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Abstract: This paper presents a new sampling-based methodology designed to fa-

cilitate the visual analysis of the confidence sets generated by an inference function

such as the likelihood. This methodology generates a sample of parameters from a

confidence distribution. This distribution is designed so that its probabilities on the

parameter space are equal to the asymptotic coverage probabilities of the targeted

confidence sets. Plotting these samples provides a picture of the inference function

surface around the point estimator optimizing the inference function. Once the

sample is created, one can also picture the profile inference function confidence sets

for various functions of the parameters, all without further numerical optimization.

The result is similar to a Bayesian analysis based on samples from the posterior.

One distinction is that we can target the samples to obtain a clearer picture of

the confidence set boundary. We illustrate the methodology with four different

inference functions.

Although this methodology is related to Fisher’s concept of fiducial inference,

the fiducial-like confidence distribution we create here is chosen for its ability to

recover the confidence sets generated by the inference function and for its ease in

computation, nothing more. Unlike resampling methods such as the parametric

bootstrap, our method uses only the original data set, as in Bayesian inference. We

use illustrative examples to compare our sampling-based confidence sets with those

based on numerical optimization, and to compare the confidence regions generated

by different inference functions.

Key words and phrases: Confidence distribution, confidence set, empirical likeli-

hood, likelihood ratio statistic, quadratic inference function, score statistic, wald

statistic.

1. Introduction

Inference functions, such as the likelihood, are widely used throughout statis-
tics. They have the virtue of providing, in a single package, methods for point
estimation, testing hypotheses, and constructing confidence sets. A major chal-
lenge with the application of these methods to data is the display of the confi-
dence sets that they generate, as the boundaries of these sets require numerical
optimization. In order to visualize the targeted confidence sets for a set of param-
eters of interest, standard methodology would require a numerical optimization
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for each parameter. In this paper we provide a unified method for describing
these confidence sets. It is based on a simulation that samples points on the
boundaries of the relevant sets. The resulting data set can be used to describe
every confidence set of interest without further numerical optimization.

We first describe what we mean by an inference function. It is a function
H(θ;y) of data y and parameter θ with the following four properties.

1. A point estimator θ̂ can be constructed by minimizing H(θ;y).

2. A test of H0 : θ = θ0 can be constructed using a test statistic T1 = H(θ0;y)−
H(θ̂;y). We assume the limiting distribution of T1 does not depend on θ0.
This test can then be inverted to form confidence sets.

3. Let θ̂
∗
0 = arg minθ {H(θ;y) : g(θ) = ν0}. A test statistic for the composite

null hypothesis H0 : g(θ) = ν0 can be constructed using T2 = H(θ̂
∗
0;y) −

H(θ̂;y). We assume that the limiting distribution of T2 does not depend
on the true value of θ in the null hypothesis. One can then invert this
test to form confidence sets for g(θ). The function H∗(ν;y) = H(θ̂

∗
0;y) =

min {H(θ;y) : g(θ) = ν} is viewed as a function of ν and called the profile in-
ference function for g(θ). Inversion of these tests yields the profile confidence
sets for g(θ).

4. Asymptotic critical values are available for T1 and T2 with adjustments to
these values for small sample sizes.

There are four commonly used inference functions in statistics that satisfy the
four properties mentioned above namely, the likelihood function, the score test
statistic (Rao (1948)), the quadratic inference function (Qu (1998); Lindsay and
Qu (2003)), and the empirical likelihood (Owen (1988); Qin and Lawless (1994)).
We briefly review these four inference functions and their asymptotic properties
including asymptotic confidence regions in Section 2.

We are often interested in visualizing the profile confidence sets generated
by H(θ;y) when multiple functions of θ, ν = g(θ), are of central interest. Find-
ing the confidence sets for such parameters can be computationally demanding
because this requires repeated computation of T2 = H(θ̂

∗
0;y)−H(θ̂;y) over dif-

ferent constraint sets g(θ) = ν, with ν varying throughout its range. In other
cases we might be interested in describing the geometric features of the entire
high-dimensional confidence set, as we demonstrate in a complex mixture exam-
ple in Section 4.

One might compare these numerical challenges with the simplicity of a
Bayesian data analysis in which one uses the samples for the parameters gen-
erated from Markov Chain Monte Carlo algorithm to visualize various marginal
features of the full posterior density with respect to parameters of interest. In
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this paper we create a similar sampling-based mechanism for exploring the in-
ference function confidence sets. Just as in the Bayesian method, we need to be
concerned about having an adequate density of sampling so that confidence limits
are well described. Note, however, that our method uses independent sampling,
so that we need not be concerned with burn-in or convergence.

There exists an alternative method for confidence construction that is sam-
pling-based, the parametric bootstrap (Efron and Tibshirani (1993); Davison
and Hinkley (1997); Hall (1992)). In this method, one would repeatedly simulate
data from the fitted model, calculate the estimates for each replicate, and then
use these samples to construct confidence sets. Beran (1988) compared rates of
convergence of the coverage probabilities for parametric bootstrap confidence sets
and asymptotic confidence sets, and showed that parametric bootstrap improved
asymptotic coverage for given inference function as described above.

A number of authors have discussed the theoretical drawbacks of the boot-
strap method as compared to confidence sets based on likelihood; see Owen (2001,
p.5) and Lang (2008, p.5976). Even from the computational viewpoint, there are
some drawbacks. First, the recomputation of parameter estimators from new
data sets can be quite expensive in computing time. Secondly, there is no nat-
ural way to generate samples for the parameters describing the boundaries of
the targeted confidence sets and so there is an inherent sparsity problem, as we
demonstrate in Section 4.1.

We emphasize that the purpose of our methodology is to help users visu-
alize the standard confidence sets that are generated by their particular choice
of inference function. There are no new confidence procedures here, just an al-
ternative way to represent standard ones. The advantage of our method is that
with a single simulation, one can create profile confidence sets over a wide range
of parameters of interest without any further optimization, and can do boundary
sampling designed to describe clearer boundaries of the confidence sets. Further-
more, unlike resampling methods such as bootstrap method, our method uses
only the original data set.

There are two major computational costs for our method. One is the one-
time calculation of a parameter covariance matrix and its inverse. The other is
that our simulation requires repeated one-dimensional root finding.

This paper is organized as follows. In Section 2 we describe our basic sam-
pling paradigm that converts coverage probabilities into the sampling probabili-
ties of a confidence distribution. In Section 3 we create two ways to sample from
the confidence distribution, independence sampling and boundary sampling, and
discuss them in terms of the coverage probability and computation.

In Section 4 we evaluate the performance of our method by using four in-
ference functions in three different examples. We note that the development of
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our visualization method was motivated by a difficult problem of mixture model
analysis that is described in the third example. In Section 5 we carry out a
small simulation study to exhibit the coverage properties of our sampling-based
methodology for a nonlinear function of the parameters.

2. Basic Idea of Sampling Based Visualization

In this section we briefly review the properties of the four inference functions:
the likelihood, score statistic, the quadratic inference function and the empirical
likelihood. We also review how one constructs asymptotic (profile) confidence
regions based on a given inference function, and then explain a basic idea of our
sampling methodology.

2.1. Four inference functions and asymptotic confidence regions

The most used inference function is the log-likelihood of θ : for given each
independent data Yi with a density in the parametric family {pi(y | θ), θ ∈
Ωθ ⊂ Rp},

`(θ) =
n∑

i=1

`i(θ) =
n∑

i=1

log pi(y | θ). (2.1)

Under regularity −2`(θ) then satisfies our description of an inference function.
One can employ the score test statistic (Rao (1948)), RS(θ), as an inference

function because it is asymptotically equivalent to the likelihood ratio statistic :

RS(θ) = U(θ)′I(θ)−1U(θ), (2.2)

where U(θ) is the vector of first-order derivatives of `(θ) and I(θ) is the Fisher
information. The use of the observed empirical information in Rao’s score test
can help repair problems caused by model misspecification(Boos (1992)).

The likelihood ratio test statistic, the score test statistic, and the Wald
test statistic are asymptotically pivotal and have the same limiting chi-squared
distribution for a wide class of parametric models : for given θ̂ maximizing `(θ),

LR(θ̂, θ0) = 2
(
`(θ̂) − `(θ0)

)
D→ χ2

p, (2.3)

RS(θ0) = U(θ0)′I(θ0)−1U(θ0)
D→ χ2

p, (2.4)

WD(θ̂, θ0) = (θ̂ − θ0)′I(θ̂)(θ̂ − θ0)
D→ χ2

p, (2.5)

where θ0 is the true value of θ and χ2
p is the chi-squared distribution with p

degrees of freedom. For multidimensional parameters, it is easy to visualize the
corresponding confidence sets only for the Wald statistic. However, the other two
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statistics have some theoretical and conceptual advantages, including the fact
that they are invariant to reparametrization. As will be seen, our visualization
method is based on taking the elliptical confidence sets generated by the Wald
method and adjusting their shape for the change in the inference function.

Alternatively, if one specifies a set of mean-zero estimating functions defining
a semiparametric model, for statistical inference one might use the quadratic
inference function (Qu (1998); Lindsay and Qu (2003)), referred to as the QIF,
and the empirical likelihood (Owen (1988); Qin and Lawless (1994)) of θ: for
given a q-dimensional vector of estimating functions b(Yi,θ) with p ≤ q, one
can construct the QIF and the empirical likelihood of θ,

Q(θ) = nb̄′
θĈ

−1
θ b̄θ, (2.6)

LEL(θ) = sup

{
LEL(p) =

n∏
i=1

pi :
n∑

i=1

pi = 1,

n∑
i=1

pib(Yi, θ) = 0

}
. (2.7)

Here b̄θ = n−1
∑n

i=1 b(Yi,θ) and Ĉθ is a suitable estimator of the covariance
matrix V arτ (b̄θ). Note the τ in V ar indicates that the true distribution τ is
used to evaluate the variance. The QIF at (2.6) and the empirical likelihood at
(2.7) can be used as inference functions in both parametric and semiparametric
models.

In fact, the QIF and the empirical likelihood are invariant to reparametriza-
tion, and also asymptotically pivotal under the null hypothesis with a limiting
chi-squared distribution (Owen (1988); Qin and Lawless (1994); Lindsay and Qu
(2003)): for `EL(θ) = log LEL(θ),

Q(θ0) − Q(θ̂) D→ χ2
p, (2.8)

2
(
`EL(θ̂) − `EL(θ0)

)
D→ χ2

p. (2.9)

To apply our method, we also need a Wald statistic corresponding to the
tests in (2.8) and (2.9). The estimators θ̂ that optimize Q(θ) and LEL(θ) have
the asymptotic property

√
n

(
θ̂ − θ0

)
D→ Np

(
0, (D′(θ0)Σ−1

θ0
D(θ0))−1

)
, (2.10)

where D(θ) = Eθ [∂b(X;θ)/∂θ], Σθ = Eθ [b(X; θ)b(X; θ)′], and Np(a,A) is the
p-variate normal distribution with mean vector a and covariance matrix A.

When the inference function H(θ;y) is −2`(θ), RS(θ), Q(θ), and −2`EL(θ),
the 100(1 − α)% confidence sets generated by H(θ;y) − H(θ̂;y) have the form

CH,1−α ≡
{

θ | H(θ;y) − H(θ̂;y) ≤ cp,1−α

}
, (2.11)
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where cp,1−α is the α upper quantile of the asymptotic distribution of H(θ;y)−
H(θ̂;y).

2.2. Asymptotic confidence distribution

Our next goal is to create an asymptotic confidence distribution PCD on θ

for given inference function H(θ;y), by which we mean that the parameter space
probability PCD(θ ∈ CH,1−α | y) matches the asymptotic sample space probabil-
ity Pθ(θ ∈ CH,1−α) = 1−α for every α. To consider the Wald confidence set, for
example, a simple construction for the confidence distribution is to let the param-
eter have the distribution θ̃W ∼ Np(θ̂, I(θ̂)−1). We call this the Wald confidence
distribution. An additional goal for our construction is to make the confidence
distribution easy to sample from, just like the Wald confidence distribution.

Given PCD, one can generate a sample {θ̃1, . . . , θ̃B} of θ from it, and use
empirical plots of these samples to visualize features of the confidence sets. One
automatically knows the theoretical proportion of points lying in the 90% confi-
dence set is 90%, and they are recognizable by having H(θ;y) − H(θ̂;y) larger
than the asymptotic critical value. In addition, if one is interested in picturing a
profile confidence set for g(θ), all one needs to do is to plot g(θ̃1), . . . , g(θ̃B) in
a suitable way, using the adjusted critical value that corresponds to the degrees
of freedom of the parameter ν = g(θ).

While our method creates a parameter sample for the whole confidence set,
we think it has greatest application when one has a considerable number of
parameters of interest in one’s investigation, and would like the confidence sets
generated for each of these parameters while treating the remaining parameters
as nuisance parameters.

The idea of creating a distribution on the parameter space that generates
confidence sets is also the underpinning of Fisher’s concept of fiducial inference
(Fisher (1930)). The main goal of fiducial inference there was to find a distri-
bution on the parameters(called a fiducial distribution of the parameters) which
contained, ideally, all the information in the observed data about the parameters,
so that one could have objective probability statements about the parameters on
the basis of observed data, without any prior distribution.

We are proceeding rather differently. Instead of starting with a fiducial distri-
bution, we start with a chosen inference function and its asymptotic confidence
sets, and then create an asymptotic confidence distribution that will recreate
those sets. In particular, for multidimensional parameters, there is an infinitude
of such parameter space distributions. We choose one based on convenience of
sampling and the fact that we want the boundaries of profile regions to be as
clear as possible.
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In passing we note that there have been several recent papers related to the
idea of Fisher’s fiducial inference. Their emphasis has been on the construction
of approximate confidence sets called generalized confidence intervals, based on
generalized pivotal quantities, or fiducial generalized confidence intervals, based
on fiducial generalized pivotal quantities (Weerahandi (1993); Hannig, Lyer, and
Patterson (2006)).

3. Implementation

In this section we create a confidence distribution on the parameter space,
then describe two sampling methods. We also discuss the coverage properties
and computation.

3.1. The confidence distribution based on Wald statistic rays

The algorithm for generating a single observation from this confidence dis-
tribution is as follows.

Algorithm for the Wald ray-based confidence distribution
Suppose one has already found the parameter estimator θ̂ minimizing H(θ;y)

and the covariance estimator Vθ̂. Suppose one also defines the Wald statistic ray
generated by a vector z ∈ Rp to be θ(ε) = θ̂ + εVθ̂

1/2z where ε ∈ R+.

Step 1. Generate a vector z from N(0, Ip) and find α(z) = P (χ2
p ≥ z′z).

Step 2. Find ε̃ = ε̃(z) such that H(θ(ε̃);y) - H(θ̂;y) = z
′
z, where θ(ε) is the

Wald statistic ray defined above. Let θ̃(z) = θ(ε̃) be the simulated value
generated by z.

Note that θ̃(z) in Step 2 is a point from θ̂ in direction z that belongs to
the 100(1 − α(z))% confidence set generated by H(θ;y) − H(θ̂;y) in the whole
parameter space (if we were to allow ε to be negative, there would typically be
two solutions ε̃, one positive and one negative, but for now we consider only the
positive one).

We use the expression ‘independent sampling ’ to refer to repeated sampling
from the algorithm for the Wald ray-based confidence distribution. To ensure the
validity of this algorithm, we assume that H(θ(ε);y) is continuous and strictly
increasing in ε. In this case ε̃ is uniquely determined for every z. This assumption
implies that the confidence sets are star-shaped. This means that every point
in the confidence set can be reached by a ray from θ̂ that stays entirely in
the confidence set. We examine this assumption later. Note that for the Wald
statistic ε̃ = 1, so we are in effect assessing the deviation of the inference function
region from the Wald region along the ray. The choice of Vθ estimator in the
Wald ray is discussed in Section 3.4.
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Note that the independent sampling does not recreate the Wald confidence
region, nor even depend on it very much. The main purpose of the Wald-type
construction is to ensure that we are sampling the boundaries of our targeted
confidence regions in a manner consistent with the limiting distribution. We
note that there are many possible ways to construct a confidence distribution.
The method described here is designed so that the generation of sample values
is quite straightforward, requiring only the solution of a simple one-dimensional
optimization in Step 2.

The next theorem says that the distribution generated by the algorithm
matches the asymptotic coverage probabilities for the confidence sets, and so is
a true confidence distribution.

Theorem 3.1. Given the observed data y and the parameter θ ∈ Rp in an
assumed statistical model, suppose that H(θ;y) is an inference function with the
four properties as in Section 1. Assume further that H(θ(ε);y) is monotone
increasing in ε for all z. Let θ̃(z) be generated from the confidence distribution.
Then the following hold.

(i) P [θ̃(Z) ∈ CH(y)] = 1 − α, where y is treated as fixed and Z is treated as
random.

(ii) If ν = g(θ) ∈ Rr is a linear function of θ, then P [ν̃(Z) ∈ PCH(y)] = 1 − α

for θ̃(z) ∈ {θ | H(θ;y) − H(θ̂;y) ≤ χ2
r,1−α} and ν̃(z) = g(θ̃(z)), where

χ2
r,1−α is the α upper quantile of χ2

r.

Proof. (i) We can find the probability that θ̃(z) lies in the set CH(y) = {θ :
H(θ;y) − H(θ̂;y) ≤ χ2

p,1−α} by calculating this probability conditional on the
direction z/||z||. The independence of this direction from ||z|| implies that con-
ditionally, given this direction, ||z||2 is chi-squared distributed with p degrees of
freedom. We can then calculate P

[
θ̃(z) ∈ CH(y)

∣∣z/||z||] = P
[
χ2

p ≤ χ2
p,1−α

]
=

1 − α. Note that this calculation does not depend on the direction; also recall
that θ̃(z) was constructed so that H(θ(ε̃);y) − H(θ̂;y) = z

′
z.

ii) Let g(θ) = A′θ be an r × 1 linear combination of θ, where A is a p × r

constant matrix, r ≤ p, and ∂g(θ)/∂θ = A. If we want to find the inferred
distribution for g(θ) under the Wald confidence distribution, we can find it from
θ̃W = θ̂ + V

1/2

θ̂
z:

g̃W (θ) ≡ g(θ̃W ) = A′θ̃W = g(θ̂) + A′V
1/2

θ̂
z = g(θ̂) +

(
A′Vθ̂A

)1/2 z?,

where A′Vθ̂A is the asymptotic covariance of g(θ̂) and z? ∼ N(0, Ir). Hence the
Wald confidence distribution gives the correct profile coverage probabilities to
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all linear combinations of θ. It follows that for other confidence distributions,
adjusting the length of the rays is also an asymptotically size-correct method for
all linear combinations of θ (this follows because the rays are themselves linear
combinations of the parameters).

The coverage properties of the marginal confidence distribution of a gen-
eral nonlinear function of θ, g(θ), are more complex. However, we do know
through the delta method that appropriate coverage properties for smooth non-
linear functions g(θ) can be generated by linearization. Since linear functions of
θ have appropriate coverage by the Theorem 3.1, this property holds approxi-
mately for smooth nonlinear functions. We might compare this situation with
sampling from a Bayesian posterior; in that case, a marginal sample of g(θ)-
values is indeed a sample from the correct marginal posterior, and so no appeal
to asymptotics is needed.

3.2. A boundary sampling method

One advantage of confidence sampling over posterior sampling is that we
know the critical values corresponding to described confidence set boundaries,
both for the full confidence set and for the parameters of interest. Moreover,
there is a nice geometric relationship between the full confidence set and the
profile confidence sets: the parameter value g(θ) = ν is in the profile confidence
set at a given critical value c1−α if and only if there exists one or more θ in the
full confidence set based on c1−α that satisfy g(θ) = ν. Hence one can use one
simulation for the full parameter confidence set generated by the appropriate
c1−α in order to determine the confidence set for any and all g(θ).

It is important to our method that we sample θ with enough dispersion and
density that we can recover the shape of the profile function near the critical
values. The density of sampling is sufficient if there are enough sampled θ points
near the curve in θ-space defined by the profile estimators θ̂

∗
ν . This ensures that

a plot of (ν(θ̃), H(θ̃;y)) reveals the shape of the profile function H(θ̂
∗
ν ;y) at the

right critical values (see the example in Section 4.2).
We recommend the following modification of independent sampling from

the confidence distribution to sharpen the boundaries of the confidence sets. We
independently sample z-values as before, but now for each ray z/||z|| we calculate
in a deterministic fashion the θ-values found along the ray θ̂ + εVθ̂

1/2z that
correspond to the confidence boundary points at a fixed grid of interesting α’s.
That is, for each generated z, obtain θ(ε̃1) for α1, θ(ε̃2) for α2, etc. Moreover,
we now calculate the boundary points along the opposite direction of the ray, so
that we obtain two θ’s for each α.

In this method one is sampling the directions z/||z|| uniformly on the sphere,
but the lengths ||z|| are no longer random. We call this methodology ‘boundary
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Figure 1. Geometric concept of the boundary sampling from the confidence
distribution.

sampling ’ from the confidence distribution. In this case, the collection of θ-points
corresponding to a single α each lie on the boundary of a targeted confidence set.
They correspond to points uniformly chosen on the sphere ||z|| = 1. However, the
fraction of points found above a particular critical value will no longer correspond
to a confidence probability.

Figure 1 graphically illustrates how the boundary sampling method works for
obtaining simulated values of a two dimensional θ = (θ1, θ2) where there are two
target levels of α, α1 and α2. The confidence sets are denoted by H1 and H2, with
α1 > α2. Given a generated z ∼ N(0, I2) and the θ̂ that minimizes H(θ;y), one
defines the Wald statistic ray θ(ε) = θ̂+εVθ̂

1/2z. Let χ2
2,1−α1

denote the upper α1

quantile of χ2
2. Given this quantile, the first goal is to find the smallest positive ε

such that the ray just touches the boundary of the targeted confidence set. This
positive ε, εp

1, is such that θ(εp
1) satisfies H(θ(εp

1);y) − H(θ̂;y) = χ2
2,1−α1

. Next,
one repeats this operation, but now for negative values of ε, εn

1 such that θ(εn
1 )

is on the opposite boundary from θ(εp
1). Note that εn

1 is generally not equal to
-εp

1. Repeat this procedure for α2 to get two boundary points of H2.

Algorithm for boundary confidence sampling
Suppose one has found the estimator θ̂ minimizing H(θ;y) and the covari-

ance estimator Vθ̂. Suppose one also defines the Wald statistic ray generated by
a vector z ∈ Rp to be θ(ε) = θ̂ + εVθ̂

1/2z where ε ∈ R.

Step 1. Generate z ∼ N(0, Ip) and find the α upper quantile χ2
p,1−α of χ2

p.
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Step 2. Determine ε satisfying H(θ(ε);y) − H(θ̂;y) = χ2
p,1−α. Denote the com-

puted ε as ε̃ = ε̃(α, z). Let θ̃(α, z) = θ(ε̃) be the simulated value gen-
erated by (α, z). Compute θ̃(α, z) for both the positive and negative ε

solutions.

This algorithm requires the determination of the one-dimensional ε many times
for each α.

3.3. The Star-shaped assumption

In a star-shaped confidence set, the inference function is monotonically in-
creasing along every ray from θ̂, so that one finds exactly one solution to H(θ(ε))
−H(θ̂;y) = χ2

p,1−α along the positive and negative rays, unless the inference func-
tion never increases enough in that direction, in which case there is no solution
and an infinite distance to the confidence boundary. However, if this assumption
is violated, the number of solutions can exceed two. In order to study these fail-
ures of the star-shaped assumption when using the boundary sampling algorithm
we search for extraneous solutions, and then categorize (α, z) into two groups,
acceptable and unacceptable as follows.

When there is more than one solution of ε on either side of ε = 0 for a
given (α, z), that (α, z) is called unacceptable, as this indicates a violation of the
assumption of star-shaped confidence set. Thus a search for unacceptable (α, z)
is a check of the star-shaped assumption at various levels of α, and along various
rays.

On the other hand, the following three types of (α, z) are acceptable: (α, z)
for which there is only one solution on each side of ε = 0, so that one has the
two-sided interval for ε; where there is only one solution of ε on only one side of
ε = 0 for a given (α, z), in which case we say that the solution on the opposite
side is +/ −∞; where there is no solution of ε for a given (α, z), in which case
we say the two endpoints are −∞ and +∞. Note that one could check the star-
shaped assumption during independent sampling, but it is less efficient to do so
there.

3.4. Computational comments

We now give some comments on the implementation of the algorithm starting
with the dispersion matrix Vθ in the Wald statistic ray. The form of Vθ depends
on the inference function. For the likelihood and score statistic the Fisher infor-
mation or its asymptotic equivalents can be used, and for the QIF and empirical
likelihood, DT (θ)Σ−1

θ D(θ) at (2.10) is available. Next, if one has numerical
challenges due to constrained parameter sets or non-star shaped confidence sets,
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suitable reparametrization might need to be considered in the construction of the
Wald statistic rays.

Our methodology requires the specification of a critical value. If one is
concerned that the critical value based on asymptotic theory might not provide
suitable coverage, there are various adjustments to this value, such as Bartlett
type corrections (Barndorff-Nielsen and Cox (1994)) or the bootstrap method
at an estimated parameter value (Efron and Tibshirani (1993); Davison and
Hinkley (1997); Hall (1992)). See also Chen, Mulayath and Bovas (2008) for a
new correction method for empirical likelihood intervals.

Finally, we consider methods for determining the ε solutions in the Wald
statistic ray. Since ε is one-dimensional, only simple algorithms are needed for
computation. We used the MATLAB function “fzero” in the examples.

We suggest two ways to generate starting values for ε. First, available only
for the boundary sampling method, use the fact that for the same z, the in-
tervals of ε become wider as the confidence levels increase: given z and the
smallest confidence level (1 − αmax), find positive and negative ε’s satisfying
H(θ(ε);y) − H(θ̂;y) = χ2

p,1−αmax
, denoted as (εn

(1−αmax,z), εp
(1−αmax,z)); then use

these as starting values of ε for the same z and the next larger confidence level.
A second algorithm (and the one used in our examples) employs the interval

of ε associated with αmin, the smallest α grid point. First, find the most extreme
values of ε, say εn negative and εp positive, that solve H(θ(ε);y) − H(θ̂;y) =
χ2

p,1−αmin
. Then for ε ∈ (εn, εp), evaluate H(θ(ε);y) − H(θ̂;y) on a grid of ε-

values. For other α select the grid values closest to the target χ2
p,1−α value as

the initial value for ε(one could use interpolation instead). This algorithm helps
find unacceptable (α, z) values better than the first.

3.5. Formal random boundary of the confidence set

To this point, we have described how to create a sample of points from
the confidence sets, and thereby to create plots that represent their basic shape.
However, a more formal definition of the boundaries of the sets would be needed if
one wanted to use them to test hypotheses, or to assess their coverage properties.
This is easily done for a one-dimensional parameter. Assuming the confidence
interval at the given critical value is starshaped, one would use the leftmost and
rightmost sampled values as the two endpoints of the interval. Of course, that
interval is somewhat shorter than the true confidence interval, so there is some
chance of undercoverage relative to the nominal level.

The issue of sparsity of sampling grows as one goes into two dimensions.
Although one could define the confidence set to be the convex hull of the sam-
pled values, that would not allow a banana shaped confidence set that would
be allowed under the star-shaped assumption. One possibility is to construct
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a kernel density estimator K(θ) from the simulated samples, and to let c =
min{K(θs), s = 1, . . . , S}, the smallest density value of any sampled θ. A simple
construction of the confidence set C would be {θ : K(θ) ≥ c}. This set would
include every sampled θ, and all θ in regions of reasonable density. It would also
be easy numerically. A more complex definition would be to use C?, the smallest
star-shaped set containing C. A point would be in this set if it lay on a ray from
θ̂ to a point in the boundary of C (that is, one with K(θ) = c).

4. Data Analysis

In this section we provide three examples to illustrate the performance of the
proposed confidence distribution. We also compare the samples from the bound-
ary sampling method with those from independent sampling method. Note that
an uncentered empirical variance estimator, Ĉθ = n−1

∑n
i=1 b(Yi,θ)b(Yi, θ)′,

is used in the QIF (we denote the QIF based on Ĉθ by Qu(θ)). The confidence
distribution values θ̃ forming the likelihood region, the score region, the QIFu

region, and the empirical likelihood region are denoted by θ̃L, θ̃S , θ̃Qu , and θ̃EL,
respectively.

We used parametric models in all three examples. In the QIF and the em-
pirical likelihood we defined the estimating functions through the parametric log
likelihood function. Since the number of estimating functions and the num-
ber of parameters are equal, the estimating functions defined above are optimal
(Godambe and Heyde (1987)) and, therefore, the maximum likelihood estimator
is an estimator optimizing all candidates for H(θ;y) considered in three exam-
ples. In this case QIF can be thought of as a score statistic that uses an empirical
covariance estimator.

4.1. Multiple linear regression model

The first data, introduced in Moore and McCabe (1989), are the taste of
matured cheese and concentrations of several chemicals in 30 samples of mature
cheddar cheese. The goal is to investigate the relationships between the taste of
matured cheese (response variable, Taste) and three chemicals deciding the taste
of cheese: acetic acid, hydrogen sulfide, and lactic acid (predictors, Acetic, H2S,
and Lactic, respectively). Note that the first two predictors are log transformed.

Since there was a linear relationship between a response variable and the
three predictors, we fitted a multiple linear regression model with independent
normal error terms to the data. Based on residual plots and normal probability
plot of the residuals, we took the regression of Taste on H2S and Lactic as
the best regression model, Taste = β0 + β1 H2S + β2 Lactic + τ , where τ ∼
N(0, σ2). In this model we were interested in the likelihood surface of β1, β2,
and σ2. Thus β1, β2, and σ2 were the parameters of interest, and β0 was a
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Table 1. Percentage of acceptable and unacceptable (α, z) among 6,300
(α, z)’s.

Acceptable (α, z)
Interval of ε Two Doubly Half Unacceptable (α, z)

sided infinite infinite
Likelihood region

All α’s 100 0 0 0
Score region

All α’s 100 0 0 0
QIFu region

All α’s > 0.1 100 0 0 0
α = 0.1 99 0 0 1
α = 0.05 96.714 0.286 1 2

Empirical likelihood region
All α’s > 0.1 100 0 0 0
α = 0.1 99.286 0 0.714 0
α = 0.05 98.857 0 1.143 0

nuisance parameter. The maximum likelihood estimate for θ = (β0, β1, β2, σ
2)′

was θ̂ = (−27.5918, 3.94627, 19.8872, 88.9655)′.
For the application of our independent sampling visualization to the data,

we generated 700 z’s from N(0, I4). For the boundary sampling method we used
the same z’s and nine α values (1−α=[0.05, 0.1, 0.1534, 0.3, 0.5, 0.7, 0.8002, 0.9,
0.95]). In all there were 700 α(z)’s in the independent sample and 6,300 (α, z)’s
in the boundary sample. Note that the log transformation for σ2 was used to
eliminate the non-negativity constraint, and the expected Fisher information was
used in the Wald statistic ray and the score test statistic.

We use this example to compare the geometric features of various confidence
sets. We are interested in two features: the degree to which the star shaped
assumption holds, and how the confidence set shapes vary among inference func-
tions.

We first examine the star-shaped assumption. Table 1 gives the percentage
of acceptable and unacceptable (α, z) in four confidence regions for boundary
sampling method. Table 1 shows that all 6,300 (α, z)’s in the boundary sample
were acceptable for the likelihood, score, and empirical likelihood region, as there
was either a two sided interval or a half-infinite interval of ε̃ for every (α, z).
However, the QIFu region did have a small percentage of unacceptable z’s for
large (1 − α)s.

We can illustrate the various types of solutions by selecting several (α, z)’s
in the boundary sample and plotting QIFu as a function of ε along the rays
generated by values of ε. Figure 2 shows the plot of QIFu − c4,(1−α,z) vs. ε for
four (α, z)’s. The (α, z)’s in the first, second and third plots were acceptable,
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Figure 2. QIFu-c4,(1−α,z) vs. ε for four (α, z)’s where the black line represents
a reference line with QIFu − c4,(1−α,z) = 0 and zi means z with the ith
smallest norm - (0.05, z498) (1st), (0.05, z194) (2nd), (0.05, z357) (3rd) and
(0.1, z668) (4th).

Figure 3. 80% joint likelihood confidence regions (red) overlaid on joint
simulated confidence regions(black dots) using independent samples(Rows
1 and 3) and boundary samples(Rows 2 and 4) for (β1, β2) and (β2, σ2).
Note that the first and second rows are the joint confidence regions for (β1,
β2), and third and fourth rows are the joint confidence regions for (β2, σ2).
Columns 1−6 give profile simulated regions of θ̃L, θ̃S , θ̃Qu , θ̃EL, θ̃ADEL

and θ̃ELBOOT , respectively.

as the number of solutions of ε were two(two-sided interval), one(half-infinite
interval) and zero(doubly infinite interval), respectively. However, (α, z) in the
fourth plot of Figure 2 was unacceptable because there were two solutions on the
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right side of ε = 0.
Next we examine the shapes of the various joint confidence sets with 80%

confidence level in the whole parameter space (this corresponds to a confidence
level of 95% for two dimensional profiles). Figure 3 contains scatter plots of the
samples generated by our methods for all four inference functions (Columns 5
and 6 will be discussed later). Rows 1 and 2 are marginal plots for (β1, β2),
with Row 1 being independent sampling and Row 2 boundary sampling. Rows
3 and 4 are marginal plots for (β2, σ2), with Row 3 being independent sampling
and Row 4 boundary sampling. For the boundary sampling all sample points
below the 80% critical value are deleted, so the shapes defined by the scatter
plots are representative of the corresponding confidence sets. For comparison,
we have overlaid on these the boundary of the joint likelihood region, computed
numerically. We use this set because it is often considered the gold standard for
parametric inference. Notice that the boundary sampling method(Row 2 and 4)
captured the boundaries of confidence sets better than the independent sampling
method(Row 1 and 3). This shows that independent sampling is inefficient for
describing the confidence sets. Our second observation is that the joint bound-
ary sampling plot of θ̃L was very successful at representing the shape of the
numerically calculated joint likelihood confidence regions.

As plots to compare inference functions, we can see that the joint score-based
region was much larger than the likelihood region, and the empirical likelihood
region θ̃EL was smaller than the others. This is surprising, and a bit disap-
pointing, given that there should be more uncertainty about the parameter when
the likelihood is unknown than when it is known. The smaller joint confidence
region based on θ̃EL might reflect a known undercoverage issue for smaller sam-
ple sizes(Owen (1988); Hall and La Scala (1990); Qin and Lawless (1994)). The
shape of the QIFu region for (β2, σ

2) was shifted more toward small σ2 than those
of the likelihood, the score statistic, and the empirical likelihood. Notice that the
boundary samples, especially of the score statistic and the QIFu, appear to be
comparatively sparse near the set boundary for large confidence levels, suggesting
the need to do more sampling in those cases.

4.1.1. Improving coverage properties

Confidence regions based on using an asymptotic critical value inevitably
have errors in coverage at small sample sizes. The methods described here can be
used with adjusted critical values. For illustration, we applied our visualization
method to two types of adjustment designed to improve the coverage of the
empirical likelihood. We first considered using the bootstrap method to find
the critical value of the empirical likelihood. For this method we assumed that
normality in the error terms of the linear regression model was known so that we
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could use parametric bootstrap adjustments. We first generated 5,000 parametric
bootstrap samples of size 30, and calculated 5,000 bootstrap parameter values
of θ. We then obtained the bootstrap empirical likelihood which provided an
empirical critical value for the 80% confidence level in the full parameter space.
These critical values were larger than the asymptotic ones, so the volumes of the
sets increased.

The second method we considered was an adjustment to the empirical like-
lihood proposed by Chen, Mulayath and Bovas (2008). The adjusted empirical
likelihood was designed to be well-defined for all parameter values and to retain
all the optimal properties of the empirical likelihood, while improving coverage
probabilities, all without appealing to bootstrap simulation or Bartlett correc-
tion.

In order to evaluate the effect of these alternative critical values on the con-
fidence set shapes of the empirical likelihood, we reanalyzed the cheese data set
using the same 700 z’s and the same nine α values employed for the other in-
ference functions. We denote simulated confidence distribution values describing
the adjusted empirical likelihood region using the asymptotic critical value and
the empirical likelihood region using the bootstrap critical value as θ̃ADEL and
θ̃ELBOOT , respectively.

The last three columns of Figure 3 provide visual evidence for two types
of adjustment. For boundary samples, the sampling plot of θ̃ADEL(Column 5)
was indeed larger than that of θ̃EL(Column 4). This agrees with what Chen,
Mulayath and Bovas (2008) showed: the adjusted empirical likelihood region
using the critical value of the chi-square distribution was generally larger than
the unadjusted empirical likelihood using the same critical value. We can also
see that the joint confidence regions of θ̃ELBOOT (Column 6) contained the joint
confidence regions of θ̃EL (Column 4) and θ̃ADEL(Column 5), suggesting it had
the greatest coverage. See Owen (2001, pp.33) for further discussion.

4.1.2. Comparison with bootstrap confidence sets

In Section 1 we explained why one might prefer to use inference-function
based confidence sets to parametric-bootstrap confidence sets. We now use our
linear regression example to compare these two methods.

Assuming that the error terms in the multiple linear regression model to be
independent and normally distributed, we generated 5,000 parametric bootstrap
samples of size 30, and calculated 5,000 bootstrap parameter values. We then
obtained the bootstrap likelihood ratio statistic and calculated an empirical criti-
cal value for the 80% confidence level in the full parameter space. Figure 4 shows
the 80% joint sampling plots using boundary samples and parametric bootstrap
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Figure 4. 80% joint likelihood confidence regions (red) superimposed on
joint simulated confidence regions(black dots) using boundary samples(first
and third) and bootstrap samples(second and fourth) for (β1, β2) and (β2,
σ2). Note that the first two plots are the joint confidence regions for (β1,
β2), and the last two plots are the joint confidence regions for (β2, σ2).

Table 2. Case-control study - relationship between smoking and myocardial
infarction.

Y
0 1-24 >25

X Control 25 25 12 62
Myocardial infarction 0 1 3 4

samples overlaid on the numerical joint likelihood confidence sets for (β1, β2) and
(β2, σ2).

The bootstrap method generated confidence sets of similar shapes as our
boundary method. However, the samples from the bootstrap method became
sparser as one approached the possible boundaries of the confidence sets, making
it harder to identify the true boundary. It also seems plausible that the boot-
strap method had an undercoverage problem in the (β2, σ2) plot. By comparing
Figure 4 with Figure 3, we can also see that the empirical critical value increased
the size of the confidence sets used for boundary sampling.

4.2. Independent multinomial model

Table 2 shows the data collected from a case-control study relating the
disease-status, X(control or myocardial infarction), to the level of smoking,
Y (number of cigarettes per day)(Agresti (2002, p.98)). Given the marginal
counts, n1 = 62 and n2 = 4, a control and a myocardial infarction sample were
independently obtained. Then the probability function for these counts in the
table is the product of two independent multinomial functions, ni = (ni1, ni2, ni3)
∼ multinomial(ni, p1|i, p2|i, p3|i) where i = 1, 2 and pj|i is the probability that a
subject in the ith disease-status has the jth level of smoking.

To examine our methodology, we consider a highly nonlinear parameter.
One measure of association between smoking level and myocardial infarction is
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a variant of the gamma coefficient introduced in Lang (2008) :

γ(θ) ≡ P (Y2 > Y1 | Y1 6= Y2) =
p1|1(p2|2 + p3|2) + p2|1p3|2

1 −
∑3

j=1 pj|2pj|1
. (4.1)

Here Y1 and Y2 are the smoking levels for a control subject and a myocardial
infarction subject, respectively, and θ = (p1|1, p2|1, p1|2, p2|2)

′
. This gamma vari-

ant γ(θ) in (4.1) is the probability that a myocardial infarction subject smokes
more than a control subject if smoking levels of subjects in each category of X

are different. A value of γ(θ) = 0.5 means no difference.
Since the maximum likelihood estimate of θ was θ̂ = (0.403, 0.403, 0, 0.25)′,

γ(θ̂) = 0.9358, association between smoking level and myocardial infarction ap-
peared plausible. We investigated the confidence regions for γ(θ) by using a
numerically calculated region based on the likelihood ratio statistic and samples
from four inference functions, θ̃L, θ̃S , θ̃Qu , and θ̃EL .

For the numerically calculated profile likelihood region, we used an approach
proposed by Lang (2008). Lang (2008) developed a numerical method to com-
pute score and profile likelihood confidence intervals for a function of parameters
g(θ) in a contingency table where the counts had a product multinomial distribu-
tion. His approach consists of two parts, computation of the restricted maximum
likelihood estimator for g(θ) and, given the restricted maximum likelihood esti-
mator, calculation of the confidence interval for g(θ) using a simple and efficient
algorithm(a so called ‘sliding quadratic’ algorithm). Note that γ(θ) in (4.1)
was one of four examples considered by Lang (2008). Two R-functions(mph.fit
and ci.table) for the algorithm are available from Professor J. B. Lang (e-mail:
jblang@stat.uiowa.edu).

Here we apply our visualization method to picture the inference function of
γ(θ), and see if our method can recover the numerically calculated profile likeli-
hood function. Note that our proposed methodology does not require computing
the restricted maximum likelihood estimator over γ(θ) = ν for a variety of ν

values.
For the likelihood, score statistic, QIFu, and empirical likelihood regions, we

generated 1,000 z’s from N(0, I4) and chose six α values designated to target the
20%, 40%, 60%, 80%, 90%, and 95% confidence intervals for γ(θ). In all there
were 1,000 α(z)’s in the independent sample and 6,000 (α, z)’s in the boundary
sample. The logistic transformation for θ was considered, and the expected
Fisher information for θ was used in the Wald statistic ray and the score test
statistic.

We first investigated the star-shaped assumption. We found that all 1,000
α(z)’s and 6,000 (α, z)’s were acceptable for the likelihood, score, and empirical
likelihood regions, as the number of ε̃ for every (α, z) was two. However, the
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Figure 5. Numerically calculated twice negative profile log likelihood ra-
tio(blue line) superimposed on profile sampling plots for γ(θ) based on θ̃L,
θ̃S , θ̃Qu

, and θ̃EL (red square : θ̂). Note the black dots represent indepen-
dent samples; the boundary samples appear as red bands.

QIFu region had a small percentage of unacceptable (α, z)’s with more than
one solution on the either side of ε = 0 : 0.4%, 2.4%, 4.7%, 4.8%, 5.4% and
4.4% z’s in the boundary sample were unacceptable for the 20%, 40%, 60%,
80%, 90%, and 95% confidence levels, respectively. The only difference between
the score statistic and QIFu in this example is that the score statistic used the
expected Fisher information matrix, but the QIFu used an empirical covariance
matrix(equivalent to the observed information matrix in this model).

Figure 5 shows the numerically calculated twice negative log profile likelihood
ratio for γ(θ) overlaid on the various sampling plots. For likelihood and score
regions the independent samples and boundary samples produced same shape of
profile functions. However, for QIFu and empirical likelihood the independent
samples showed serious sparsity near the confidence interval boundaries for γ(θ),
with boundary sampling being somewhat better.

Figure 5 also shows that the boundary sampling succeeded in recovering the
shape of the profile likelihood for γ(θ). We can also note that the confidence
intervals based on the other methods were much larger than that of the profile
likelihood, especially for moderate and large confidence levels.

4.3. Parametric finite mixture model : confidence and mixture labels

In this section we introduce an interesting, but challenging, problem from
finite mixture analysis. It was the original motivation for our sampling based
visualization.

Figure 6(a) is the histogram of log concentrations of antibodies against
mumps measured from blood samples of 385 14-year old children with no vac-
cination(Flury (1997)). In order to see if diseases such as mumps are success-
fully controlled or not, one needs to know how immunity to specific disease is
widespread in a particular age group by estimating the proportion of immune
subjects in the same group. Flury (1997) pointed out the existence of two dif-
ferent groups in this data, one group whose members are immune children (near
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three) and the other group whose children are susceptible to mumps (near zero),
but these categories are not directly observable from this data.

Flury (1997, p.663) used maximum likelihood estimation to fit a two-com-
ponent normal mixture model with equal variances

g(Y; θ) = π1N(Y; µ1, σ
2) + π2N(Y; µ2, σ

2), (4.2)

where π1+π2 = 1 and θ = ((π1, µ1, σ
2)′, (π2, µ2, σ

2)′), each column corresponding
to a component. The component with the larger mean in (4.2) is generally
believed to be the immune group, so the corresponding mixing proportion could
be used as an estimate of the proportion of children immune to mumps at this
age. The maximum likelihood estimate of the parameter vector in (4.2) was
θ̂ = ((0.256,−0.319, 0.935)′, (0.744, 2.893, 0.935)′).

For further statistical inference one might want to construct confidence sets
for the parameters and estimate the standard errors of parameter estimates.
However defining the likelihood confidence regions or the standard errors of the
estimators is not easy. There is a label nonidentifiability intrinsic to the mixture
model: in a mixture problem where the number of components is fixed, label
nonidentifiability occurs because the parameter is only identifiable up to a column
permutation of θ. For instance, θ̂ for (4.2) has the same density and likelihood
as θ̂

cp
= ((0.744, 2.893, 0.935)′, (0.256,−0.319, 0.935)′), where θcp is the column

permutation of θ, and so, for example µ̂1 could be defined as either 2.893 or -
.319. In repeated sampling from this model, the estimator labels can be switched
arbitrarily and so there is really no meaning to a finite sample standard error for
µ̂1.

The good news is that there is a form of asymptotic identifiability (Redner
and Walker (1984)) that guarantees the existence of a consistent way to choose
a permutation of the estimator as the sample size grows large. In practice, this
means that the sample size must be large relative to the separation of the compo-
nents. Kim (2008) pointed out that for the proper use of finite mixture models,
one should measure how confident one is in using the asymptotic identifiability
to label the parameters, and so to construct confidence sets.

The reason that asymptotic identifiability occurs is that the parameters are
locally identifiable. That is, even though other parameters (such as θcp) generate
the same probability distribution as θ, one can still find an open neighborhood of
θ such that every parameter in the same neighborhood generates a unique distri-
bution. If we can be relatively confident that the estimators lie in such a locally
identifiable region, one might reasonably appeal to asymptotic identifiability.

This is how Kim (2008) used likelihood to quantify identifiability. In the full
parameter space of (4.2) there are really two maximum likelihood estimators,
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corresponding to θ̂ and θ̂
cp

, each creating a mode of equal height on the like-
lihood surface. Similarly, in a confidence distribution simulation based on the
mode θ̂, for every θ generated there would be a corresponding permuted version
θcp generated from the second. If the 100(1-α)% likelihood region for θ in (4.2)
decomposes into two distinct regions, one around each mode, and these two re-
gions are locally identifiable, then we say the problem has a labeling confidence
level of 100(1 − α)%. The reason is that either region could be used to describe
profile confidence sets for the labeled parameters within the region. If the confi-
dence level at which the two modal regions are well separated is large (say, 95%),
we argue that one can be comfortable appealing to asymptotic identifiability.
Otherwise, one should be cautious in the use of asymptotic identifiability as well
as Fisher information.

We consider how one might visualize the likelihood region in a manner that
clarifies the separation between the two modal regions. Unfortunately, the like-
lihood region can be very complex geometrically. Moreover, producing multiple
exploratory plots using numerical profiles is a daunting and time-consuming task.

To create exploratory plots we propose to use boundary sampling based on
the confidence distribution associated with one of the two modes. We generated
2,000 z’s from N(0, I4) and considered 12 confidence levels: 1−α=[0.01, 0.1,. . .,
0.9, 0.95, 0.99]. Note that all 24,000 (α, z)’s were acceptable. However, now
we can plot both θ̃(ε, z) and its relabeled version, thereby creating two points,
one in each modal region. One can now answer the question of the separation
of the modal regions by determining the minimal separation of the points from
the two modal regions at the given confidence level. The next step, sometimes a
challenging one, is to find the profile functions that give the sharpest picture of
the separation of confidence sets at various α-levels.

In this case, we consider the plot formed by the sample values of (π1, µ1).
See Figure 6(b). If we plot these values from the original sample, we get a tight
cluster around (π̂, µ̂) = (0.256,−.319). If we plot them from the permuted sam-
ples, which correspond to the second mode, we get a second tight plot around
(0.744, 2.893). In Figure 6(b) we provide a joint (π, µ) plot along with an ap-
propriate 95% contour. In this (π, µ) profile one can see that the two modal
regions are clearly separated and are elliptically shaped. The implication is that
one can, with high labeling confidence, use order constraint labeling on either
µ or π to construct confidence sets and one can be relatively comfortable using
Fisher information for the standard error of the estimators. For example, the
resulting π1 confidence set would be based on a single profile plot using those π-
values that were associated with µ1 in the confidence distribution simulation(See
Figure 6(c)).
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(a) (b) (c)

Figure 6. (a) - a histogram and a fitted mixture density for log concentrations
of antibodies against mumps from 385 unvaccinated children (a solid red
is an estimated mixture density and a broken red is a fitted component
density); (b) - an approximate 95% profile of (π, µ) (the red square is θ̂, the
black dots represent boundary samples and a numerically calculated 95%
likelihood confidence set appears as red contour); (c) - a π1-profile boundary
sampling plot.

The labeling problem was virtually nonexistent in this data set; in fact, any
number of different profile plots would have revealed how the two modal likeli-
hood regions were clearly separated. However, the problem becomes considerably
more difficult when data and model are multivariate and when the mixture com-
ponents are not so well separated. More methodology for this problem can be
found in Yao and Lindsay (2009) for Bayesian sampling, and in Kim (2008) for
likelihood. One can find therein profile functions that work quite well at sep-
arating the two modes to the maximal extent, and so help in determining the
labeling confidence level.

5. Simulation Study

In this section we report on a small-scale simulation to examine the coverage
probabilities of our proposed method for a nonlinear function of the parameters.
We also compare the coverage probabilities of our procedure with the numerical
profile procedure.

Consider the simulation model discussed in Lang (2008), the two indepen-
dent multinomial models used in Section 4.2, and follow the simulation set-up
there (simulation model, parameters, sample sizes, number of simulations and
use of asymptotic critical value in defining a confidence set). We first gener-
ated 10,000 samples of size (n1, n2) from two independent multinomial models
with the cell probabilities p = ((p1|1, p2|1, p3|1), (p1|2, p2|2, p3|2)). Then we es-
timated the coverage probabilities for the nominal 95% confidence interval for
γ(θ) in (4.1). Here we considered the likelihood function and score statistic,
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Table 3. Estimated coverage probabilities.

(n1, n2) (p1,p2) True γ Estimated coverage probabilities(estimated simulation standard errors)

Likelihood Score

Independent Boundary Lang Independent Boundary Lang

(62,62) p(1) 0.903 0.9216 0.9444 0.9448 0.9285 0.9507 0.9492

(0.0027) (0.0023) (0.0023) (0.0026) (0.0022) (0.0022)

(62,62) p(2) 0.778 0.9243 0.9459 0.9497 0.9260 0.9482 0.9506

(0.0026) (0.0023) (0.0022) (0.0026) (0.0022) (0.0022)

(62,62) p(3) 0.500 0.9246 0.9465 0.9464 0.9263 0.9478 0.9472

(0.0026) (0.0023) (0.0023) (0.0026) (0.0022) (0.0022)

(62,4) p(1) 0.903 0.9630 0.9723 0.9742 0.9456 0.9611 0.9606

(0.0019) (0.0016) (0.0016) (0.0023) (0.0019) (0.0019)

(62,4) p(2) 0.778 0.9589 0.9710 0.9713 0.9515 0.9657 0.9668

(0.0020) (0.0017) (0.0017) (0.0021) (0.0018) (0.0018)

(62,4) p(3) 0.500 0.9092 0.9271 0.9185 0.9725 0.9820 0.9813

(0.0029) (0.0026) (0.0027) (0.0016) (0.0013) (0.0014)

and used the cell probabilities : p(1) = ((0.4, 0.4, 0.2), (0.04, 0.24, 0.72)), p(2) =
((0.4, 0.4, 0.2), (0.2, 0.2, 0.6)) and p(3) = ((0.4, 0.4, 0.2), (0.4, 0.4, 0.2)). When we
applied our method to each data set generated from each combination of (n1, n2)
and p, we used 500 z’s from N(0, I4).

Table 3 gives the estimated coverage probabilities and their estimated sim-
ulation standard errors. Here we cited the simulation results of the numerical
profile procedure in Lang (2008) (labeled as “Lang”). Table 3 shows that the
coverage probabilities of the boundary sampling agreed with those of the numeri-
cal profile procedure, the differences being insignificant relative to the magnitude
of the simulation errors. Furthermore, the procedure based on boundary sam-
ples had coverage probabilities close to the nominal level 0.95 for the confidence
interval of γ(θ), even when the true value of γ(θ) was close to the boundary of
the parameter space and the sample size was small. Note that the theoretical
confidence sets we were simulating were formed from inverting tests.

In a similar fashion, we could view the sampled confidence set, with formal
boundaries defined in Section 3.5, as providing tests for hypothesized parameter
values by the rule, reject θ = θ0 if it fails to be in the confidence set. From
this interpretation, one minus coverage is the probability of Type I error. As
shown in Table 3, there was a satisfying agreement between the error levels of
our procedure and the errors based on numerical profile calculations.

6. Conclusion

In this paper we proposed a new sampling based methodology to visualize
the confidence sets generated by a given inference function. Our methodology
can generate samples to picture the boundaries of (profile) confidence sets over a
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wide range of parameters of interest in a single simulation. The proposed method
only requires the generation of samples from the standard multivariate normal
distribution, the one-time calculation of the dispersion matrix at the estimator,
and repeated one-dimensional root finding.

In applications to three examples and in a small simulation, we observed
that our boundary sampling variant was superior to independent sampling in
identifying the boundaries of the confidence regions and having comparable cov-
erage probabilities. We also found, in the case of likelihood, that the boundary
sampling method was very successful at visualizing numerically calculated profile
likelihood boundaries. Generally, our sampling method provides a simple way to
compare the confidence regions generated by a variety of inference functions on
multiple functions of parameters.

We used parametric models in all our examples. A valuable extension of this
research would be to investigate the performance of our visualization methodol-
ogy for QIF and the empirical likelihood when there is a semiparametric model
with parameters defined by estimating functions and the number of estimating
functions is larger than the number of parameters.

Finally, our proposed method provides a random boundary to the confidence
set. If one wants to use our sampling methods to carry out a hypothesis test,
one needs to consider the issues of sparsity of sampling as the dimension of the
parameter increases. Future work will consider accuracy of random boundary
and stopping rules of (independent/boundary) sampling.
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