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Abstract: Goodness-of-fit tests are a fundamental element in the copula-based mod-

eling of multivariate continuous distributions. Among the different procedures pro-

posed in the literature, recent large scale simulations suggest that one of the most

powerful tests is based on the empirical process comparing the empirical copula

with a parametric estimate of the copula derived under the null hypothesis. As

for most of the currently available goodness-of-fit procedures for copula models,

the null distribution of the statistic for the latter test is obtained by means of a

parametric bootstrap. The main inconvenience of this approach is its high compu-

tational cost, which, as the sample size increases, can be regarded as an obstacle to

its application. In this work, fast large-sample tests for assessing goodness of fit are

obtained by means of multiplier central limit theorems. The resulting procedures

are shown to be asymptotically valid when based on popular method-of-moment

estimators. Large scale Monte Carlo experiments, involving six frequently used

parametric copula families and three different estimators of the copula parameter,

confirm that the proposed procedures provide a valid, much faster alternative to

the corresponding parametric bootstrap-based tests. An application of the derived

tests to the modeling of a well-known insurance data set is presented. The use of the

multiplier approach instead of the parametric bootstrap can reduce the computing

time from about a day to minutes.

Key words and phrases: Empirical process, multiplier central limit theorem, pseudo-

observation, rank, semiparametric model.

1. Introduction

The copula-based modeling of multivariate distributions is finding extensive
applications in fields such as finance (Cherubini, Vecchiato, and Luciano (2004)),
(McNeil, Frey, and Embrechts (2005)), hydrology (Salvadori et al. (2007)), public
health (Cui and Sun (2004)), and actuarial sciences (Frees and Valdez (1998)).
The recent enthusiasm for the use of this modeling approach finds its origin in
an elegant representation theorem due to Sklar (1959) that we present here in
the bivariate case. Let (X,Y ) be a random vector with continuous marginal
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cumulative distribution functions (c.d.f.s) F and G. A consequence of the work
of Sklar (1959) is that the c.d.f. H of (X,Y ) can be uniquely represented as

H(x, y) = C{F (x), G(y)}, x, y ∈ R,

where C : [0, 1]2 → [0, 1], called a copula, is a bivariate c.d.f. with standard
uniform margins. Given a random sample (X1, Y1), . . . , (Xn, Yn) from c.d.f. H,
this representation suggests breaking the multivariate model building into two
independent parts: the fitting of the marginal c.d.f.s and the calibration of an
appropriate parametric copula. The problem of estimating the parameters of the
chosen copula has been extensively studied in the literature (see e.g., Genest,
Ghoudi, and Rivest (1995), Shih and Louis (1995), Joe (1997), Genest and Favre
(2007)). Another very important issue that is currently drawing a lot of attention
is whether the unknown copula C actually belongs to the chosen parametric
copula family or not. More formally, one wants to test

H0 : C ∈ C = {Cθ : θ ∈ O} against H1 : C 6∈ C,

where O is an open subset of Rq for some integer q ≥ 1.
A relatively large number of testing procedures have been proposed in the

literature, as can be concluded from the recent review of Genest, Rémillard, and
Beaudoin (2009). Among the existing procedures, these authors advocate the use
of so-called “blanket tests”, i.e., those whose implementation requires neither an
arbitrary categorization of the data, nor any strategic choice of smoothing param-
eter, weight function, kernel, window, etc. Among the tests in this last category,
one approach that appears to perform particularly well according to recent large
scale simulations (Genest, Rémillard, and Beaudoin (2009), Berg (2009)) is based
on the empirical copula (Deheuvels (1981)) of the data (X1, Y1), . . . , (Xn, Yn), de-
fined as

Cn(u, v) =
1
n

n∑
i=1

1(Ui,n ≤ u, Vi,n ≤ v), u, v ∈ [0, 1], (1.1)

where the random vectors (Ui,n, Vi,n) are pseudo-observations from C computed
from the data by

Ui,n =
1

n + 1

n∑
j=1

1(Xj ≤ Xi), Vi,n =
1

n + 1

n∑
j=1

1(Yj ≤ Yi), i∈{1, . . . , n}.

The empirical copula Cn is a consistent estimator of the unknown copula
C, whether H0 is true or not. Hence, as suggested in Fermanian (2005), Quessy
(2005), and Genest and Rémillard (2008), a natural goodness-of-fit test consists
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of comparing Cn with an estimation Cθn of C obtained assuming that C ∈ C
holds. Here, θn is an estimator of θ computed from the pseudo-observations
(U1,n, V1,n), . . . , (Un,n, Vn,n). More precisely, these authors propose to base a test
of goodness of fit on the empirical process

√
n{Cn(u, v) − Cθn(u, v)}, u, v ∈ [0, 1]. (1.2)

According to the large scale simulations carried out in Genest, Rémillard, and
Beaudoin (2009), the most powerful version of this procedure is based on the
Cramér-von Mises statistic

Sn =
∫

[0,1]2
n{Cn(u, v) − Cθn(u, v)}2dCn(u, v)

=
n∑

i=1

{Cn(Ui,n, Vi,n) − Cθn(Ui,n, Vi,n)}2.

An approximate p-value for the test based on the above statistic is obtained
by means of a parametric bootstrap whose validity was recently shown by Gen-
est and Rémillard (2008). The large scale simulations carried out by Genest,
Rémillard, and Beaudoin (2009) and Berg (2009) suggest that, overall, this pro-
cedure yields the most powerful blanket goodness-of-fit test for copula models.
The main inconvenience of this approach is its high computational cost as each
parametric bootstrap iteration requires both random number generation from
the fitted copula and estimation of the copula parameter. To fix ideas, Genest,
Rémillard, and Beaudoin (2009) mention the nearly exclusive use of 140 CPUs
over a one-month period to estimate approximately 2000 powers and levels of
goodness-of-fit tests based on parametric bootstrapping for n ∈ {50, 150}.

As the sample size increases, the application of parametric bootstrap-based
goodness-of-fit tests becomes prohibitive. In order to circumvent this very high
computational cost, we propose a fast large-sample testing procedure based on
multiplier central limit theorems. Such techniques have already been used to
simulate the null distributions of statistics in other types of tests based on em-
pirical processes; see e.g., Lin, Fleming, and Wei (1994) and Fine, Yan, and
Kosorok (2004) for applications in survival analysis or, more recently, Scaillet
(2005), and Rémillard and Scaillet (2009) for applications in the copula model-
ing context. Starting from the seminal work of Rémillard and Scaillet (2009), we
give two multiplier central limit theorems that suggest a fast asymptotically valid
goodness-of-fit procedure. As we shall see in Section 5, for n ≈ 1,500, some com-
putations that would typically require about a day when based on a parametric
bootstrap can be performed in minutes when based on the multiplier approach.

The second section of the paper is devoted to the asymptotic behavior
of the goodness-of-fit process

√
n(Cn−Cθn) under the null hypothesis, and to
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a brief presentation of the three most frequently used rank-based estimators
of θ. In Section 3, we give two multiplier central limit theorems that are at
the root of the proposed fast asymptotically valid goodness-of-fit procedures.
Section 4 discusses extensive simulation results for n = 75, 150 and 300, and
for three different rank-based estimators of the parameter θ. For n = 150, the
resulting estimated powers and levels are compared with those obtained in
Genest, Rémillard, and Beaudoin (2009) using a parametric bootstrap. The
proofs of the theorems and the details of the computations are relegated to the
appendices. The penultimate section is devoted to an application of the proposed
procedures to the modeling of dependence in well-known insurance data, while the
last section contains methodological recommendations and concluding remarks.

Finally, note that all the tests studied in this work are implemented in the
copula R package (Yan and Kojadinovic (2010)) available on the Comprehensive
R Archive Network (R Development Core Team (2009)).

2. Asymptotic Behavior of the Goodness-of-fit Process

In order to simplify the forthcoming expositions, we restrict our attention to
bivariate one-parameter families of copulas, although many of the derivations to
follow can be extended to the multivariate multiparameter case at the expense
of higher complexity. Thus, let O be an open subset of R, let C = {Cθ : θ ∈ O}
be an identifiable family of copulas, and assume that the true unknown copula
belongs to the family C, i.e., there exists a unique θ ∈ O such that C = Cθ.

The weak limit of the goodness-of-fit process (1.2) under the previous hy-
potheses partly follows from an important result that characterizes the asymp-
totic behavior of the empirical copula (see e.g., Gänssler and Stute (1987), Fer-
manian, Radulovic, and Wegkamp (2004), Tsukahara (2005)).

Theorem 1. Suppose that Cθ has continuous partial derivatives. Then the em-
pirical copula process

√
n(Cn − Cθ) converges weakly in `∞([0, 1]2) to the tight

centered Gaussian process

Cθ(u, v) = αθ(u, v) − C
[1]
θ (u, v)αθ(u, 1) − C

[2]
θ (u, v)αθ(1, v), u, v ∈ [0, 1],

where C
[1]
θ = ∂Cθ/∂u, C

[2]
θ = ∂Cθ/∂v, and αθ is a Cθ-Brownian bridge, i.e.,

a tight centered Gaussian process on [0, 1]2 with covariance function E[αθ(u, v)
αθ(u′, v′)] = Cθ(u ∧ u′, v ∧ v′) − Cθ(u, v)Cθ(u′, v′), u, v, u′, v′ ∈ [0, 1].

Let θn be an estimator of θ computed from (U1,n, V1,n), . . . , (Un,n, Vn,n). The
asymptotic behavior of the goodness-of-fit process (1.2) was studied in Quessy
(2005) (see also Berg and Quessy (2009)) under the following three natural as-
sumptions.
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A1. For all θ ∈ O, the partial derivatives C
[1]
θ and C

[2]
θ are continuous.

A2. For all θ ∈ O,
√

n(Cn − Cθ) and
√

n(θn − θ) jointly weakly converge to
(Cθ, Θ) in `∞([0, 1]2) ⊗ R.

A3. For all θ ∈ O, and as ε ↓ 0,

sup
|θ∗−θ|<ε

sup
u,v∈[0,1]

∣∣∣Ċθ∗(u, v) − Ċθ(u, v)
∣∣∣ → 0,

where Ċθ = ∂Cθ/∂θ.

Proposition 1. Under A1, A2, and A3, the goodness-of-fit process
√

n(Cn−Cθn)
converges weakly in `∞([0, 1]2) to the tight centered Gaussian process

Cθ(u, v) − ΘĊθ(u, v), u, v ∈ [0, 1]. (2.1)

Assumption A1 is necessary to be able to apply Theorem 1. Assumption A3
is required to ensure that the process

√
n(Cθn −Cθ) converges weakly to ΘĊθ(u),

see Quessy (2005); Berg and Quessy (2009), for more details. Assumption A2
then allows one to conclude that

√
n(Cn −Cθn) =

√
n(Cn −Cθ)−

√
n(Cθn −Cθ)

converges weakly to (2.1).
As can be seen, the weak limit (2.1) depends, through the random variable

Θ, on the estimator θn chosen to estimate the parameter θ. Three rank-based
estimation strategies are considered in this work; two of the most popular involve
the inversion of a consistent estimator of a moment of the copula. The two best-
known moments are Spearman’s rho and Kendall’s tau. For a bivariate copula
Cθ, these are, respectively,

ρ(θ) = 12
∫

[0,1]2
Cθ(u, v)dudv − 3 and τ(θ) = 4

∫
[0,1]2

Cθ(u, v)dCθ(u, v) − 1.

Let C be a bivariate copula family such that the functions ρ and τ are one-to-one.
Consistent estimators of θ are then given by θn,ρ = ρ−1(ρn) and θn,τ = τ−1(τn),
where ρn and τn are the sample versions of Spearman’s rho and Kendall’s tau,
respectively.

A more general rank-based estimation method was studied by Genest,
Ghoudi, and Rivest (1995) and Shih and Louis (1995) and consists of maximizing
the log pseudo-likelihood

log Ln(θ) =
n∑

i=1

log{cθ(Ui,n, Vi,n)},

where cθ denotes the density of the copula Cθ, assuming that it exists. As we
continue, the resulting estimator is denoted by θn,PL.
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3. Multiplier Goodness-of-fit Tests

The proposed fast goodness-of-fit tests are based on multiplier central limit
theorems that we state in the second subsection. These results partly rely on
those obtained in Rémillard and Scaillet (2009) to test the equality between two
copulas. However, an additional technical difficulty arises here from the fact that
the estimation of θ is required. The resulting fast goodness-of-fit procedure is
described in the last subsection.

3.1. Additional notation and setting

Let N be a large integer, and let Z
(k)
i , i ∈ {1, . . . , n}, k ∈ {1, . . . , N}, be

i.i.d. random variables with mean 0 and variance 1, independent of the data
(X1, Y1), . . . , (Xn, Yn). Moreover, for any k ∈ {1, . . . , N}, let

α(k)
n (u, v) =

1√
n

n∑
i=1

Z
(k)
i {1(Ui,n ≤ u, Vi,n ≤ v) − Cn(u, v)} (3.1)

=
1√
n

n∑
i=1

(Z(k)
i − Z̄(k))1(Ui,n ≤ u, Vi,n ≤ v), u, v ∈ [0, 1].

From Lemma A.1 in Rémillard and Scaillet (2009),(√
n(Hn − Cθ), α(1)

n , . . . , α(N)
n

)
Ã

(
αθ, α

(1)
θ , . . . , α

(N)
θ

)
in `∞([0, 1]2)⊗(N+1), where Hn is the empirical c.d.f. computed from the prob-
ability transformed data (Ui, Vi) = (F (Xi), G(Yi)), and where α

(1)
θ , . . . , α

(N)
θ are

independent copies of αθ. As consistent estimators of the partial derivatives C
[1]
θ

and C
[2]
θ , Rémillard and Scaillet (2009, Prop. A.2) suggest using

C [1]
n (u, v) =

1
2n−1/2

{
Cn(u + n−1/2, v) − Cn(u − n−1/2, v)

}
,

and
C [2]

n (u, v) =
1

2n−1/2

{
Cn(u, v + n−1/2) − Cn(u, v − n−1/2)

}
,

respectively. From the proof of Theorem 2.1 in Rémillard and Scaillet (2009), it
then follows that the empirical processes

C(k)
n (u, v) = α(k)

n (u, v) − C [1]
n (u, v)α(k)

n (u, 1) − C [2]
n (u, v)α(k)

n (1, v) (3.2)

can be regarded as approximate independent copies of the weak limit Cθ defined
in Theorem 1.

3.2. Multiplier central limit theorems

Before stating our first key result, we define a class of rank-based estimators
of the copula parameter θ. As we continue, let Θn =

√
n(θn − θ).
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Definition 1. A rank-based estimator θn of θ is said to belong to class R1 if

Θn =
1√
n

n∑
i=1

Jθ(Ui,n, Vi,n) + oP(1), (3.3)

where Jθ : [0, 1]2 → R is a score function that satisfies the following regularity
conditions:

(a) for all θ ∈ O, Jθ is bounded on [0, 1]2 and centered, i.e.,
∫
[0,1]2Jθ(u, v)dCθ(u, v)

= 0;

(b) for all θ ∈ O, the partial derivatives J
[1]
θ = ∂Jθ/∂u, J

[2]
θ = ∂Jθ/∂v, J

[1,1]
θ =

∂2Jθ/∂u2, J
[1,2]
θ = ∂2Jθ/∂u∂v, and J

[2,2]
θ = ∂2Jθ/∂v2 exist and are bounded

on [0, 1]2;

(c) for all θ ∈ O, the partial derivatives J̇θ = ∂Jθ/∂θ, J̇
[1]
θ = ∂J

[1]
θ /∂θ, and

J̇
[2]
θ = ∂J

[2]
θ /∂θ exist and are bounded on [0, 1]2;

(d) for all θ ∈ O, there exist cθ > 0 and Mθ > 0 such that, if |θ′ − θ| < cθ, then
|J̇θ′ | ≤ Mθ, |J̇

[1]
θ′ | ≤ Mθ, and |J̇ [2]

θ′ | ≤ Mθ.

It can be verified that, for the most popular bivariate one-parameter fami-
lies of copulas, the method-of-moment estimator θn,ρ mentioned in the previous
section belongs to class R1 (see e.g., Berg and Quessy (2009, Sec. 3)) as its score
function is given by

Jθ,ρ(u, v) =
1

ρ′(θ)
{12uv − 3 − ρ(θ)}, u, v ∈ [0, 1].

The following result, proved in Appendix A, is instrumental for verifying the
asymptotic validity of the fast goodness-of-fit procedure proposed in the next
subsection when it is based on estimators from class R1.

Theorem 2. Let θn be an estimator of θ belonging to class R1 and, for any
k ∈ {1, . . . , N}, let

Θ(k)
n =

1√
n

n∑
i=1

Z
(k)
i Jθn,i,n, (3.4)

where

Jθn,i,n = Jθn(Ui,n, Vi,n) +
1
n

n∑
j=1

J
[1]
θn

(Uj,n, Vj,n){1(Ui,n ≤ Uj,n) − Uj,n}

+
1
n

n∑
j=1

J
[2]
θn

(Uj,n, Vj,n){1(Vi,n ≤ Vj,n) − Vj,n}. (3.5)
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Then, under Assumptions A1 and A3,(√
n(Cn − Cθn), C(1)

n − Θ(1)
n Ċθn , . . . , C(N)

n − Θ(N)
n Ċθn

)
converges weakly to(

Cθ − ΘĊθ, C
(1)
θ − Θ(1)Ċθ, . . . , C

(N)
θ − Θ(N)Ċθ

)
(3.6)

in `∞([0, 1]2)⊗(N+1), where Θ is the weak limit of Θn =
√

n(θn−θ), and (C(1)
θ ,Θ(1)),

. . . , (C(N)
θ ,Θ(N)) are independent copies of (Cθ, Θ).

By replacing boundedness conditions in Definition 1 by more complex inte-
grability conditions, Genest and Rémillard (2008) have defined a more general
class of rank-based estimators of θ that also contains the maximum pseudo-
likelihood estimator θn,PL. For the latter, as shown in Genest, Ghoudi, and
Rivest (1995), the asymptotic representation (3.3) holds with the score function

Jθ,PL(u, v) =
[
E

{
ċθ(U, V )2

cθ(U, V )2

}]−1
ċθ(u, v)
cθ(u, v)

, u, v ∈ (0, 1),

where ċθ = ∂cθ/∂θ and (U, V ) = (F (X), G(Y )). An analogue of Theorem 2
remains to be proved for the above mentioned more general class of estimators.

We now define a second class of rank-based estimators of θ.

Definition 2. A rank-based estimator θn of θ is said to belong to class R2 if

Θn =
1√
n

n∑
i=1

Jθ(Ui, Vi) + oP(1), (3.7)

where (Ui, Vi) = (F (Xi), G(Yi)) for all i ∈ {1, . . . , n}, and Jθ : [0, 1]2 → R is a
score function that satisfies the following regularity conditions.

(a) for all θ∈O, Jθ is bounded on [0, 1]2 and centered, i.e.,
∫
[0,1]2 Jθ(u, v)dCθ(u, v)

= 0;

(b) for all θ ∈ O, the partial derivatives J
[1]
θ = ∂Jθ/∂u and J

[2]
θ = ∂Jθ/∂v exist

and are bounded on [0, 1]2;

(c) for all θ ∈ O, the partial derivative J̇θ = ∂Jθ/∂θ exists and is bounded on
[0, 1]2;

(d) for all θ ∈ O, there exist cθ > 0 and Mθ > 0 such that, if |θ′ − θ| < cθ, then
|J̇θ′ | ≤ Mθ.
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An application of Hájek’s projection method (see e.g., Hájek, Šidák, and Sen
(1999), Berg and Quessy (2009)) shows that the method-of-moment estimator
θn,τ can be expressed as in (3.7) with score function given by

Jθ,τ (u, v) =
4

τ ′(θ)

{
2Cθ(u, v) − u − v +

1 − τ(θ)
2

}
, u, v ∈ [0, 1].

It can be verified that, for the most popular bivariate one-parameter families of
copulas, θn,τ belongs to Class R2.

The following result, which is the analogue of Theorem 2 for Class R2 ensures
the asymptotic validity of the fast goodness-of-fit procedure proposed in the next
subsection when based on estimators from class R2. Its proof is omitted as it is
very similar to and simpler than that of Theorem 2.

Theorem 3. Let θn be an estimator of θ belonging to class R2 and, for any
k ∈ {1, . . . , N}, let

Θ(k)
n =

1√
n

n∑
i=1

Z
(k)
i Jθn,i,n, where Jθn,i,n = Jθn(Ui,n, Vi,n). (3.8)

Then, under Assumptions A1 and A3,(√
n(Cn − Cθn), C(1)

n − Θ(1)
n Ċθn , . . . , C(N)

n − Θ(N)
n Ċθn

)
converges weakly to(

Cθ − ΘĊθ, C
(1)
θ − Θ(1)Ċθ, . . . , C

(N)
θ − Θ(N)Ċθ

)
in `∞([0, 1]2)⊗(N+1), where (C(1)

θ , Θ(1)), . . . , (C(N)
θ , Θ(N)) are independent copies

of (Cθ, Θ).

3.3. Goodness-of-fit procedure

Theorems 2 and 3 suggest adopting the following fast goodness-of-fit proce-
dure.

1. Compute Cn from the pseudo-observations (U1,n, V1,n), . . . , (Un,n, Vn,n) us-
ing (1.1), and estimate θ using an estimator from Class R1 or R2.

2. Compute the Cramér-von Mises statistic

Sn =
∫

[0,1]2
n{Cn(u, v) − Cθn(u, v)}2dCn(u, v)

=
n∑

i=1

{Cn(Ui,n, Vi,n) − Cθn(Ui,n, Vi,n)}2.
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3. For some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:
(a) Generate n i.i.d. random variates Z

(k)
1 , . . . , Z

(k)
n with expectation 0 and

variance 1.

(b) Form an approximate realization of the test statistic under H0 by

S(k)
n =

∫
[0,1]2

{
C(k)

n (u, v) − Θ(k)
n Ċθn(u, v)

}2
dCn(u, v)

=
1
n

n∑
i=1

{
C(k)

n (Ui,n, Vi,n) − Θ(k)
n Ċθn(Ui,n, Vi,n)

}2
,

where C(k)
n is defined by (3.2), and Θ(k)

n by (3.4) or (3.8).

4. An approximate p-value for the test is finally given by N−1
∑N

k=1 1(S(k)
n ≥ Sn).

The proposed procedure differs from the parametric bootstrap-based proce-
dure considered in Genest and Rémillard (2008), Genest, Rémillard, and Beau-
doin (2009) and Berg (2009) only in Step 3. Instead of using multipliers, Step 3
of the parametric bootstrap-based procedure relies on random number genera-
tion from the fitted copula and estimation of the copula parameter to obtain
approximate independent realizations of the test statistic under H0. We detail
Step 3 of the parametric bootstrap-based procedure.

3. For some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:
(a) Generate a random sample (U (k)

1 , V
(k)
1 ), . . . , (U (k)

n , V
(k)
n ) from copula

Cθn and deduce the associated pseudo-observations (U (k)
1,n , V

(k)
1,n ), . . . , (U (k)

n,n,

V
(k)
n,n ).

(b) Let C
(k)
n and θ

(k)
n stand for the versions of Cn and θn derived from the

pseudo-observations (U (k)
1,n , V

(k)
1,n ), . . . , (U (k)

n,n, V
(k)
n,n ).

(c) Form an approximate realization of the test statistic under H0 as

S(k)
n =

n∑
i=1

{C(k)
n (U (k)

i,n , V
(k)
i,n ) − C

θ
(k)
n

(U (k)
i,n , V

(k)
i,n )}2.

The multiplier procedure can be very rapidly implemented. Indeed, one first
needs to compute the n × n matrix Mn whose elements are

Mn(i, j) = 1(Ui,n ≤ Uj,n, Vi,n ≤ Vj,n) − Cn(Uj,n, Vj,n)

−C [1]
n (Uj,n, Vj,n){1(Ui,n ≤ Uj,n) − Uj,n}

−C [2]
n (Uj,n, Vj,n){1(Vi,n ≤ Vj,n) − Vj,n} − Jθn,i,nĊθn(Uj,n, Vj,n).
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Then, to get one approximate realization of the test statistic under the null
hypothesis, it suffices to generate n i.i.d. random variates Z1, . . . , Zn with expec-
tation 0 and variance 1, and to perform simple arithmetic operations involving
the Zi’s and the columns of matrix Mn.

Although an analogue of Theorem 2 and Theorem 3 remains to be proved
for the maximum pseudo-likelihood estimator, we study the finite sample per-
formance of the corresponding multiplier goodness-of-fit procedure in the next
section. Its implementation (in a more general multivariate multiparameter con-
text) is the subject of a companion paper (Kojadinovic and Yan (2011)).

4. Finite-sample Performance

The finite-sample performance of the proposed goodness-of-fit tests was as-
sessed in a large-scale simulation study. The experimental design of the study
was very similar to that considered in Genest, Rémillard, and Beaudoin (2009).
Six bivariate one-parameter families of copulas were considered: the Clayton,
Gumbel, Frank, normal, t (with ν = 4 degrees of freedom), and Plackett (see
Table 4 for more details). They are abbreviated as C, G, F, N, t4, and P, respec-
tively, in the forthcoming tables. Each one served both as true and hypothesized
copula. The sample size n = 150 was considered in order to allow a compar-
ison with the simulation results presented in Genest, Rémillard, and Beaudoin
(2009) obtained using the parametric bootstrap-based procedure described in the
previous section in which estimation of the parameter was carried by inverting
Kendall’s tau. Note that we have not attempted to reproduce these results as
they were obtained after an extensive use of high-performance computing grids.
To make this empirical study more insightful, simulations were also carried out
for n = 75 and 300. Three levels of dependence were considered, corresponding
to a Kendall’s tau of 0.25, 0.5 and 0.75.

Three multiplier goodness-of-fit tests were compared, differing according to
the method used for estimating the unknown parameter θ of the hypothesized
copula family. The three tests, based on Kendall’s tau, Spearman’s rho, and
maximum pseudo-likelihood, are abbreviated as M-τ , M-ρ and M-PL. Similarly,
the parametric bootstrap procedure based on Kendall’s tau empirically studied
in Genest, Rémillard, and Beaudoin (2009) is denoted by PB-τ . In all executions
of the multiplier-based tests, we used standard normal variates for the Zi’s in the
procedure given in Subsection 3.3. As standard normal variates led to satisfactory
results, we did not investigate the use of other types of multipliers. Also, the
number of iterations N was fixed to 1,000, equivalent to using 1,000 bootstrap
samples for PB-τ . For each testing scenario, 10,000 repetitions were performed
to estimate the level or power of each of the three tests under consideration.
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For n = 75 (results not reported), the empirical levels of the three tests
appeared overall to be too liberal. As n was increased to 150, the agreement
between the empirical levels (in bold in Table 1) and the 5% nominal level seemed
globally satisfactory, except for M-PL when data arise from the Clayton copula
or from the Packett copula with τ = 0.75. The empirical levels in Table 2 confirm
that, as the sample size reaches 300, the multiplier approach provided, overall, an
accurate approximation to the null distribution of the test statistics. In terms of
power, as expected, the rejection percentages increased quite substantially when
n went from 75 to 150, and then to 300.

From Theorems 2 and 3 and the work of Genest and Rémillard (2008), we
know that the empirical processes involved in the multiplier and the parametric
bootstrap-based tests are asymptotically equivalent if estimation is based on the
inversion of Spearman’s rho or Kendall’s tau. The results presented in Table 1
for M-τ and PB-τ also suggest that their finite-sample performances are fairly
close.

From the presented results, it appears that the method chosen for estimating
the parameter of the hypothesized copula family can greatly influence the power
of the approach. For instance, from Tables 1 and 2, M-PL seems to perform
particularly well when the hypothesized copula is the Plackett copula and the
dependence is high. The procedure M-PL appears to give the best results overall.
It is followed by M-τ .

5. Illustrative Example

The insurance data of Frees and Valdez (1998) are frequently used for illus-
tration purposes in copula modeling (see e.g., Klugman and Parsa (1999), Genest,
Quessy, and Rémillard (2006), Ben Ghorbal, Genest, and Nešlehová (2009)). The
two variables of interest are an indemnity payment and the corresponding allo-
cated loss adjustment expense, and were observed for 1500 claims of an insurance
company. Following Genest, Quessy, and Rémillard (2006), we restrict ourselves
to the 1466 uncensored claims.

The data under consideration contain a non negligible number of ties. As
demonstrated in Kojadinovic and Yan (2010b), ignoring the ties, by using for
instance mid-ranks in the computation of the pseudo-observations, may affect the
results qualitatively. For these reasons, when computing the pseudo-observations,
we assigned ranks at random in case of ties. This was done using the R function
rank with its argument ties.method set to "random". The random seed that
we used is 1224. The approximate p-values of the multiplier goodness-of-fit tests
and the corresponding parametric bootstrap-based procedures computed with
N =10,000 are given in Table 3.
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Among the six bivariate copulas, only the Gumbel family is not rejected
at the 5% significance level, which might be attributed to the extreme value
dependence in the data (Ben Ghorbal, Genest, and Nešlehová (2009)). This
is in accordance with the results obtained e.g., in Chen and Fan (2005) using
pseudo-likelihood ratio tests, or in Genest, Quessy, and Rémillard (2006) using
a goodness-of-fit procedure based on Kendall’s transform. In addition to the p-
values, the timings, performed on one 2.33 GHz processor, are provided. These
are based on our mixed R and C implementation of the tests available in the
copula R package. As one can notice, the use of the multiplier tests results in a
large computational gain while the conclusions remain the same.

To ensure that the randomization does not affect the results qualitatively, the
tests based on the pseudo-observations computed with ties.method = "random"
were performed a large number of times in Kojadinovic and Yan (2010b). The nu-
merical summaries presented in the latter study indicate that the randomization
does not affect the conclusions qualitatively for these data.

6. Discussion

The previous illustrative example highlights the most important advan-
tage of the studied procedures over their parametric bootstrap-based coun-
terparts: the former can be much faster. From the simulation results presented
in Section 4, we also expect the multiplier tests to be at least as powerful as
the parametric bootstrap-based ones for larger n. In other words, the pro-
posed multiplier procedures appear as appropriate large-sample substitutes to
the parametric bootstrap-based goodness-of-fit tests used in Genest, Rémillard,
and Beaudoin (2009) and Berg (2009), and studied theoretically in Genest and
Rémillard (2008).

From a practical perspective, the results presented in Section 4 indicate that
the multiplier approach can be safely used even in the case of samples of size as
small as 150 as long as estimation is based on Kendall’s tau or Spearman’s rho.
As n reaches 300, all three tests, included the one based on the maximization of
the pseudo-likelihood, appear to hold their nominal level. The latter version of
the test also seems to be the most powerful in general.

From the timings presented in the previous section, we see that the computa-
tional gain resulting from the use of the multiplier approach appears to be much
more pronounced when estimation is based on the maximization of the pseudo-
likelihood. This is of particular practical importance as, in a general multivariate
multiparameter context, the latter estimation method becomes the only possible
choice. The finite-sample performance of the maximum pseudo-likelihood version
of the multiplier test was recently studied in a companion paper for multiparam-
eter copulas of dimension 3 and 4 (Kojadinovic and Yan (2011)). The results of
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Table 3. Approximate p-values computed with N = 10,000 and timings of
the goodness-of-fit tests M-τ , M-PL, M-ρ, PB-τ , PB-PL and PB-ρ for the
insurance data. The timings were performed on one 2.33 GHz processor.

Estimation Copula M PB
method p-value time (min) p-value time (min)

τ C 0.000 4.7 0.000 41.3
G 0.246 4.7 0.236 41.7
F 0.000 4.7 0.000 68.1
N 0.000 4.8 0.000 166.4
t4 0.000 4.7 0.000 169.4
P 0.000 4.7 0.000 41.6

Total 28.3 528.5

PL C 0.000 4.8 0.000 447.1
G 0.179 4.7 0.169 107.8
F 0.000 4.7 0.000 147.7
N 0.000 4.8 0.000 824.5
t4 0.000 4.8 0.000 1053.7
P 0.000 4.7 0.000 98.4

Total 28.5 2679.3

ρ C 0.000 4.7 0.000 6.4
G 0.271 4.7 0.262 6.7
F 0.000 4.7 0.000 46.9
N 0.000 4.7 0.000 151.1
t4 0.000 4.7 0.000 155.1
P 0.000 4.7 0.000 22.1

Total 28.2 388.2

the large-scale Monte Carlo experiments reported therein confirm the satisfac-
tory behavior of the multiplier approach in this higher dimensional context. For
all these reasons, it would be important to obtain an analogue of Theorem 2 and
Theorem 3 for the maximum pseudo-likelihood estimator.

Appendix

A: Proof of Theorem 2.

Let (Ui, Vi) = (F (Xi), G(Yi)) for all i ∈ {1, . . . , n}, and let Fn and Gn be
the rescaled empirical c.d.f.s computed from the unobservable random samples
U1, . . . , Un and V1, . . . , Vn respectively, i.e.,

Fn(u)=
1

n+1

n∑
i=1

1(Ui ≤ u), and Gn(v)=
1

n+1

n∑
i=1

1(Vi≤v), u, v∈ [0, 1].
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It is then easy to verify that, for any i ∈ {1, . . . , n}, Ui,n = Fn(Ui) and Vi,n =
Gn(Vi).

The proof of Theorem 2 is based on five lemmas. In their proofs, we have
sometimes delayed the use of the conditions stated in Definition 1 so that the
reader can identify the difficulties associated with considering the more general
class of estimators defined in Genest and Rémillard (2008, Def. 4).

Lemma 1. Let θn be an estimator of θ belonging to class R1. Then,

Θn =
√

n(θn − θ) =
1√
n

n∑
i=1

Jθ(Ui, Vi) +
1√
n

n∑
i=1

J
[1]
θ (Ui, Vi){Fn(Ui) − Ui}

+
1√
n

n∑
i=1

J
[2]
θ (Ui, Vi){Gn(Vi) − Vi} + oP(1).

Proof. By the second-order Mean Value Theorem, we have

Jθ{Fn(Ui), Gn(Vi)} = Jθ(Ui, Vi) + J
[1]
θ (Ui, Vi){Fn(Ui) − Ui}

+J
[2]
θ (Ui, Vi){Gn(Vi) − Vi} + Ri,n,

where

Ri,n =
1
2
J

[1,1]
θ (U [1]

i,n, V
[1]
i,n ){Fn(Ui) − Ui}2 +

1
2
J

[2,2]
θ (U [2]

i,n, V
[2]
i,n ){Gn(Vi) − Vi}2

+J
[1,2]
θ (U [3]

i,n, V
[3]
i,n ){Fn(Ui) − Ui}{Gn(Vi) − Vi},

and where, for any k ∈ {1, 2, 3}, U
[k]
i,n is between Ui and Fn(Ui), and V

[k]
i,n is

between Vi and Gn(Vi). Then

1√
n

n∑
i=1

Jθ{Fn(Ui), Gn(Vi)}

=
1√
n

n∑
i=1

Jθ(Ui, Vi) +
1√
n

n∑
i=1

J
[1]
θ (Ui, Vi){Fn(Ui) − Ui}

+
1√
n

n∑
i=1

J
[2]
θ (Ui, Vi){Gn(Vi) − Vi} +

1√
n

n∑
i=1

Ri,n.

Furthermore,∣∣∣∣∣ 1√
n

n∑
i=1

Ri,n

∣∣∣∣∣
≤ sup

u∈[0,1]
|Fn(u) − u| × sup

u∈[0,1]
|
√

n{Fn(u) − u}| × 1
2n

n∑
i=1

|J [1,1]
θ (U [1]

i,n, V
[1]
i,n )|
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+ sup
v∈[0,1]

|Gn(v) − v| × sup
v∈[0,1]

|
√

n{Gn(v) − v}| × 1
2n

n∑
i=1

|J [2,2]
θ (U [2]

i,n, V
[2]
i,n )|

+ sup
u∈[0,1]

|Fn(u) − u| × sup
v∈[0,1]

|
√

n{Gn(v) − v}| × 1
n

n∑
i=1

|J [1,2]
θ (U [3]

i,n, V
[3]
i,n )|.

The result follows from the fact that the second-order derivatives of Jθ are
bounded on [0, 1]2, that supu∈[0,1] |

√
n{Fn(u)−u}| converges in distribution, and

that supu∈[0,1] |Fn(u) − u| P→ 0.

Lemma 2. Let Jθ be the score function of an estimator of θ belonging to class
R1 and, for any i ∈ {1, . . . , n}, let

J̃θ,i,n = Jθ(Ui, Vi) +
1
n

n∑
j=1

J
[1]
θ (Uj , Vj){1(Ui ≤ Uj) − Uj}

+
1
n

n∑
j=1

J
[2]
θ (Uj , Vj){1(Vi ≤ Vj) − Vj}. (A.1)

Then, for any k ∈ {1, . . . , N}, we have

1√
n

n∑
i=1

Z
(k)
i (Jθ,i,n − J̃θ,i,n) P→ 0,

where Jθ,i,n is defined as in (3.5) with θn replaced by θ.

Proof. For any i ∈ {1, . . . , n}, let Aθ,i,n = Jθ{Fn(Ui), Gn(Vi)} − Jθ(Ui, Vi), and
let

Bθ,i,n =
1
n

n∑
j=1

J
[1]
θ {Fn(Uj), Gn(Vj)}[1{Fn(Ui) ≤ Fn(Uj)} − Fn(Uj)]

− 1
n

n∑
j=1

J
[1]
θ (Uj , Vj){1(Ui ≤ Uj) − Uj},

and let

B′
θ,i,n =

1
n

n∑
j=1

J
[2]
θ {Fn(Uj), Gn(Vj)}[1{Gn(Vi) ≤ Gn(Vj)} − Gn(Vj)]

− 1
n

n∑
j=1

J
[2]
θ (Uj , Vj){1(Vi ≤ Vj) − Vj}.
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Let k ∈ {1, . . . , N}. Then, from (3.5) and (A.1), we obtain

1√
n

n∑
i=1

Z
(k)
i (Jθ,i,n − J̃θ,i,n)

=
1√
n

n∑
i=1

Z
(k)
i Aθ,i,n +

1√
n

n∑
i=1

Z
(k)
i Bθ,i,n +

1√
n

n∑
i=1

Z
(k)
i B′

θ,i,n.

By the Mean Value Theorem, we have

1√
n

n∑
i=1

Z
(k)
i Aθ,i,n =

1√
n

n∑
i=1

Z
(k)
i J

[1]
θ (U [1]

i,n, V
[1]
i,n ){Fn(Ui) − Ui}

+
1√
n

n∑
i=1

Z
(k)
i J

[2]
θ (U [2]

i,n, V
[2]
i,n ){Gn(Vi) − Vi},

where, for any k = 1, 2, U
[k]
i,n (resp. V

[k]
i,n ) is between Ui and Fn(Ui) (resp. Vi and

Gn(Vi)). Let Dθ,n = n−1/2
∑n

i=1 Z
(k)
i J

[1]
θ (U [1]

i,n, V
[1]
i,n ){Fn(Ui) − Ui}. It is easy to

check that Dθ,n has mean 0 and variance E(D2
θ,n) = n−1

∑n
i=1 E[{J [1]

θ (U [1]
i,n, V

[1]
i,n )}2

{Fn(Ui) − Ui}2]. Then,

E(D2
θ,n) ≤ 1

n

n∑
i=1

E

[
{J [1]

θ (U [1]
i,n, V

[1]
i,n )}2 × { sup

u∈[0,1]
|Fn(u) − u|}2

]

≤ sup
u,v∈[0,1]

{J [1]
θ (u, v)}2 × E

[
{ sup

u∈[0,1]
|Fn(u) − u|}2

]
.

The right-hand side tends to 0 as a consequence of the Dominated Convergence
Theorem. Hence, Dθ,n

P→ 0. Similarly, one has that n−1/2
∑n

i=1Z
(k)
i J

[2]
θ (U [2]

i,n, V
[2]
i,n )

{Gn(Vi) − Vi}
P→ 0. It follows that n−1/2

∑n
i=1 Z

(k)
i Aθ,i,n

P→ 0.
It remains to show that n−1/2

∑n
i=1 Z

(k)
i Bθ,i,n and n−1/2

∑n
i=1 Z

(k)
i B′

θ,i,n con-
verge to zero in probability. First, using the fact that 1{Fn(Ui) ≤ Fn(Uj)} =
1(Ui ≤ Uj), notice that Bθ,i,n can be expressed as

Bθ,i,n =
1
n

n∑
j=1

J
[1]
θ {Fn(Uj), Gn(Vj)} {1(Ui ≤ Uj) − Fn(Uj)}

− 1
n

n∑
j=1

J
[1]
θ (Uj , Vj){1(Ui ≤ Uj) − Fn(Uj) + Fn(Uj) − Uj},

which implies that n−1/2
∑n

i=1 Z
(k)
i Bθ,i,n can be rewritten as the difference of
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Hθ,n =
1√
n

n∑
i=1

Z
(k)
i

 1
n

n∑
j=1

[
J

[1]
θ {Fn(Uj), Gn(Vj)}−J

[1]
θ (Uj , Vj)

]
{1(Ui≤Uj)−Fn(Uj)}

 ,

and

H ′
θ,n =

 1
n

n∑
j=1

J
[1]
θ (Uj , Vj){Fn(Uj) − Uj}

[
1√
n

n∑
i=1

Z
(k)
i

]
.

Now, Hθ,n can be rewritten as

Hθ,n =
1
n

n∑
j=1

[
J

[1]
θ {Fn(Uj), Gn(Vj)} − J

[1]
θ (Uj , Vj)

]

×

[
1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ Uj) − Uj}−{Fn(Uj)−Uj} ×

1√
n

n∑
i=1

Z
(k)
i

]
.

Therefore,

|Hθ,n|

≤

[
sup

u∈[0,1]

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ u) − u}

∣∣∣∣∣ + sup
u∈[0,1]

|Fn(u) − u| ×

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i

∣∣∣∣∣
]

× 1
n

n∑
j=1

∣∣∣J [1]
θ {Fn(Uj), Gn(Vj)} − J

[1]
θ (Uj , Vj)

∣∣∣ .

From the Multiplier Central Limit Theorem (see e.g., Kosorok (2008, Thm. 10.1))
and the Continuous Mapping Theorem, we have that

sup
u∈[0,1]

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ u) − u}

∣∣∣∣∣ Ã sup
u∈[0,1]

|αθ(u, 1)|.

Furthermore, from the Mean Value Theorem, one can write

1
n

n∑
j=1

∣∣∣J [1]
θ {Fn(Uj), Gn(Vj)} − J

[1]
θ (Uj , Vj)

∣∣∣
≤ 1

n

n∑
j=1

∣∣∣J [1,1]
θ (U [1]

j,n, V
[1]
j,n)

∣∣∣ |Fn(Uj)−Uj |+
1
n

n∑
j=1

∣∣∣J [1,2]
θ (U [2]

j,n, V
[2]
j,n)

∣∣∣ |Gn(Vj)−Vj |,
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which implies that

1
n

n∑
j=1

∣∣∣J [1]
θ {Fn(Uj), Gn(Vj)} − J

[1]
θ (Uj , Vj)

∣∣∣
≤ sup

u∈[0,1]
|Fn(u) − u| × 1

n

n∑
j=1

∣∣∣J [1,1]
θ (U [1]

j,n, V
[1]
j,n)

∣∣∣
+ sup

u∈[0,1]
|Gn(u) − u| × 1

n

n∑
j=1

∣∣∣J [1,2]
θ (U [2]

j,n, V
[2]
j,n)

∣∣∣ .

Since the second-order derivatives of Jθ are bounded on [0, 1]2, the right-hand
side converges to 0 in probability and hence Hθ,n

P→ 0. For H ′
θ,n, we can write

|H ′
θ,n| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i

∣∣∣∣∣ × sup
u∈[0,1]

|Fn(u) − u| × 1
n

n∑
j=1

|J [1]
θ (Uj , Vj)|.

It follows that H ′
θ,n

P→ 0. By symmetry, n−1/2
∑n

i=1 Z
(k)
i B′

θ,i,n
P→ 0.

Lemma 3. Let θn be an estimator of θ belonging to class R1. Then, for any
k ∈ {1, . . . , N}, we have

1√
n

n∑
i=1

Z
(k)
i (Jθn,i,n − Jθ,i,n) P→ 0,

where Jθn,i,n is defined in (3.5).

Proof. Let k ∈ {1, . . . , N}. Starting from (3.5), for any i ∈ {1, . . . , n}, one has

Jθn,i,n − Jθ,i,n = Jθn(Ui,n, Vi,n) − Jθ(Ui,n, Vi,n)

+
1
n

n∑
j=1

{J [1]
θn

(Uj,n, Vj,n) − J
[1]
θ (Uj,n, Vj,n)}{1(Ui ≤ Uj) − Uj,n}

+
1
n

n∑
j=1

{J [2]
θn

(Uj,n, Vj,n) − J
[2]
θ (Uj,n, Vj,n)}{1(Vi ≤ Vj) − Vj,n}.

From the Mean-Value Theorem, for any i ∈ {1, . . . , n}, there exist θi,n, θ′i,n and
θ′′i,n between θ and θn such that

Jθn,i,n − Jθ,i,n

= J̇θi,n
(Ui,n, Vi,n)(θn − θ) +

1
n

n∑
j=1

J̇
[1]
θ′j,n

(Uj,n, Vj,n)(θn − θ){1(Ui ≤ Uj) − Uj,n}
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+
1
n

n∑
j=1

J̇
[2]
θ′′j,n

(Uj,n, Vj,n)(θn − θ){1(Vi ≤ Vj) − Vj,n}.

It follows that

1√
n

n∑
i=1

Z
(k)
i (Jθn,i,n − Jθ,i,n)

= (θn − θ) × 1√
n

n∑
i=1

Z
(k)
i J̇θi,n

(Ui,n, Vi,n)

+(θn − θ) × 1
n

n∑
j=1

J̇
[1]
θ′j,n

(Uj,n, Vj,n)
1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ Uj) − Uj,n}

+(θn − θ) × 1
n

n∑
j=1

J̇
[2]
θ′′j,n

(Uj,n, Vj,n)
1√
n

n∑
i=1

Z
(k)
i {1(Vi ≤ Vj) − Vj,n}. (A.2)

Let Kn = n−1/2
∑n

i=1 Z
(k)
i J̇θi,n

(Ui,n, Vi,n), and let us show that Ln = (θn −
θ)Kn

P→ 0. First, define

K ′
n =

1√
n

n∑
i=1

Z
(k)
i J̇θi,n

(Ui,n, Vi,n)1{|J̇θi,n
(Ui,n, Vi,n)| ≤ Mθ},

and

K ′′
n =

1√
n

n∑
i=1

Z
(k)
i J̇θi,n

(Ui,n, Vi,n)1{|J̇θi,n
(Ui,n, Vi,n)| > Mθ},

where Mθ is defined in Condition (d) of Definition 1. Clearly, Kn = K ′
n + K ′′

n.
Let us now show that K ′′

n
P→ 0. Let δ > 0 be given. Then, for n sufficiently large,

P(|θn − θ| < cθ) > 1 − δ. Hence,

1 − δ < P(|θn − θ| < cθ) ≤ P

(
n∩

i=1

{|θi,n − θ| < cθ}

)

≤ P

(
n∩

i=1

{|J̇θi,n
(Ui,n, Vi,n)| < Mθ}

)
,

which implies that P
(∪n

i=1{1(|J̇θi,n
(Ui,n, Vi,n)| > Mθ) > 0}

)
< δ, which in turn

implies that K ′′
n

P→ 0.
To show that Ln = (θn−θ)K ′

n+(θn−θ)K ′′
n

P→ 0, it therefore remains to show
that (θn − θ)K ′

n
P→ 0. Let ε, δ > 0 be given and choose Mδ such M2

θ /M2
δ < δ/2.

Then,
P(|θn − θ||K ′

n| > ε) ≤ P(|θn − θ| >
ε

Mδ
) + P(|K ′

n| > Mδ).
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Now, let n be sufficiently large so that P(|θn − θ| > ε/Mδ) < δ/2. Furthermore,
by Markov’s inequality and the fact that

E(K ′2
n ) =

1
n

n∑
i=1

E
[
{J̇θi,n

(Ui,n, Vi,n)}21{|J̇θi,n
(Ui,n, Vi,n)| ≤ Mθ}

]
≤ M2

θ ,

we have that

P(|K ′
n| > Mδ) ≤

E(K ′2
n )

M2
δ

≤
M2

θ

M2
δ

<
δ

2
.

We therefore obtain that Ln
P→ 0.

To obtain the desired result, it remains to show that the second and third
terms on the right side of (A.2) converge to 0 in probability. We shall only deal
with the second term as the proof for the third term is similar. First, notice that∣∣∣∣∣∣ 1n

n∑
j=1

J̇
[1]
θ′j,n

(Uj,n, Vj,n)
1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ Uj) − Uj + Uj − Uj,n}

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

|J̇ [1]
θ′j,n

(Uj,n, Vj,n)|

[
sup

u∈[0,1]

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ u) − u}

∣∣∣∣∣
+ sup

u∈[0,1]
|Fn(u) − u| ×

∣∣∣∣∣ 1√
n

n∑
i=1

Z
(k)
i

∣∣∣∣∣
]

.

It is easy to verify that the term between square brackets on the right side of
the previous inequality converges in distribution. To obtain the desired result,
it therefore suffices to show that |θn − θ| × n−1

∑n
j=1 |J̇

[1]
θ′j,n

(Uj,n, Vj,n)| P→ 0. Let
ε > 0 be given. Then,

P

|θn − θ| 1
n

n∑
j=1

|J̇ [1]
θ′j,n

(Uj,n, Vj,n)| < ε


≥ P

|θn − θ| <
ε

Mθ
,
1
n

n∑
j=1

|J̇ [1]
θ′j,n

(Uj,n, Vj,n)| ≤ Mθ


≥ P

|θn − θ| <
ε

Mθ
,

n∩
j=1

{|θ′j,n − θ| < cθ}

 → 1.
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Lemma 4. Let Jθ be the score function of an estimator of θ belonging to class
R1. Then,

1√
n

n∑
i=1

[
1
n

n∑
j=1

J
[1]
θ (Uj , Vj){1(Ui ≤ Uj) − Uj}

−
∫

[0,1]2
J

[1]
θ (u, v){1(Ui ≤ u) − u}dCθ(u, v)

]
P→ 0,

and
1√
n

n∑
i=1

[
1
n

n∑
j=1

J
[2]
θ (Uj , Vj){1(Vi ≤ Vj) − Vj}

−
∫

[0,1]2
J

[2]
θ (u, v){1(Vi ≤ v) − v}dCθ(u, v)

]
P→ 0.

Proof. It can be verified that the first term and the second term have mean 0
and, that the variance of the first term and the variance of the second term tend
to zero, which implies that the terms tend to zero in probability.

Lemma 5. Let Jθ be the score function of an estimator of θ belonging to class
R1. For any k ∈ {1, . . . , N}, we have

1√
n

n∑
i=1

Z
(k)
i

[
1
n

n∑
j=1

J
[1]
θ (Uj , Vj){1(Ui ≤ Uj) − Uj}

−
∫

[0,1]2
J

[1]
θ (u, v){1(Ui ≤ u) − u}dCθ(u, v)

]
P→ 0,

and
1√
n

n∑
i=1

Z
(k)
i

[
1
n

n∑
j=1

J
[2]
θ (Uj , Vj){1(Vi ≤ Vj) − Vj}

−
∫

[0,1]2
J

[2]
θ (u, v){1(Vi ≤ v) − v}dCθ(u, v)

]
P→ 0.

Proof. The proof is similar to that of Lemma 4.

Proof of Theorem 2. Let α̃n =
√

n(Hn −Cθ), where Hn is the empirical c.d.f.
computed from (U1, V1), . . . , (Un, Vn), and, for any k ∈ {1, . . . , N}, let

α̃(k)
n (u, v) =

1√
n

n∑
i=1

Z
(k)
i {1(Ui ≤ u, Vi ≤ v) − Cθ(u, v)} , u, v ∈ [0, 1].
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From the results given on page 383 of Rémillard and Scaillet (2009) and the
Multiplier Central Limit Theorem (see e.g., Kosorok (2008, Thm. 10.1)), we
have that (

α̃n, α̃(1)
n , α(1)

n , . . . , α̃(N)
n , α(N)

n

)
converges weakly to (

αθ, α
(1)
θ , α

(1)
θ , . . . , α

(N)
θ , α

(N)
θ

)
in (`∞([0, 1]2))⊗2N+1, where α

(k)
n is defined in (3.1), and α

(1)
θ , . . . , α

(N)
θ are inde-

pendent copies of αθ. Furthermore, from Lemma 1 and Lemma 4, we have that
Θn = Θ̃n + oP (1), where Θ̃n = n−1/2

∑n
i=1 J̃θ,i, and where

J̃θ,i = Jθ(Ui, Vi) +
∫

[0,1]2
J

[1]
θ (u, v){1(Ui ≤ u) − u}dCθ(u, v)

+
∫

[0,1]2
J

[2]
θ (u, v){1(Vi ≤ v) − v}dCθ(u, v).

Similarly, from Lemmas 2 and 3, we obtain that Θ(k)
n and n−1/2

∑n
i=1 Z

(k)
i J̃θ,i,n

are asymptotically equivalent, where J̃θ,i,n is defined by (A.1). Then, from
Lemma 5, it follows that Θ(k)

n and Θ̃(k)
n = n−1/2

∑n
i=1 Z

(k)
i J̃θ,i are asymptoti-

cally equivalent. Hence,(
α̃n(u, v), Θn, α(1)

n (u, v), Θ(1)
n , . . . , α(N)

n (u, v), Θ(N)
n

)
=

(
α̃n(u, v), Θ̃n, α̃(1)

n (u, v), Θ̃(1)
n , . . . , α̃(N)

n (u, v), Θ̃(N)
n

)
+ Rn(u, v), (A.3)

where sup(u,v)∈[0,1]2 |Rn(u, v)| P→ 0. Now, (α̃n(u, v), Θ̃n, α̃
(1)
n (u, v), Θ̃(1)

n , . . .,

α̃
(N)
n (u, v), Θ̃(N)

n ) can be written as the sum of i.i.d. random vectors

1√
n

n∑
i=1

(
{1(Ui ≤ u, Vi ≤ v)−Cθ(u, v)}, J̃θ,i, Z

(1)
i {1(Ui ≤ u, Vi ≤ v)−Cθ(u, v)},

Z
(1)
i J̃θ,i, . . . , Z

(N)
i {1(Ui ≤ u, Vi ≤ v) − Cθ(u, v)}, Z(N)

i J̃θ,i

)
,

which, from the Multivariate Central Limit Theorem, converges in distribution
to (

αθ(u, v), Θ, α
(1)
θ (u, v), Θ(1), . . . , α

(N)
θ (u, v), Θ(N)

)
,

where (α(1)
θ (u, v), Θ(1)), . . . , (α(N)

θ (u, v), Θ(N)) are independent copies of (αθ(u, v),
Θ). Similarly, for any finite collection of points (u1, v1), . . . , (uk, vk) in [0, 1]2,
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α̃n(u1, v1), . . . , α̃n(uk, vk), Θ̃n, α̃(1)

n (u1, v1), . . . , α̃(1)
n (uk, vk), Θ̃(1)

n , . . .

. . . α̃(N)
n (u1, v1), . . . , α̃(N)

n (uk, vk), Θ̃(N)
n

)
converges in distribution, i.e., we have convergence of the finite dimensional dis-
tributions. Tightness follows from the fact that α̃n and α̃

(k)
n each converge weakly

in `∞([0, 1]2), so we obtain that(
α̃n, Θ̃n, α̃(1)

n , Θ̃(1)
n , . . . , α̃(N)

n , Θ̃(N)
n

)
Ã

(
αθ, Θ, α

(1)
θ ,Θ(1), . . . , α

(N)
θ , Θ(N)

)
in (`∞([0, 1]2) ⊗ R)⊗N+1. It follows from (A.3) that(

α̃n, Θn, α(1)
n , Θ(1)

n , . . . , α(N)
n ,Θ(N)

n

)
Ã

(
αθ, Θ, α

(1)
θ ,Θ(1), . . . , α

(N)
θ , Θ(N)

)
in (`∞([0, 1]2) ⊗ R)⊗N+1. Then, from the Continuous Mapping Theorem,(

α̃n(u, v) − C
[1]
θ (u, v)α̃n(u, 1) − C

[2]
θ (u, v)α̃n(1, v) − ΘnĊθ(u, v),

α(1)
n (u, v) − C

[1]
θ (u, v)α(1)

n (u, 1) − C
[2]
θ (u, v)α(1)

n (1, v) − Θ(1)
n Ċθ(u, v),

...

α(N)
n (u, v) − C

[1]
θ (u, v)α(N)

n (u, 1) − C
[2]
θ (u, v)α(N)

n (1, v) − Θ(N)
n Ċθ(u, v)

)
converges weakly to (3.6) in `∞([0, 1]2)⊗(N+1). Now, from the work of Stute
(1984, p.371) (see also Tsukahara (2005, Prop. 1)), we have that

√
n{Cn(u, v) − Cθ(u, v)}
= α̃n(u, v) − C

[1]
θ (u, v)α̃n(u, 1) − C

[2]
θ (u, v)α̃n(1, v) + Qn(u, v),

where sup(u,v)∈[0,1]2 |Qn(u, v)| P→ 0. Furthermore, from the work of Quessy (2005,
p.73) and under Assumption A3, we can write

√
n{Cθn(u, v) − Cθ(u, v)} = ΘnĊθ(u, v) + Tn(u, v),

where sup(u,v)∈[0,1]2 |Tn(u, v)| P→ 0. It follows that
√

n{Cn(u, v)−Cθn(u, v)} =
√

n{Cn(u, v)−Cθ(u, v)}−
√

n{Cθn(u, v)−Cθ(u, v)}
= α̃n(u, v) − C

[1]
θ (u, v)α̃n(u, 1) − C

[2]
θ (u, v)α̃n(1, v)

−ΘnĊθ(u, v) + Qn(u, v) − Tn(u, v).

Using the fact that C
[1]
n and C

[2]
n converge uniformly in probability to C

[1]
θ and

C
[1]
θ , respectively (Rémillard and Scaillet (2009, Prop. A.2)), and the fact that,
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from Assumption A3, Ċθn converges uniformly in probability to Ċθ, we finally
obtain that(√

n{Cn(u, v) − Cθn(u, v)},

α(1)
n (u, v) − C [1]

n (u, v)α(1)
n (u, 1) − C [2]

n (u, v)α(1)
n (1, v) − Θ(1)

n Ċθn(u, v),
...

α(N)
n (u, v) − C [1]

n (u, v)α(N)
n (u, 1) − C [2]

n (u, v)α(N)
n (1, v) − Θ(N)

n Ċθn(u, v)
)

also converges weakly to (3.6) in `∞([0, 1]2)⊗(N+1).

B. Computational details

The computations presented in Sections 4 and 5 were performed using the
R statistical system (R Development Core Team (2009)) and rely on C code for
the most computationally demanding parts. Table 4, mainly taken from Frees
and Valdez (1998), gives the c.d.f.s, Kendall’s tau, and Spearman’s rho for the
one-parameter copula families considered in the simulation study. The functions
D1 and D2 used in the expressions of Kendall’s tau and Spearman’s rho for the
Frank copula are the so-called first and second Debye functions (see e.g.,Genest
(1987)).

B.1. Expressions of τ−1, ρ−1, τ ′ and ρ′

Expressions of τ−1 and ρ−1 required for the moment estimation of the copula
parameter, can be obtained in most cases from the last two columns of Table 4.
The same holds for the expressions of τ ′ and ρ′ necessary for computing the score
functions Jθ,τ and Jθ,ρ. The following cases are not straightforward.

• For the Frank copula, Spearman’s rho and Kendall’s tau were inverted numer-
ically. Furthermore,

ρ′(θ) =
12

θ(exp(θ) − 1)
− 36

θ2
D2(θ) +

24
θ2

D1(θ).

• For the Plackett copula, we proceeded as follows. First, using Monte Carlo
integration, Kendall’s tau was computed at a dense grid of θ values. Spline
interpolation was then used to compute τ between the grid points. The values
of τ at the grid points need only to be computed once. The derivative τ ′ was
computed similarly. More details can be found in Kojadinovic and Yan (2010).

• For the Clayton, Gumbel and t4 copulas, ρ and ρ′ were computed using the
same approach as for Kendall’s tau for the Plackett copula.



FAST LARGE-SAMPLE GOODNESS-OF-FIT TESTS FOR COPULAS 869

B.2. Expressions of Ċθ

Only the case of the two meta-elliptical copulas is not immediate. For the
bivariate normal copula, the expression of Ċθ follows from the so-called Plackett
formula (Plackett (1954)):

∂Φθ(x, y)
∂θ

=
exp

(
−(x2 + y2 − 2θxy)/(2(1 − θ2))

)
2π

√
1 − θ2

,

where Φθ is the bivariate standard normal c.d.f. with correlation θ. The bivariate
t generalization of the Plackett formula is given in Genz (2004):

∂tν,θ(x, y)
∂θ

=

(
1 + (x2 + y2 − 2θxy)/(ν(1 − θ2))

)−ν/2

2π
√

1 − θ2
,

where tν,θ is the bivariate standard t c.d.f. with ν degrees of freedom and corre-
lation θ.
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