Idy − t̂dy)(t̂dy − tdy) is the mixed component. Estimation
of VSAM is discussed in Section 4.1, estimation of VNR is discussed in Section 4.2
while estimation of VMIX is discussed in Section 4.3.

4.1. Estimation of the sampling variance VSAM

The sampling variance estimator V̂SAM , given in (2.2), cannot be used di-
rectly since it depends on missing y-values. We thus use instead the sampling
variance estimator

V̂ ∗
SAM =

∑
i∈s

∑
j∈s

∆ij

p̂ij
(ridiyi)(rjdjyj), (4.2)

where p̂ij is an estimator of pij . We now state a result that is useful to express
more conveniently the estimator V̂ ∗

SAM under the assumption of independence of
the response indicators. Under this assumption, we have p̂ij = p̂ip̂j , for i 6= j,
where p̂i is an estimator of pi.

Result 1. Let p̂ij = p̂ip̂j , for i 6= j, p̂ii = p̂i and

V̂ ∗ =
∑
i∈s

∑
j∈s

∆ij

p̂ij
(riαi)(rjαj),

for some αi. Here V̂ ∗ is an estimator of Vp(
∑

i∈s wiαi) if the αi are fixed constants.
Then, αi being constants or not, V̂ ∗ can be written as

V̂ ∗ =
∑
i∈s

∑
j∈s

∆ij
(riαi)

p̂i

(rjαj)
p̂j

−
∑
i∈s

(1 − πi)
π2

i

(1 − p̂i)
p̂2

i

riα
2
i . (4.3)

The proof of Resut 1 is straightforward and is thus omitted. The variance esti-
mator V̂ ∗

SAM in (4.2) can be obtained using (4.3) with αi = diyi. The first term
on the right-hand side of (4.3) is easy to obtain using standard software packages
designed for the complete-data variance estimator (2.2). The second term can
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usually not be obtained using standard software packages, but is easy to compute
as it does not involve a double summation. Result 1 is also useful when dealing
with the mixed component in Section (4.3).

The estimates p̂i in (4.3) can be obtained by modeling the probabilities pi

as a function of x and (potentially) x∗. Like Da Silva and Opsomer (2004), we
prefer using a nonparametric nonresponse model in order to get rid of additional
assumptions. The advantage of a nonparametric approach over a parametric one
is that it is weakly dependent on modeling assumptions. In the simulation study
in Section 6, the p̂i are obtained using smoothing splines.

4.2. Estimation of the nonresponse variance VNR

To estimate unbiasedly the nonresponse variance VNR = Epq(t̂Idy − t̂dy)2, it
suffices to estimate unbiasedly the conditional nonresponse variance Eq{(t̂Idy −
t̂dy)2 | s}, which can be expressed using (2.6) as

Eq{(t̂Idy − t̂dy)2 | s} = Vq{(t̂Idy − t̂dy) | s} +
[
Eq{(t̂Idy − t̂dy) | s}

]2

=
∑
i∈s

w2
i pi(1 − pi)di(yi − xi)2 +

( ∑
i∈s

Bwi

)2
. (4.4)

An obvious estimator of (4.4) is

V̂NR =
∑
i∈s

w2
i (1 − p̂i)ridi(yi − xi)2 +

∑
i∈s

∑
j∈s

rirj

p̂ij
B̂wiB̂wj , (4.5)

where B̂wi = widi(1 − p̂i)(yi − xi). Assuming independence of the response
indicators so that p̂ij = p̂ip̂j , for i 6= j, it is straightforward to show, similarly as
in Result 1, that (4.5) reduces to

V̂NR =
∑
i∈s

w2
i (1 − p̂i)ridi(yi − xi)2 +

( ∑
i∈s

riB̂wi

p̂i

)2
−

∑
i∈s

(1 − p̂i)
p̂2

i

riB̂
2
wi. (4.6)

4.3. Estimation of the mixed component VMIX

The mixed component VMIX can be expressed as

VMIX = 2Epq(t̂Idy − t̂dy)(t̂dy − tdy) = −2Ep

{
(t̂dy − tdy)

∑
i∈s

Bwi

}
= −2Covp

(
t̂dy,

∑
i∈s

Bwi

)
= Vp

(
t̂dy −

∑
i∈s

Bwi

)
− Vp(t̂dy) − Vp

( ∑
i∈s

Bwi

)
= Vp

( ∑
i∈s

wiai

)
− Vp

( ∑
i∈s

wibi

)
− Vp

( ∑
i∈s

wici

)
, (4.7)
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where ai = diyi − Bwi/wi, bi = diyi, and ci = Bwi/wi. Assuming that the
response probabilities pi do not depend on s, each variance term in the last row
of (4.7) can be easily estimated as in Section 4.1 using Result 1. Indeed, note that
Vp(

∑
i∈s wibi) is actually the sampling variance VSAM . Therefore, if we replace αi

in (4.3) by ai, bi, and ci, we obtain an estimator of Vp(
∑

i∈s wiai), Vp(
∑

i∈s wibi)
and Vp(

∑
i∈s wici), respectively. It is then necessary to replace the unknown ai

and ci by their estimates âi = diyi − B̂wiwi and ĉi = B̂wi/wi, respectively, to
obtain the resulting estimator V̂ ∗

MIX of the mixed component.
Finally, following (4.1), an estimator of the total mean squared error VTOT =

Epq(t̂dy − tdy)2 is given simply by

V̂TOT = V̂ ∗
SAM + V̂NR + V̂ ∗

MIX . (4.8)

5. Link Between the IM and NM Approaches

In this section, we study the link between the IM and the NM approaches.
First, in Section 5.1, we show that the mean squared errors obtained under the
two approaches are asymptotically equal provided the imputation model (2.8)
holds and the sampling fraction becomes negligible as the population size N
grows. Then, in Section 5.2, we propose a hybrid variance estimator that can be
viewed as a compromise between the two approaches.

5.1. Asymptotic equality of the mean squared errors

In this section, we show, under mild regularity conditions, that the mean
square error of t̂Idy obtained under the NM approach is asymptotically equivalent
to that of t̂Idy obtained under the IM approach when the imputation model holds
and the sampling fraction goes to 0 as the population size increases. In practice,
this result is important because it confirms that, as long as the sampling fraction
is negligible and the population size is large, the use of the NM approach or the
IM approach leads to almost identical mean squared errors.

Result 2: Epq(t̂Idy − tdy)2/Empq(t̂Idy − tdy)2
p→1 as N → ∞ and n/N → 0.

The proof of Result 2 is given in the Appendix.

5.2. A hybrid variance estimator

In this section, we propose a hybrid variance estimator that can be viewed
as a compromise between the variance estimators obtained under the IM and the
NM approaches. Recall from Section 2.1 that the conditional nonresponse bias
of the imputed estimator t̂Idy under the NM approach is B = −

∑
i∈s Bwi. Since

B depends on unknown quantities, we propose to estimate it by

B̂ = −
∑
i∈s

ri

p̂i
B̂wi, (5.1)
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where B̂wi = widi(1 − p̂i)(yi − xi). The estimator B̂ is conditionally asymptot-
ically q-unbiased for B, provided p̂i is asymptotically q-unbiased for pi. If the
imputation model is valid, then we have Em(B̂ | s, sr) = 0. We propose to per-
form a test of hypothesis with H0 : Em(B̂ | s, sr) = 0 as the null hypothesis and
HA : ¬H0 as the alternative hypothesis. We use the test statistic

t =
B̂√

V̂m(B̂ | s, sr)
,

where V̂M (B̂ | s, sr) =
∑

i∈s w2
i ri[(1 − p̂i)2/p̂2

i ]diσ̂
2
i , and σ̂2

i is a (parametric or
non-parametric) estimator of σ2

i The hybrid variance estimator is then defined
as

V̂ HY B
TOT =

{
V̂ m

TOT if |t| ≤ zα/2,

V̂TOT otherwise,
(5.2)

where zα/2 is the value from the standard normal distribution for a given level
α. In other words, if |t| is large, then it is likely that the imputation model is
not valid, in which case we use the variance estimator derived under the NM
approach. On the other hand, if |t| is small, then it is likely that the imputation
model is valid, in which case we use the variance estimator derived under the IM
approach. Note that the validity of the test relies on the fact that the asymptotic
distribution of B̂ is normal. This assumption is often satisfied in practice. As we
discuss in Section 6, we can obtain V̂ m

TOT by using a parametric or a nonpara-
metric estimator of σ2

i . Similarly, we can obtain V̂TOT by using a parametric or
a nonparametric estimator of pi.

6. Simulation Study

We performed a simulation study to evaluate the accuracy of our proposed
robust variance/MSE estimators. In Section 6.1, the simulation experiment is
described and, in Section 6.2, results are given.

6.1. Description of the simulation study

We first generated a population U of 400 units with an auxiliary variable xi

drawn from an exponential distribution with mean 1, a domain variable di drawn
from a Bernoulli distribution with probability 0.5, and the variables y1i = xi +δi,
y2i = xi +

√
xiδi, and y3i = exp(0.5xi)+ δi, for i ∈ U , where δi follows a standard

normal distribution. In the case of the variables y1 and y2, note that the first
moment, Em(yki | xi) = xi for k = 1, 2, satisfies the first moment of the model
(2.8) underlying AV imputation. Also, note that for the variable y1, the variance
of the errors is constant, whereas it is function of x for the variable y2. The
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model used to generate the variable y3 is a significant departure from the model
(2.8).

From the generated population, we selected R = 10,000 random samples, of
size n = 50 and n = 200 according to simple random sampling without replace-
ment. Finally, for each selected sample, the response indicators ri were gener-
ated independently from a Bernoulli distribution with probability pi. Specifically,
non-response was missing at random based on the auxiliary variable xi with the
probability of response for unit i given by

pi = 0.1 + 0.9
[
1 + exp(−0.75 − λxi)

]−1
,

where λ was chosen so that the overall response probability is 0.5. Note that the
minimum response probability is 0.1. Missing values for the three variables of
interest were replaced by the values of variable x to obtain estimates of the three
population domain totals for a particular set of respondents.

For each sample and variable of interest, we considered four variance esti-
mators: the parametric imputation model estimator, the semi-parametric impu-
tation model estimator, the non-parametric estimator, and a hybrid estimator,
denoted V̂ m,PAR

TOT , V̂ m,SPAR
TOT , V̂ NPAR

TOT and V̂ HYB
TOT , respectively. The first two vari-

ance estimators are obtained under the IM approach using (3.6) while the third
variance estimator is obtained under the NM approach using (4.8). The hybrid
variance estimator is given by (5.2). Details of each estimator, as developed for
this simulation study, are discussed below.

Both V̂ m,PAR
TOT and V̂ m,SPAR

TOT require an estimator, σ̂2
i of the unknown model

variance σ2
i for the nonrespondents i ∈ s − sr. For V̂ m,PAR

TOT , the variance σ2
i is

assumed to be constant for all population units (σ2
i = σ2 , for i ∈ U) and is

estimated by an m-unbiased estimator

σ̂2
i = σ̂2 =

∑
j∈sr

(yi − xi)2

nr
,

where nr is the number of respondents. For V̂ m,SPAR
TOT , we first note that the

unknown model variance σ2
i can be expressed as σ2

i = Em(ε2
i | s, sr,Xs) = h(xi),

for some unknown function h(·). We propose to estimate it nonparametrically
by σ̂2

PLS,i using the respondents’ y-values and penalized least squares estimation,
as implemented in the procedure TPSPLINE of SAS (Sas Institute Inc. (1999)).
Estimation of the smoothing parameter is obtained by minimizing the gener-
alized cross validation function. For the nonrespondents, the estimates σ̂2

PLS,i

may occasionally be either very large or negative since their x-values may be
outside the range of x-values of the respondents. To obtain more stability in
the estimated model variances, the negative σ̂2

PLS,i, for i ∈ s, were winsorized
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to min{σ̂2
PLS,i : σ̂2

PLS,i > 0, i ∈ sr} while the largest σ̂2
PLS,i, for i ∈ s − sr, were

winsorized to max{σ̂2
PLS,i : i ∈ sr}.

The nonparametric estimator, V̂ NPAR
TOT , requires an estimator p̂i of pi =

Eq(ri = 1 | s,Xs) = g(xi), for some unknown function g(·), and an estima-
tor p̂ij of pij . Again, we used penalized least squares estimation, as implemented
in the procedure TPSPLINE of SAS, to obtain p̂i and the assumption of inde-
pendence of response indicators to obtain p̂ij = p̂ip̂j , for i 6= j. The estimated
p̂i could occasionally be outside the range [0, 1]. Thus, the estimated probabili-
ties resulting from the TPSPLINE procedure were winsorized as follows: initial
estimated probabilities larger than one were set equal to one. Those initial esti-
mated probabilities smaller than 10% of the observed sample response rate were
set equal to 10% of the observed sample response rate. Then the winsorized
weights, p̂−1

i were calibrated to yield final estimated response probabilities that
had their sum among the respondents equal to the sample size. With these final
estimated probabilities, the estimate V̂TOT as in (4.8) was calculated. Ultimately,
to obtain a more stable variance estimator, the nonparametric estimator V̂ NPAR

TOT

was obtained by taking the maximum of V̂TOT and the näıve variance estimator
of a domain total (i.e., V̂ NPAR

TOT = max(V̂TOT , V̂ORD)).
Finally, we calculated the hybrid variance estimator as

V̂ HY B
TOT =

{
V̂ m,SPAR

TOT if |t| ≤ zα/2,

V̂ NPAR
TOT otherwise.

In each simulated sample, we calculated four variance estimators. We took the
Monte Carlo average of an estimator θ̂ to be

EMC(θ̂) =
1
R

R∑
r=1

θ̂(r), (6.1)

where θ̂(r) denotes the estimator θ̂ in the rth simulated sample, r = 1, . . . , R. As
a measure of bias of a variance estimator V̂ , we used the Monte Carlo percent
relative bias given by

RBMC(V̂ ) = 100 ×
EMC(V̂ ) − VMC(t̂Idy)

VMC(t̂Idy)
, (6.2)

where EMC(V̂ ) is obtained from (6.1) by replacing θ̂ with V̂ and VMC(t̂Idy) =
EMC(t̂Idy − EMC(t̂Idy))

2, which is obtained from (6.1) by replacing θ̂ by (t̂Idy −
EMC(t̂Idy))

2. As a measure of stability of a variance estimator V̂ , we used the
Monte Carlo percent relative root mean square error (RRMSE) given by

RRMSEMC(V̂ ) = 100 ×
[EMC(V̂ − VMC(t̂Idy))

2]1/2

VMC(t̂Idy)
,
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where EMC(V̂ − VMC(t̂Idy))
2 is obtained from (6.1) by replacing θ̂ with (V̂ −

VMC(t̂Idy))
2.

Finally, we computed the Monte Carlo average of each variance component
(i.e., sampling variance, nonresponse variance, and the mixed term) in order to
investigate their respective contribution to the total variance. The Monte Carlo
sampling variance is V MC

SAM = EMC(t̂dy−tdy)2, obtained from (6.1) by replacing θ̂

by (t̂dy−tdy)2. The Monte Carlo nonresponse variance is V MC
NR = EMC(t̂Idy−t̂dy)2,

obtained from (6.1) by replacing θ̂ by (t̂Idy−t̂dy)2, Finally, the Monte Carlo average
of the mixed term was obtained as V MC

MIX = VMC(t̂Idy) − V MC
SAM − V MC

NR .

6.2. Results of the simulation study

Table 1 shows the Monte Carlo RB and Monte Carlo RRMSE in percentages
for n = 200. As expected, V̂ m,PAR

TOT and V̂ m,SPAR
TOT performed comparatively well

for the variable y1 in terms of RB since both the first and second moments of the
model are correctly specified. In terms of RRMSE, we note a slightly larger value
for V̂ m,SPAR

TOT , which demonstrates that nonparametric procedures entail a loss of
efficiency when the model is correctly specified. The variance estimator V̂ NPAR

TOT

was moderately biased with a value of RB approximately equal to 22%. It is
important to note that its RRMSE was considerably larger than that of V̂ m,PAR

TOT

or V̂ m,SPAR
TOT with a value approximately equal to 88%. This result suggests that,

when the imputation model is correctly specified, the variance estimators derived
under the NM approach are inefficient in comparison with those derived under
the IM approach. Finally, the hybrid variance estimator V̂ HY B

TOT is a compromise
between V̂ m,SPAR

TOT and V̂ NPAR
TOT , both in terms of RB and RRMSE. Note that

as the level α of the test decreased, the RB and RRMSE of V̂ HY B
TOT decreased.

This result can be explained by the fact that, as the level α decreases, the value
zα/2increases. As a result, it becomes increasingly more difficult to reject the
null hypothesis, in which case V̂ m,SPAR

TOT is used. Since the model for the variable
y1 satisfies the AV imputation model (2.8), we expect V̂ m,SPAR

TOT to be chosen in
most samples, resulting in small biases.

For the variable y2 it is clear that when the variance structure is not correctly
specified, the estimator V̂ m,PAR

TOT is biased, here with a value of RB approximately
equal to 18%. Using a nonparametric estimator of σ2

i helps in reducing the bias;
the value of RB of V̂ m,SPAR

TOT was about 7% so a good bias reduction was achieved.
Once again, the hybrid variance estimator is a compromise between V̂ m,SPAR

TOT and
V̂ NPAR

TOT , both in terms of RB and RRMSE.
For the variable y3 the variance estimators V̂ m,PAR

TOT and V̂ m,SPAR
TOT were con-

siderably biased with values of RB approximately equal to -78% and -84%, re-
spectively. This result is not surprising since the first moment of the model used
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Table 1. RB and RRMSE of variance estimators for a domain total using
10,000 samples each of size 200.

RB (%) RRMSE (%)
y1 y2 y3 y1 y2 y3

V̂ m,PAR
TOT 7.5 17.7 -78.1 16.3 27.3 78.7

V̂ m,SPAR
TOT 8.1 7.0 -83.7 16.8 21.7 83.9

V̂ NPAR
TOT 22.1 6.0 -9.4 87.7 35.5 46.8

V̂ HY B
TOT,zα/2=1.96 16.3 9.1 -11.5 61.9 29.0 48.8

V̂ HY B
TOT,zα/2=2.575 9.7 7.5 -21.0 34.5 24.5 54.8

to generate y3 is highly mis-specified. On the other hand, V̂ NPAR
TOT performed

well in terms of bias with a value approximately equal to -9%. This result shows
that, when the imputation model is incorrectly specified, the use of V̂ NPAR

TOT may
provide a reasonable solution. Again, the hybrid variance estimator leads to
compromise values. The RRMSE of the estimators V̂ m,PAR

TOT and V̂ m,SPAR
TOT were

large, which is mainly due to their large bias. The estimators V̂ NPAR
TOT and V̂ HY B

TOT

had similar values of RRMSE.
Table 2 shows the Monte Carlo RB and Monte Carlo RRMSE in percentages

for n = 50. For the variables y1 and y2, the estimators V̂ m,PAR
TOT and V̂ m,SPAR

TOT

performed well in terms of RB. This result can be explained in light of (3.6), which
shows that the relative contribution of the näıve variance estimator, V̂ORD to the
total variance is substantial when the sampling fraction is negligible and that this
component is not affected by the fact that the second moment of the imputation
model is correctly specified or not. It is interesting to note that this result still
holds with a sampling fraction equal to 12.5%, which can be explained by the fact
that the sampling fraction is relatively small and the imputation model has good
predictive power. As a result, we expect the value of σ̂2

i (estimated parametrically
or nonparametrically) to be small. The RB of V̂ NPAR

TOT was relatively small for
the variables y1 and y2 with values of 13.0% and 7.0%, respectively. Once again,
the hybrid estimator V̂ HY B

TOT leads to compromise values. For the variable y3 the
RB of V̂ m,PAR

TOT and V̂ m,SPAR
TOT was relatively large, which can be explained by

the misspecification of the imputation model, while the RB of V̂ NPAR
TOT remained

relatively small. It is worth noting that all variance estimators showed a similar
RRMSE for all three variables, with V̂ NPAR

TOT being slightly less efficient than the
other variance estimators.

The relative contribution of the variance components is shown in Tables 3
and 4 for sample sizes 200 and 50, respectively. As expected, the component
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Table 2. RB and RRMSE of variance estimators for a domain total using
10,000 samples each of size 50.

RB (%) RRMSE (%)
y1 y2 y3 y1 y2 y3

V̂ m,PAR
TOT 0.01 1.7 -43.0 40.7 52.9 70.2

V̂ m,SPAR
TOT 0.2 0.2 -46.8 40.6 52.5 70.6

V̂ NPAR
TOT 13.0 7.7 -10.3 59.5 59.2 76.9

V̂ HY B
TOT,zα/2=1.96 3.3 2.4 -22.9 47.6 55.7 76.7

V̂ HY B
TOT,zα/2=2.575 0.6 0.5 -38.7 41.8 52.9 72.7

Table 3. Contribution (in percentage) of variance components to the total
variance of a domain total for 10,000 samples of size 200.

V MC
SAM

V MC
TOT

(%)
V MC

NR

V MC
TOT

(%)
V MC

MIX

V MC
TOT

(%)

y1 108.4 35.6 -44.0
y2 109.0 24.7 -33.7
y3 17.1 90.1 -7.2

Table 4. Contribution (in percentage) of variance components to the total
variance of a domain total for 10,000 samples of size 50.

V MC
SAM

V MC
TOT

(%)
V MC

NR

V MC
TOT

(%)
V MC

MIX

V MC
TOT

(%)

y1 125.3 26.5 -51.8
y2 119.7 17.9 -37.6
y3 70.1 61.6 -31.7

V̂ m
MIX was negative in all scenarios. Also, its contribution to the overall total

was not negligible in most cases. For example, for variable y1 and n = 200
the relative contribution of V̂ m

MIX was -44%. For the variables y1 and y2 it is
interesting to note that the estimated sampling variance V̂ m

SAM was larger than
the total variance with a contribution larger than 100%.

7. Summary and Discussion

In this paper, we derived variance/MSE estimators under both the IM and
the NM approaches for AV imputation. When the imputation model is correctly
specified, the variance estimators derived under the IM approach, V̂ m,PAR

TOT (or
V̂ m,SPAR

TOT ), are asymptotically unbiased and very efficient, whereas the variance
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estimator derived under the NM approach, V̂ NPAR
TOT , is, in this case, somehow

inefficient. However, when the imputation model is incorrectly specified, the
variance estimators derived under the IM approach may be considerably biased
and the use of V̂ NPAR

TOT may provide a reasonable solution. We proposed an
hybrid variance estimator that can be viewed as a compromise between the NM
approach and the IM approach. The results from the simulation study suggest
that the hybrid variance estimator has promise.

In the case of the IM approach, we showed that AV imputation led to estima-
tors whose properties are not typical with respect to other imputation methods
such as deterministic regression imputation. The results can be summarized as
follows: (i) when the sampling fraction n/N is negligible, the näıve variance esti-
mator, V̂ORD provides a consistent estimator of the total variance; (ii) the mixed
component is always negative and its contribution to the total variance may be
considerable, and (iii) the estimated sampling variance may be larger than the
estimated total variance.

As was shown in Section 2.1, the imputed estimator t̂Idy is generally biased
under the NM approach; its conditional nonresponse bias, B, is given by (2.6).
An asymptotically pq-unbiased estimator of B, denoted by B̂ is given by (5.1).
Following Haziza and Rao (2006), we obtain a bias-adjusted estimator of the
domain total tdy by subtracting the estimated conditional nonresponse bias of
the imputed estimator t̂Idy, which leads to

t̂
I(a)
dy = t̂Idy − B̂

=
∑
i∈s

widixi +
∑
i∈s

wi

p̂i
ridi(yi − xi). (7.1)

The bias-adjusted estimator (7.1) is similar to a difference estimator in the con-
text of two-phase sampling. It is interesting to note that this bias-adjusted
estimator is asymptotically pq-unbiased and mpq-unbiased. Hence the estimator
t̂
I(a)
dy is valid under either the NM approach or the IM approach. Estimator (7.1)

does not have the form of an imputed estimator, like (2.3), so its implementation
may seem awkward for some users. To overcome this problem, calibrated impu-
tation (Beaumont (2005)) could be used. In this context, calibrated imputation
would consist of finding imputed values, for units k ∈ s − sr that are close to
the corresponding values of x, but that are also constrained to yield an imputed
estimator identical to (7.1) for specified domains.

Estimator (7.1) provides an alternative to the imputed estimator (2.3), which
is unbiased under the NM approach. It thus offers some protection against a
misspecification of the imputation model (2.8) since it remains asymptotically pq-
unbiased no matter the validity of the imputation model. An alternative imputed
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estimator that could achieve the same goal would be obtained by determining
an improved imputation model based on less restrictive assumptions, and to use
this model to construct the imputed values. For instance, a linear or nonlinear
regression imputed estimator could be considered. Evidently, robustness would
be achieved at the expense of reduced efficiency if the imputation model (2.8)
holds. This highlights the importance of careful modeling when determining an
imputed estimator.
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Appendix: Proof of Result 2

We assume the following regularity conditions as n and N grow arbitrarily
large.

C′1: max1≤i≤N wi = O(N/n).

C′2: Em(yδ
i ) = O(1), δ = 1, . . . , 4.

C′3: ∆̃ij = (πij − πiπj)/(πiπj) = O(1/n), i 6= j.

C′4: The response probability pi does not depend on s and satisfies K1 < pi for
some nonnegative constant K1.

By Chebychev’s Inequality, Result 2 is obtained by showing that

Vm[Epq(t̂Idy − tdy)2]

[Empq(t̂Idy − tdy)2]2
→ 0 as N → ∞ and

n

N
→ 0. (A.1)

To show (A.1), we show that

(i) Empq(t̂Idy − tdy)2 = O
(
N2/n

)
,

(ii) VmEpq(t̂Idy − tdy)2 = max
{

O
(
N3/n2

)
, O(N2)

}
.

To show (i), write Epq(t̂Idy − tdy)2 as

Epq(t̂Idy−tdy)2=Vp

( ∑
i∈s

widi(yi−Ei)
)
+

∑
i∈U

wi
pi

1−pi
diE

2
i +

( ∑
i∈U

diEi

)2

=
∑
i∈U

∑
j∈U

∆̃ijdidj(yi−Ei)(yj−Ej)+
∑
i∈U

wi
pi

1−pi
diE

2
i +

( ∑
i∈U

diEi

)2
,
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where Ei = (1 − pi)(yi − xi). Noting that

Em{(yi − Ei)(yj − Ej)} =

{
x2

i + p2
i σ

2
i if i = j,

xixj if i 6= j,

it follows that, under conditions C′1−C′4,

Empq(t̂Idy − tdy)2 =
∑
i∈U

∑
j∈U

∆̃ijdixidjxj +
∑
i∈U

(wi − 1)dip
2
i σ

2
i

+
∑
i∈U

widipi(1 − pi)σ2
i +

∑
i∈U

di(1 − pi)2σ2
i

= O
(N2

n

)
.

To show (ii), we express VmEpq(t̂Idy − tdy)2 as

VmEpq(t̂Idy − tdy)2

= Vm

[∑
i∈U

∑
j∈U

∆̃ijdidj(yi − Ei)(yj − Ej)
]

+Vm

[∑
i∈U

wi
pi

1 − pi
diE

2
i

]
+ Vm

[( ∑
i∈U

diEi

)2]
+2Covm

[∑
i∈U

∑
j∈U

∆̃ijdidj(yi − Ei)(yj − Ej),
∑
i∈U

wi
pi

1 − pi
diE

2
i

]

+2Covm

[∑
i∈U

∑
j∈U

∆̃ijdidj(yi − Ei)(yj − Ej),
( ∑

i∈U

diEi

)2]

+2Covm

[∑
i∈U

wi
pi

1 − pi
diE

2
i ,

( ∑
i∈U

diEi

)2]
. (A.2)

The first term of the right-hand side of (A.2) can be written as

Vm

[∑
i∈U

∑
j∈U

∆̃ijdidj(yi − Ei)(yj − Ej)
]

=
∑
i∈U

∑
j∈U

∑
k∈U

∑
l∈U

∆̃ij∆̃kldidjdkdlCovm{(yi−Ei)(yj−Ej), (yk−Ek)(yl−El)}.(A.3)

Under conditions C′1−C′4, it is somewhat tedious but straightforward to show
that the right-hand side of (A.3) is of order O(N3/n2). The second term on the
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right-hand side of (A.2) is also O(N3/n2). Next, the third term on the right
hand side of (A.2) can be written as

Vm

[( ∑
i∈U

diEi

)2]
=

∑
i∈U

∑
j∈U

∑
k∈U

∑
l∈U

didjdkdlCovm(EiEj , EkEl)

= 2
∑
i∈U

∑
j∈U
j 6=i

didjEm(E2
i )Em(E2

j ) +
∑
i∈U

diVm(E2
i )

= O(N2). (A.4)

Finally, for the three covariance terms in (A.2), we argue as follows. Let X1 and
X2 be two random variables and let ρX1,X2

denote the coefficient of correlation
between X1 and X2. Since |ρX1,X2

| ≤ 1, it follows that

|Cov(X1, X2)| ≤
√

V (X1)
√

V (X2) ≤ max{V (X1), V (X2)},

where V (X1) and V (X2) denote the variance of X1 and X2 respectively. There-
fore, Cov(X1, X2) is of order smaller than max{O(V (X1)), O(V (X2))}.

The three covariance terms in (A.2) are thus of order smaller than max
{O(N3/n2), O(N2)}. Therefore, we have VmEpq(t̂Idy − tdy)2 is max{O(N3/n2),
O(N2)}. Combining (i) and (ii), we have

VmEpq(t̂Idy − tdy)2

[Empq(t̂Idy − tdy)2]2
=

max{O(N3/n2), O(N2)}
O(N4/n2)

= max
{

O
( 1

N

)
, O

( n2

N2

)}
→ 0,

as N → ∞ and
n

N
→ 0.
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