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Abstract: Many microarray experiments have factorial designs, but there are few

statistical methods developed explicitly to handle the factorial analysis in these

experiments. We propose a bootstrap-based non-parametric ANOVA (NANOVA)

method and a gene classification algorithm to classify genes into different groups

according to the factor effects. The proposed method encompasses one-way and

two-way models, as well as balanced and unbalanced experimental designs. False

discovery rate (FDR) estimation is embedded in the procedure, and the method is

robust to outliers. The gene classification algorithm is based on a series of NANOVA

tests. The false discovery rate of each test is carefully controlled. Gene expression

pattern in each group is modeled by a different ANOVA structure. We demonstrate

the performance of NANOVA using simulated and microarray data.
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1. Introduction

Microarray technology is a powerful tool to monitor gene expression levels on
a genome scale. An important question in microarray experiments that has been
studied extensively is the identification of differentially expressed genes across two
or more biological conditions. Many statistical methods have been developed to
address this problem, for instance, Baldi and Long (2001), Efron et al. (2001),
Tusher, Tibshirani and Chu (2001), Dudoit et al. (2002), Newton et al. (2004).
Typically a summary statistic is constructed for each gene and genes are ranked
in order of their test statistics genes with test statistics above a chosen threshold
are called significant. Empirical Bayes method treats genes arising from different
populations (Efron et al. (2001)). A gene is called significant if its estimated
posterior odds of having differential expression is larger than a threshold. The
significant analysis of microarray (SAM) (Tusher, Tibshirani and Chu (2001))
employs a permutation approach to simulate the null distribution of the test
statistic and to estimate the false discovery rate (FDR). A threshold is then
chosen based on the estimated FDR.
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A microarray experiment, however, often has a factorial design and involves
several experimental factors. For example, in one experiment, a growth factor
(FGF) was withdrawn from two proliferating stem cell lines (neuron and glia) to
accelerate the differentiation process (Goff et al. (2007)). Gene expressions were
measured at different times after FGF was withdrawn. Investigators were inter-
ested in how genes in two cell lines responded to FGF withdrawal along time.
In this experiment, cell-line and time course can be treated as two factors. Most
current methods are not designed to handle such factorial experiments. There
have been a few studies proposing use of the analysis of variance (ANOVA) or its
modified versions in microarray data analysis (Pavlidis and Noble (2001); Gao
and Song (2005)). ANOVA is a classical method for factorial data analysis. It
decomposes data variation into variations accounted for by different factors, with
the contribution of each factor assessed by an -statistic. Applying ANOVA to
the stem cell experiment allows one to identify gene having cell-line effect or time
effect, as well as ‘interaction genes’. These genes are often of great interest to
biologists. In the above example, interaction genes are those having different
response patterns along the time course in different cell lines. However, direct
application of standard ANOVA to microarray data could be problematic. First,
the -test makes a normality assumption about the data distribution, often un-
tenable in microarray studies. Second, an appropriate cutoff based on computed
-statistics or p-values is difficult to choose; in multiple-testing problems, error
rate should be controlled based on FDR rather than p-values. Third, the pres-
ence of outliers in microarray data could affect statistical power, in which case
a robust statistical procedure may be required. To relax distributional assump-
tions, rank-based non-parametric ANOVA has been proposed (Friedman (1937);
Conover and Iman (1976); Gao and Song (2005)). Empirical p-values are com-
puted by permuting the data. It has been pointed out that the permutation
approach might not lead to the appropriate null distribution (Pan (2003); Gao
(2006)). When the microarray data contain a large proportion of non-null genes,
the permutation distribution is the mixture of the permutation distribution un-
der the null hypothesis and under the alternative hypothesis, which is not a good
approximation of true null distribution. Jung, Jhun, and Song (2007) proposed
an exact permutation test which permutes residuals of data instead of observed
data. Their method is restricted to balanced experimental designs. A care-
fully schemed subpartition procedure has also been proposed in non-parametric
ANOVA to simulate null distributions (Gao (2006)) but the procedure requires
at least four replicates in each biological condition and assumes symmetric noise
distribution.

Motivated by factorial microarray experiments and limitations of existing
ANOVA methods, we develop a non-parametric ANOVA method (NANOVA),
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which constructs null distributions by bootstrap re-sampling. FDR estimation
is naturally embedded into the procedure. NANOVA encompasses one-way and
two-way models, as well as balanced and unbalanced experimental designs. A
robust test is proposed to protect against outliers when enough replicates are
available. For two-way factorial experiments, we propose a gene classification
algorithm that classifies genes into different groups by how their expressions are
influenced by factors. The gene classification algorithm is based on a series of
NANOVA tests with the error rate of each test controlled by FDR.

The proposed method was applied to two microarray studies. In the first
study, we analyzed gene expression data from two human lymphoblastioid cell
lines growing in an unirradiated state or in an irradiated state, and compared
our method to the SAM method (Tusher, Tibshirani and Chu (2001) and a linear
model with moderated F-statistics (‘limma’) (Yang and Speed (2002); Diaz et al.
(2002); Smyth (2004)). The second microarray data were from six brain regions
in two mouse strains (Sandberg et al. (2000)). We analyzed the effects of strain
and brain region on the gene expression and compared with the results obtained
from the standard ANOVA method (Pavlidis and Noble (2001)).

2. Method

We first introduce some notation for two-way factorial experiments. Let
αi(i = 1, . . . , I) and βj(j = 1, . . . , J) denote the two factors of interest at level i

and j, respectively. Let yg,ijk be the expression of gene g under condition (αi, βj).
Here k(k = 1, . . . , nij) is a subscript for replicates. We model the gene expressions
as a response variable and factors as explanatory variables. In two-way factorial
experiments, gene expression can be summarized by one of the following ANOVA
models. For simplicity, subscript g is dropped.

Model (1): yijk = µ + αi + βj + γij + eijk, (2.1)

Model (2): yijk = µ + αi + βj + eijk, (2.2)

Model (3): yijk = µ + αi + eijk, (2.3)

Model (4): yijk = µ + βj + eijk, (2.4)

Model (5): yijk = µ + eijk. (2.5)

Model (1) is an interactive model, in which µ represents the baseline gene ex-
pression level and γij is the interaction term. Genes here are influenced by both
factors, and the effect of one factor is dependent on the level of the other factor.
Model (2) is an additive model in which genes are affected by both factors, but
factor effects are independent. Genes of models (3) and (4) have only the α or
β effect. Genes of model (5) are not influenced by either factor. We assume the
random error eijk is independent and identically distributed from a gene specific
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distribution. Constraints
∑

i αi = 0,
∑

j βj = 0, and
∑

i γij =
∑

j γij = 0 are
imposed for identifiability.

We classify genes into five groups (C1, C2, C3, C4, and C5), with each group
corresponding to one of the above models. The classification will be based on a
series of NANOVA tests.

2.1. NANOVA test

The proposed NANOVA method includes tests for one-way ANOVA, inter-
action, and main effects of two-way ANOVA. Details are given in the following
section.

(1) One-way NANOVA test
Here we treat (2.5) as the null hypothesis and test it against the alternatives

that the mean expression of the gene is not constant across all combinations of
the two factors. The null hypothesis yijk = µ + eijk implies gene expression
is not influenced by either factor. We choose as our test statistic the stan-
dard one way ANOVA F statistic F1 =

[∑I
i=1

∑J
j=1

∑nij

k=1(yij. − y...)2/(IJ −

1)
]/[∑I

i=1

∑J
j=1

∑nij

k=1(yijk − yij.)2/(N − IJ)
]
, where yij. = (1/nij)

∑nij

k=1 yijk,

y... = (1/N)
∑I

i=1

∑J
j=1

∑nij

k=1 yijk and N =
∑

i

∑
j nij . The dot. used as a sub-

script indicates that the summation is taken over the corresponding subscript
and an average is taken by dividing by the number of terms in the sum. The
numerator and denominator of F1 are estimations of between group variance and
within group variance. Under the normality assumption, the null distribution
of F1 is the F distribution with degrees of freedom (IJ − 1, NIJ). Instead of
replying on the normality assumption, we simulate the null distribution of F1 by
bootstrap re-sampling as follows.

1. Sample ε∗ijk(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , nij) with replacement from
εijk = yijk − yij..

2. Let y∗ijk = y... + ε∗ijk and compute null statistic F ∗
1 using the null data y∗ijk.

3. Repeat steps 1 and 2 a total of B times to get F
(1)∗

1 , . . . , F
(B)∗

1 .

In step 1, bootstrap re-sampling of ε∗ijk is used to simulate the random error
distribution. We estimate the random error by not assuming any specific model
form but utilizing the replicated microarray samples. In step 2, y∗ijk is generated
from the null model by adding the re-sampled residuals to the estimated mean
under the null model (2.5). Step 3 repeats the bootstrap B times to simulate
the null distribution of F1. NANOVA allows an unspecified random error distri-
bution, and constructs null data by adding the bootstrap re-sampled residuals
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to the null model. The same idea will be applied to interaction and main effect
tests.

(2) Interaction effect NANOVA test
The null hypothesis of no interaction effect is H0 : γij = 0(i = 1, . . . , I, j =

1, . . . , J) in model (1). For balanced experimental designs, interaction effect is
estimated by γ̂ij = yij.−yi..−y.j.+y.... The test statistic is F2 =

[∑
i

∑
j k(yij.−

yi.. − y.j. + y...)2/[(I − 1)(J − 1)]
]/[∑

i

∑
j

∑
k(yijk − yij.)2/[IJ(k − 1)]

]
, where

k is the number of replicates in each condition. The denominator F2 of is an
estimation of the random error variance; the numerator of F2 estimates the
sum of squares of the interaction effect. When experimental designs are un-
balanced, γij cannot be estimated as above. We use the idea of ‘un-weighted
cell mean’ (Searle, Casella, and Mcculloch (1992)) to estimate γij . Specifically,
if xij = yij. (cell mean), then γij is estimated by γ̂ij = xij − xi. − x.j − x.., where
xi. =

∑J
j=1 xij/J , x.j =

∑l
i=1 xij/I and x.. =

∑
i,j xij/IJ . The test statistic

for unbalanced experimental design is then F2 =
∑I

i=1

∑J
j=1(xij − xi. − x.j +

x..)2
/[ ∑I

i=1

∑J
j=1

∑nij

k=1(yijk −yij.)2/(N −IJ)
]
, and the null distribution of the

test statistic is simulated as follows.

1. Sample ε∗ijk(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , nij) with replacement from
εijk = yijk − yij..

2. Let y∗ijk = µ̂ + α̂i + β̂j + ε∗ijk where (µ̂, α̂i, β̂j) are the least square estimates
from the null model yijk = µ + αi + βj + ε∗ijk, and compute the null statistic
F ∗

2 by using the null data y∗ijk.

3. Repeat steps 1 and 2 a total of B times to get F
(1)∗

2 , . . . , F
(B)∗

2 .

(3) Main effect NANOVA test
The main effect αi is estimated by α̂i = yi.. − y... if the experimental de-

sign is balanced. For an unbalanced design, we use the ‘un-weighted cell mean’
to estimate αi. The estimate is α̂i = xi.. − x..., where xi.. and x... are de-
fined as above. The test statistic is defined as F3 =

[∑
i

∑
j k(yi.. − y...)2/(I −

1)
]/[∑

i

∑
j

∑
k(yijk − yij.)2/IJ(k − 1)

]
, or F3 =

∑
i(xi. − x..)2

/[ ∑I
i=1

∑J
j=1∑nij

k=1(yijk − yij.)2/(N − IJ)
]
, for balanced or unbalanced design, respectively.

The null distribution of is simulated as follows.

1. Sample ε∗ijk(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , nij) with replacement from
εijk = yijk − yij..
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2. Let y∗ijk = µ̂ + β̂j + ε∗ijk where (µ, β̂j) are the least square estimates from the
null model yijk = µ + βj + eijk, and compute F ∗

3 by using the null data y∗ijk.

3. Repeat steps 1 and 2 a total of B times to get F
(1)∗

3 , . . . , F
(B)∗

3 .

2.2. Robust NANOVA test

The standard ANOVA test is susceptible to poor performance in the pres-
ence of outliers. Since outliers are unavoidable in large microarray data sets,
we guard against them by using robust estimators for mean and variance es-
timations in test statistics. For example, in the one-way ANOVA test F1 =[∑I

i=1

∑J
j=1

∑nij

k=1(yij. − y..)2/(IJ − 1)
]/[∑I

i=1

∑J
j=1

∑nij

k=1(yijk − yij.)2/(N −

IJ)
]
, the mean estimator yij. and y... are replaced by trimmed means; the be-

tween variance estimator
∑I

i=1

∑J
j=1

∑nij

k=1(yij.−y...)2 is replaced by the trimmed
mean taken over (yij. − y...)2 = (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , nij) times
the number of items (

∑
i,j nij). A similar robust estimator is used for the within

variance estimation in the denominator of F1. The null distribution of the robust
statistic does not have an analytical form, but its empirical distribution is easily
obtained by the bootstrap re-sampling.

2.3. FDR estimation

In multiple testing problems it is important to control the false discovery
rate (FDR), defined as the expected proportion of false rejections among all
rejections (Benjamini and Hochberg (1995)). The proposed NANOVA procedure
provides a natural way for estimating FDR. Let Fg(g = 1, . . . , G) be the statistic
computed from the observed data, g is the gene index. The significance of Fg

is assessed against the null distribution generated by the bootstrap re-sampling.
At each bootstrap, we sample the array labels. The corresponding vector of
residuals {(yg,ijk − yg,ij.), g = 1, . . . , G} from the same array is kept intact. Such
bootstrap operation preserves correlations between genes. The empirical p-value
for gene g is computed by pg = #{F (j)∗

g ≥ Fg : j = 1, . . . , B}/B, where B is the
number of bootstraps. FDR can be estimated from empirical p-values. However,
when the number of bootstraps or permutations is limited by the sample size or
computation cost, the resulting p-values may be too granular to allow a sensible
FDR estimation. We propose the following alternative approach to estimate the
FDR.

1. Estimate a null distribution for each gene. In NANOVA, fit a Gamma dis-
tribution to the null statistics F

(1)∗
g , . . . , F

(B)∗
g for each gene g. The reason

to use the Gamma distribution is that it is flexible enough to capture most
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distributions with positive support. The parameters of the Gamma can be
robustly estimated by using a few quantile points (for example, the 10%, 25%,
50%, 75%, and 90% quantiles of F

(1)∗
g , . . . , F

(B)∗
g ). An alternative approach

is to use an iterative fitting procedure, i.e., fit a Gamma distribution, trim
off extreme data points (if any) and refit the rest of the data. The process is
repeated a few times. Denote the cumulative function of Gamma distribution
as Gg.

2. Transform test statistics and null statistics to z-scores by the transformation
zg = Φ−1(Gg(Fg)), where Φ(·) is the cumulative function of the standard
normal distribution.

3. Given a cut off d∗, genes with zg > d∗(g = 1, . . . , G) are called signif-
icant. The FDR is estimated as π̂0

∑B
j=1 V (j)/(BR), where R = #{g :

zg > d∗, g = 1, . . . , G} is the number of significant genes, and V (j) = #{g :
z
(j)∗
g > d∗, g = 1, . . . , G} is an estimate of the number of false rejections

using the jth bootstrapped data if all genes are null. Here π̂0 is an esti-
mate of the proportion of null genes. At jth bootstrap, let z∗j = maxg{z(j)∗

g }
be the maximum z

(j)∗
g over G genes. An overestimation for the number of

null genes is M(j) = #{g : zg ≤ z∗j }, and π̂0 is taken as the median of
M(j)/G(j = 1, . . . , B).

The FDR estimation procedure does not assume the same null distribution
for all genes, but instead transforms the significance measures of genes to the
same scale and makes them comparable across genes. Genes are ranked by zg.

2.4. Gene classification algorithm

Depending on how their expressions are influenced by factors, genes can be
classified into different groups (C1, C2, C3, C4, and C5). Each corresponds to an
ANOVA model: C1 is an interaction group, whose genes are affected by both
factors, and factor effects are dependant (Model (1)); C2 is an additive group,
and genes in C2 are affected by factors, but factor effects are independent (Model
(2)); genes in C3 or C4 have only α (Model (3)) or β effect (Model (4)); genes in
C5 are not affected by either factor (Model (5)). The classification is based on
a series of NANOVA tests, with the error rate of each test controlled for FDR.
The algorithm is as follows.

1. Identify genes whose expressions are affected by factor α or β by treating each
condition (αi, βj) as a group, and performing one-way NANOVA. Denote this
group of genes as S.

2. Within S, identify interaction genes by the interaction NANOVA test. The
resulting gene set is C1.
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3. Among the remaining genes (S − C1), use main effect NANOVA tests to
identify genes having α and β effect, respectively. Denote these two sets as
Sα and Sβ . Then C3 = Sα − (Sβ ∩ Sα) and C4 = Sβ − (Sβ ∩ Sα).

4. Genes in S − C1 − C3 − C4 are classified to C2.

5. The rest of genes are classified to C5.

3. Simulation Studies

3.1. Bootstrapped null distribution

The key part of NANOVA tests is the simulation of null distribution. To
test how well the bootstrapped null distributions approximate true nulls, we
simulated expressions of 1,000 genes in a two-way factorial experiment. Genes 1-
100 were generated from model (1), 101-200 from model (2), 201-300 from model
(3), and 301-400 from model (4). The remaining genes were from model (5). Each
factor had two levels, and there were 7 replicates under each condition (αi, βj).
Parameters (µ, αi, βj , γij) were seven independently drawn from uniform [−5, 5],
and subjected to the constraints

∑
i αi = 0,

∑
j βj = 0,

∑
i γij =

∑
j γij = 0. The

random error was generated from standard normal N(0, 1). We first constructed
null statistics for the one-way NANOVA test. The number of bootstraps was set
to B = 100. The Kolmogorov-Smirnov (KS) test was used to test the deviation
of the bootstrapped null distribution of each gene from the true null F (3, 24)
(the numbers in parenthesis are degrees of freedom of the F distribution). If the
bootstrapped nulls were consistent with the true null, the p-values that resulted
from the KS tests should follow the uniform distribution. We again applied the
KS test to see if these p-values were uniformly distributed; this nested-KS test
has been used by Leek and Storey (2007). After applying the nested-KS test, we
obtained a p-value of 0.25, indicating that the bootstrapped null distributions
were consistent with the true null. The tail of null distribution is important for
assessing statistical significance. The left panel of Figure 1 compares the tail
density of the bootstrapped nulls and the true null.

Next we tested whether the empirical p-values obtained from one-way
NANOVA were correct. The correct p-values corresponding to null genes should
be uniformly distributed between zero and one. The KS test on the empirical
p-values of the null genes (genes 401-1,000) (compared with the uniform distri-
bution) yielded a p-value of 0.29, indicating that the empirical p-values of the
null genes were uniformly distributed. The right panel of Figure 1 shows a Q-Q
plot of these empirical p-values versus the uniform distribution.

Similar comparisons were done on the interaction and main effect NANOVA
tests, and p-values of 0.22 and 0.87 were obtained from the nested-KS tests for
the interaction and main effect tests, respectively. Empirical p-values of the null
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Figure 1. Left panels: comparisons of bootstrapped null densities with theo-
retical null densities for one-way NANOVA, interaction NANOVA, and main
effect NANOVA. The theoretical nulls are F (3, 24), F (1, 24) and F (1, 24),
respectively. Dotted line: theoretical null density; solid line: simulated null
density. Right panels: Q-Q plots of empirical p-values of null genes versus
uniform [0,1] quantiles.

genes (genes 101-1000 for interaction effect; genes 301-1,000 for main effect α)
were uniformly distributed in (Figure 1) with the p-values of 0.35 and 0.22 from
the KS test.

3.2. Statistical power and FDR estimation

To test the ability of NANOVA to identify true positive genes, we simulated
three data sets. Each data set consisted of 1,000 genes, and was generated as
in Section 3.1. The three data sets had different error distributions: (1) normal
N(0, 1); (2) uniform [−3, 3]; (3) Cauchy. Genes were ranked by zg (Section 2.4).
Given a cut off d∗, genes with zg > d∗ were called significant. Proportions
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Figure 2. Statistical power and FDR estimation of one-way NANOVA and
robust one-way NANOVA. Left panels: true positive rate versus false positive
rate. Solid line: Gaussian noise N(0, 1); dashed line: uniform noise U [−3, 3];
dotted line: Cauchy noise. Right panels: estimated FDR versus true false
positive rate. Circle: Gaussian noise N(0, 1); square: uniform noise U [−3, 3];
triangle: Cauchy noise.

of identified true positives (power) versus proportions of false positives (ROC
curves) are shown in Figure 2, 3, and 4. All three tests showed good statistical
power for selecting true positive genes when the random error was normally or
uniformly distributed. However, in the Cauchy case, a large fraction of outlier
affected statistical power.

We also compared estimated FDR and true false positive rates with varied
cut-offs (Figure 2, 3, and 4). The estimated FDR was in a good agreement with
the true false positive rate in normal and uniform cases. In Cauchy case, the
outliers made the FDR estimation inaccurate.

3.3. Robust NANOVA test

Outliers commonly exist in microarray data. They could potentially degrade
statistical power and make FDR estimation inaccurate, as in the above simula-
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Figure 3. Statistical power and FDR estimation of interaction NANOVA
and robust interaction NANOVA. Left panels: true positive rate versus false
positive rate. Solid line: Gaussian noise N(0, 1); dashed line: uniform noise
U [−3, 3]; dotted line: Cauchy noise. Right panels: estimated FDR versus
true false positive rate. Circle: Gaussian noise N(0, 1); square: uniform
noise U [−3, 3]; triangle: Cauchy noise.

tions. When there are enough replicates, NANOVA procedure can be robustified
by using robust estimators for the mean and variance estimations in the test
statistic. We applied robust NANOVA tests on the data sets in 3.2 and com-
pared statistical power and FDR estimation. The trimmed mean that discards
20 percent data at both ends was used. As shown in Figure 2, 3, and 4, robust
NANOVA tests greatly improved statistical power when the data were noisy
(Cauchy case). FDR was also more accurately estimated by robust NANOVA.

4. Applications to Biological Data

4.1 Ionizing radiation data

To demonstrate the utility of the NANOVA method, we analyzed the mi-
croarray data measuring transcriptional response of lymphoblastoid cells to ion-
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Figure 4. Statistical power and FDR estimation of main effect NANOVA
and robust main effect NANOVA. Left panels: true positive rate versus false
positive rate. Solid line: Gaussian noise N(0, 1); dashed line: uniform noise
U [−3, 3]; dotted line: Cauchy noise. Right panels: estimated FDR versus
true false positive rate. Circle: Gaussian noise N(0, 1); square: uniform
noise U [−3, 3]; triangle: Cauchy noise.

izing radiation (IR) (Tusher, Tibshirani and Chu (2001), data were downloaded
from http://www-stat.stanford.edu/~tibs/SAM/). The experiments were per-
formed for two wild-type human lymphoblastioid cell lines (1 and 2) growing in
an unirradiated state (U) or in an irradiated state (I). There are two replicates
in each condition (A and B). The data set consists of expressions of 7,129 genes
in eight samples (U1A, U1B, I1A, I1B, U2A, U2B, I2A and I2B). To assess the
biological effect of IR, SAM used a restricted permutation approach which bal-
anced the two cell lines to avoid confounding effects from differences between the
cell lines. To achieve the same goal, we treated the cell lines and IR states as
two factors and applied NANOVA main effect test to identify genes responding
to IR. Another approach is to fit a linear model Yg = Xθg + ε for each gene g,
where Yg is a vector of expressions from the eight samples, X is the design ma-
trix, θg is a vector of parameters of interest, and ε is the error. The elements of

http://www-stat.stanford.edu/~tibs/SAM/
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Table 1. A comparison of the number of genes called significant as found by
a NANOVA test, a SAM test, and a moderated F test from a linear model
(limma). IR responsive genes were identified under different FDR cut-offs.

FDR cutoff NANOVA SAM limma
0.05 206 36 29
0.1 236 69 55
0.2 311 118 136

θg = (m, c, r1, r2)′ represent intercept, cell line effect, IR effect in cell line 1, and
IR effect in cell line 2, respectively. Genes responding to IR in either cell line can
be identified by computing a moderated F-statistic derived from the linear model
(Yang and Speed (2002); Diaz et al. (2002); Smyth (2004)). We used ‘limma’
software for the computation (Smyth (2004)). Limma controls FDR by adjusting
p-values using the Benjamini and Hochberg (BH) method. The significance re-
sults are displayed in Table 1. It can be seen that the NANOVA method offers a
sizeable increase in statistical power over SAM or limma. The restricted permu-
tation in SAM analysis failed to identify genes responding to IR in one cell line
but not the other (Figure 5) and has limited power in analyzing factorial data.
The linear model is able to handle factorial designs, but the moderated F-statistic
derived from normal theory may result in an incorrect p-value when microarray
data are not normally distributed. Limma does not offer a sensible FDR control
mechanism; its use of conservative ‘BH’ approach may lose statistical power in
discovering significant genes.

To confirm the improvement of statistical power of NANOVA over SAM or
limma, we simulated expression profiles of 1,000 genes based on the IR data. We
fitted a two-way ANOVA model for every gene in the IR data and chose 200 genes
with significant IR effect (p-value< 0.05) but no cell line effect (p-value> 0.2), as
well as 800 genes without significant IR effect (p-value> 0.8). Let yijk denote the
expression of a gene in the IR data, and i, j and k indicate cell line, IR state, and
replicates, respectively. Let εijk = yijk −yij.. We simulated random error of gene
expression by ε∗ijk, where ε∗ijk is a permutation of εijk. For the first 200 genes, we
estimated the IR effect by y.j.−y... and simulated their expression by y∗ijk = y...+
(y.j.−y...)+ε∗ijk. For the remaining 800 genes, the simulated expressions were set
to y∗ijk = y...+(yi..−y...)+ε∗ijk. Thus we generated a data set with the error distri-
bution close to that of the microarray data. The first 200 genes were known to be
IR responsive and we compared the performance of NANOVA, SAM, and limma
to identify them. We also computed the false positive rate (FPR) and true pos-
itive rate (TPR), defined as: FPR = {#false rejected genes}/{#rejected genes}
and TPR = {#correctly rejected genes}/{#true positive genes}. Table 2 shows
the significant results under different FDR cutoffs. Although the simulation set-
ting was in favor of SAM, NANOVA still outperformed it in terms of statistical
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Figure 5. Hierarchical clustering of genes identified as IR responsive by SAM
(top left), moderated F-statistic (top right) and NANOVA main effect test
(bottom) using FDR< 0.1 as the cutoff.

power. Limma had the least power on this data set. Instead of the BH adjustment
limma uses, a less conservative approach for FDR control is to use the q-value
method (Storey and Tibshirani (2003)). A FDR cutoff was chosen based on the
computed q-values. As can be seen from Table 2, the q-value method offered a
slight improvement over BH adjustment, but still excluded many true positive
genes. This suggests the p-values computed by limma may not be correct, as the
data were not normal.

4.2. Mouse brain data

We applied the proposed method to analyze gene expression data of six brain
regions (amygdala, cerebellum, cortex, entorhinal cortex, hippocampus and mid-
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Table 2. A comparison of the number of genes called significant as found
by a NANOVA test, a SAM test, and a limma test with BH and q-value
adjustment. Shown is the number of IR responsive genes identified under
different FDR cut-offs, as well as false positive rate and true positive rates.

FDR cutoff NANOVA SAM Limma (BH) Limma (q-value)
(FPR/TPR) (FPR/TPR) (FPR/TPR) (FPR/TPR)

0.01 131(0.00/0.655) 97(0.00/0.485) 12(0.00/0.060) 14(0.00/0.070)
0.05 161(0.00/0.805) 135(0.02/0.665) 49(0.00/0.245) 57(0.00/0.285)
0.1 186(0.03/0.910) 157(0.04/0.755) 74(0.00/0.310) 85(0.00/0.425)
0.2 216(0.09/0.990) 188(0.10/0.850) 128(0.00/0.640) 143(0.02/0.700)

brain) in two mouse strains (C57BL/6 and 129SvEv) (Sandberg et al. (2000)).
Data were obtained from Pavlidis and Noble (2001). Gene expression profiles
were measured by using oligonucleotide arrays (Mu11KsubA and Mu11KsubB).
The dataset consists of duplicate measurements of 13,067 probe sets, providing
a rich source to study the genetic causes responsible for neurophysiological dif-
ferences in two mouse strains. Factors of interest are strains and brain regions.
It is of interest to identify strain specific and region specific genes.

We applied the gene classification algorithm to the dataset (log2 trans-
formed). FDR was controlled at 0.05 for the NANOVA tests. Probe sets were
classified into five groups according to the factor effects. As a result, C1, C2, C3

and C4 have 126, 167, 31, and 742 probe sets respectively. Figure 6 shows the
expression pattern of two representative probe sets from gene set C1 and C2. Fig-
ures 7 and 8 are heat maps of C3 and 134 probe sets of C4 (filtered by coefficient
of variation> 0.2) generated by dChip (Li and Wong (2001)).

C1 probe sets exhibit interaction effects and potentially contribute to neu-
robehavioral difference of mouse strains. One example is gene Cks2, which was
highly expressed in midbrain of C57BL/6 mice but not in other brain regions,
or in 129SvEv mice. Protein encoded by Cks2 binds to the catalytic subunit of
the cyclin dependent kinases and is essential for their biological function. Probe
sets in C2 were influenced by both factors, but factor effects were independent.
Expressions over six brain regions were parallel for two mouse strains, but their
values had a vertical shift. Gas5 gene from C2 is known to harbor mutations in
129SvEv strains that alter mRNA stability (Sandberg et al. (2000)). This stabil-
ity difference is likely to account for the two fold decrease in mRNA abundance
in 129SvEv compared with C57BL/6. Since it was in C2, all six brain regions
were uniformly affected by the mutation. C2 genes could cause neurobehavioral
difference in strains by influencing the gene expression levels. Expressions of C3

probe sets varied between strains but not over brain regions. As shown in Fig-
ure 7, these 31 gene expressions were uniformly highly or lowly expressed in one
strain, and had an opposite pattern in the other strain. Hnrpc and Txnl4 are
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Figure 6. Expression patterns of two probe sets from C1 (upper panel) and
C2 (lower panel). Each point represents an averaged log2-expression value
over replicates. Solid lines: 129SvEv mice; dotted lines: C57BL/6 mice.
X-axis: 1: amygdala; 2: cerebellum; 3: cortex; 4: entorhinal cortex; 5:
hippocampus; 6: midbrain. � �� � �� � �� � �� � ��� �� � ��� �� � �� � �� � �� � �� � �� 	 �� � �� 	 �� � �
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Figure 7. Heat map of C3. Array labels: A for 129SvEv, B for C57BL/6; 1
and 2 are two replicates. Ag : amygdala; Cb: cerebellum; Cx: cortex; Ec:
entorhinal cortex; Hp: hippocampus; Mb: midbrain.

genes involved in mRNA metabolic process. C4 genes were brain region specific,
but equivalently expressed in both strains. The heat map reveals cerebellum as
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the most distinct among the six brain regions. A large proportion of genes were
up or down regulated in the cerebellum but not in other regions. Pcp2, a known
cerebellar specific gene (Sandberg et al. (2000)) had about a three-fold increased
expression in the cerebellum compared with other regions. We did functional
enrichment analysis on gene set using the web tool built by Dennis et al. (2003)
(http://david.abcc.ncifcrf.gov/). The most significant functional groups
(Category: GOTERM BP 5) include neurite morphogenesis (27 genes, p-value:
1.7E-9), neuron development (31 genes, p-value: 2.8E-9), neuron differentiation
(35 genes, p-value: 4.6E-9), cellular morphogenesis during differentiation (27
genes, p-value: 2.2E-8), and neurogenesis (38 genes, p-value: 2.4E-8).

In the analysis of Sandberg et al. (2000), they identified 24 probe sets show-
ing expression variation between strains and about 240 probe sets differentially
expressed over brain regions. They used an ad hoc approach of ‘fold change’ and
‘absent/present’ calls for gene selection, which was rather insensitive to detect
significant genes. In a more elaborate analysis, Pavlidis and Noble (2001) ap-
plied standard two-way ANOVA to the same data set. They tested interaction
effect as well as main effects (strains and brain regions). Under the cutoff of
p-value< 10−5 , they identified 65 strain specific probe sets, approximately 600
region specific probe sets and 1 probe set with interaction effect. The choice of
p-value< 10−5 is arbitrary and may be too conservative to include many inter-
esting genes. Our analysis yielded 324 strain dependant probe sets (probe sets
from C1, C2 and C3) that included all 24 probe sets identified by Sandberg et al.
and 65 probe sets identified by Pavlidis and Noble (2001).

5. Discussion

We have proposed a bootstrap-based non-parametric ANOVA (NANOVA)
method and a gene classification algorithm for the analysis of factorial microarray
data. We have used simulation and data sets to demonstrate the utility of our
method. There have been a number of non-parametric methods for microarray
data analysis in the literature. Most of them are restricted to two-sample or
multi-sample comparisons. When the experiment involves multiple factors, these
methods are less powerful than NANOVA. In the IR example, in order to identify
IR responsive genes, SAM uses restricted permutation which sacrifices statistical
power comparing with explicitly dealing with the multiple factors. More impor-
tantly, NANOVA allows the identification of genes with interaction effects, which
are often of great interest to biologists. A major innovation of NANOVA is in
the estimation of null distributions based on the bootstrap. The random error
is estimated by utilizing replicated microarray samples and is free of model as-
sumptions. The permutation approach estimates the null distribution by treating
all samples equally and does not use the information provided by the replicated

http://david.abcc.ncifcrf.gov/
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Figure 8. Heat map of 134 filtered probe sets of C4. Array labels: A for
129SvEv, B for C57BL/6; 1 and 2 are two replicates. Ag : amygdale;Cb:
cerebellum; Cx: cortex; Ec: entorhinal cortex; Hp: hippocampus; Mb: mid-
brain.

samples. As a consequence, the bootstrap approach better estimates the null
distribution in the presence of a large proportion of non-null genes compared
to the permutation approach. NANOVA offers a sensible FDR control which
proves power in multiple testing than other methods such as standard ANOVA
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or limma. The gene classification nicely summarizes effects of multiple factors
in a rather complicated experimental design, as demonstrated in the analysis of
mouse data.
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