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Abstract: We study least absolute deviation (LAD) estimation for general autore-

gressive moving average (ARMA) models with infinite variance. The assumptions

of causality and invertibility, which are necessary for Gaussian ARMA models to

ensure the identifiability of the model parameters, are removed because they are

not required for models with non-Gaussian noise. Following the approach taken

by Davis, Knight, and Liu (1992) and Davis (1996), we derive a functional limit

theorem for random processes based on the LAD objective function, and establish

asymptotic results of the LAD estimator. A simulation study is presented to eval-

uate the finite sample performance of LAD estimation. An empirical example of

financial time series is also provided.
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1. Introduction

Because of its fundamental role in studying stationary processes, the class of
autoregressive moving average (ARMA) models has been extensively investigated
in the time series literature. Suppose {Xt} is an ARMA(p, q) process, i.e., a
(strictly) stationary solution of the recursions

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q

or, in short,
φ (B) Xt = θ (B) Zt, (1.1)

where {Zt} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables, B is the backward shift operator (BiXt = Xt−i for all integer
i), φ (z) = 1 − φ1z − · · · − φpz

p is the autoregressive (AR) polynomial, and
θ (z) = 1 + θ1z + · · ·+ θqz

q is the moving average (MA) polynomial. We assume
that polynomials φ (z) and θ (z) have neither common roots nor roots on the
unit circle in the complex plane. Then, there exists a strictly stationary solution
{Xt}, and such a solution is unique.
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Causality and invertibility are two important conditions conventionally as-
sumed when modeling a time series using ARMA models. Causality means that
the ARMA(p, q) process Xt can be expressed in terms of present and past Zt’s:
Xt =

∑∞
j=0 ψjZt−j for any t, where

∑∞
j=0 |ψj | < ∞. It is equivalent to the condi-

tion that φ (z) 6= 0 for |z| ≤ 1, or all the roots of φ (z) are outside the unit circle.
If there exists any roots inside the unit circle, then {Xt} is said to be noncausal;
furthermore, if all the roots are inside the unit circle, then the process is purely
noncausal. On the other hand, {Xt} is said to be invertible if there exists an
absolutely summable sequence {πj} such that Zt =

∑∞
j=0 πjXt−j for any t. Like

causality, this condition is equivalent to that the zeros of θ (z) lie outside the unit
circle. The process is noninvertible if any roots of θ (z) are inside the unit circle,
and is purely noninvertible if all the roots are inside the unit circle.

When modeling a time series with ARMA models within the classical Gaus-
sian framework, the assumptions of causality and invertibility are necessary to
ensure the identifiability of the model parameters. To see this, note that the
probability structure of a Gaussian process {Xt} is completely determined by its
first two moments. It follows that for any noncausal/noninvertible ARMA(p, q)
process one can find the equivalent causal-invertible representation in the sense
that both processes have the same probability structure (see Brockwell and Davis
(1991)). Thus, there is no point to distinguish noncausality (noninvertibility)
from causality (invertibility) in the Gaussian framework. Causality and invert-
ibility are commonly assumed in order to remove the nonidentifiability of the
model parameters and configure the model uniquely.

In contrast, if the underlying noise {Zt} is non-Gaussian, then a noncausal/
noninvertible ARMA(p, q) process will have a different probability structure than
its causal-invertible representation; see Breidt and Davis (1992) and Rosenblatt
(2000). That is, the model parameters are identifiable for non-Gaussian processes
even without being confined to the causal-invertible case. Therefore, a general
model with the assumptions of causality and invertibility removed may poten-
tially yield a better description of the observed data when fitting time series in
the sense that the residuals appear to be more compatible with the assumption
of independence than the residuals produced by its causal-invertible counterpart.

Noncausal/noninvertible ARMA models have a wide variety of applications
in real life. For example, noncausal models have been used for the deconvolution
of seismic signals (Wiggins (1978); Donoho (1981)), and the modeling of vocal
tract filters (Chien, Yang, and Chi (1997)) and daily trading volume of a financial
asset (Breidt, Davis, and Trindade (2001); Andrews, Calder, and Davis (2009);
Wu and Davis (2010)). Noninvertible models have been applied to the analysis of
monthly time series of unemployment in the USA (Huang and Pawitan (2000))
and seismogram deconvolution (Andrews, Davis, and Breidt (2006, 2007)).
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In regard to parameter estimation, least absolute deviation (LAD) method
is frequently used for time series models in a non-Gaussian setting. LAD estima-
tion does not require specification of the density of the underlying noise, although
it can be viewed as a quasi-likelihood procedure assuming Laplacian (or double
exponential) noise. This is akin to the connection between least squares (LS)
estimation and Gaussian noise. In addition, LAD estimation is robust if the
observed data display heavy tails. When the underlying noise has finite vari-
ance, Davis and Dunsmuir (1997) proved the asymptotic normality of the LAD
estimator for causal-invertible ARMA models. Huang and Pawitan (2000) es-
tablished the conditions that guarantee the consistency or inconsistency of LAD
estimator for general MA processes, and conjectured that similar results hold for
general ARMA processes. Breidt, Davis, and Trindade (2001) showed asymptotic
normality of the LAD estimator for all-pass models, where the roots of the AR
polynomial are reciprocals of the roots of the MA polynomial, and vice versa. Wu
and Davis (2010) showed the asymptotic normality of the LAD estimator for gen-
eral ARMA models. When the underlying noise is heavy-tailed, Davis, Knight,
and Liu (1992) studied LAD estimation for causal AR processes with innovations
in the domain of attraction of a stable law, and showed that the LAD estimator
is n1/α-consistent, where α is the index of stable distributions and n represents
sample size. The asymptotic distribution of the LAD estimator was derived using
point process methods for moving averages. Davis (1996) further extended the
results to causal-invertible ARMA processes. Huang and Pawitan (1999) showed
the consistency of the LAD estimator for general AR processes when the noise
has a stable law distribution with index α ∈ (1, 2). Pan, Wang, and Yao (2007)
proposed weighted LAD estimation for parameters of causal-invertible ARMA
models, and showed asymptotic normality of the weighted LAD estimator with
the standard n1/2 convergence rate. Other researchers also studied weighted LAD
estimation, e.g., Ling (2005) and Horvath and Liese (2004).

In this paper we consider general ARMA models where the underlying noise
has infinite variance, and study LAD estimation for the model parameters. We
extend the asymptotic results of Davis (1996) for the LAD estimator to general
ARMA processes. The rest of the paper is organized as follows. In the next
section, we deconstruct a general ARMA model into its causal, purely noncausal,
invertible, and purely noninvertible components. The deconstruction plays a key
role in studying estimation for general ARMA models. In Section 3, we establish
a functional limit theorem for random processes, and show asymptotic results of
the LAD estimator. A simulation study is presented in Section 4 to evaluate the
finite sample performance of LAD estimation via comparison with LS estimation.
An empirical example of financial time series is also provided. Technical details
can be found in the Appendix.
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2. Setup

We assume that the underlying noise {Zt} is a sequence of i.i.d. random
variables with infinite variance. Specifically, we assume that {Zt} satisfies the
following two conditions: for all x > 0,

(C1) P(|Z1| > x) = x−αg (x), where g (x) is a slowly varying function at infinity
and α ∈ (0, 2);
(C2) there exists a constant ρ ∈ [0, 1] such that

lim
x→∞

P (Z1 > x)
P (|Z1| > x)

= ρ.

That is, Zt has a distribution in the domain of attraction of a stable distribution
with index α ∈ (0, 2).

We deconstruct the model (1.1) into its causal, purely noncausal, invertible,
and purely noninvertible components. On the one hand, we factor the AR poly-
nomial φ (·) into its causal component φ+ (·) and purely noncausal component
φ∗ (·); namely we put φ (z) = φ+ (z) φ∗ (z) where

φ+ (z) = 1 − φ+
1 z − · · · − φ+

r′z
r′ 6= 0 for |z| ≤ 1,

φ∗ (z) = 1 − φ∗
1z − · · · − φ∗

s′z
s′ 6= 0 for |z| ≥ 1,

with r′, s′ ≥ 0 and r′ + s′ = p. On the other hand, we factor the MA polynomial
θ (·) into its invertible component θ+ (·) and purely noninvertible component
θ∗ (·), putting θ (z) = θ+ (z) θ∗ (z) where

θ+ (z) = 1 + θ+
1 z + · · · + θ+

r zr 6= 0 for |z| ≤ 1,

θ∗ (z) = 1 + θ∗1z + · · · + θ∗sz
s 6= 0 for |z| ≥ 1,

with r, s ≥ 0 and r + s = q. With the factorizations, the model (1.1) can be
written as

φ+ (B) φ∗ (B) Xt = θ+ (B) θ∗ (B) Zt. (2.1)

Moreover, defining

U+
t = φ+ (B) Xt, U∗

t = φ∗ (B) Xt, V +
t = θ+ (B) Zt, V ∗

t = θ∗ (B) Zt,

we obtain

φ+ (B) U∗
t = θ+ (B) V ∗

t , φ∗ (B) U+
t = θ+ (B) V ∗

t ,
(2.2)

φ+ (B) U∗
t = θ∗ (B) V +

t , φ∗ (B) U+
t = θ∗ (B) V +

t .

If the model is causal and invertible, then s′ = s = 0. Otherwise, s′ > 0 in the
noncausal case, and s > 0 in the noninvertible case. In this paper we assume that
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s′ and s are fixed. However, it is easily seen later that the asymptotic results still
hold when the LAD objective function depends on s′ and s; we refer the reader
to the discussion in Lii and Rosenblatt (1996).

As to parameter estimation for general ARMA processes, it is convenient to
work with the deconstructed model (2.1) using the parameterization

κκκ =
(
φ+

1 , . . . , φ+
r′ , φ

∗
1, . . . , φ

∗
s′ , θ

+
1 , . . . , θ+

r , θ∗1, . . . , θ
∗
s

)T

for the ARMA coefficients. Let

κκκ0 =
(
φ+

01, . . . , φ
+
0r′ , φ

∗
01, . . . , φ

∗
0s′ , θ

+
01, . . . , θ

+
0r, θ

∗
01, . . . , θ

∗
0s

)T

be the true value of κκκ, and suppose X1, . . . , Xn are observations from the true
model. We are interested in estimating the parameter κκκ using the LAD method.
The LAD objective function is

ln (κκκ) =
n+p−q∑

t=1

∣∣∣∣ θ∗s
φ∗

s′
zt (κκκ)

∣∣∣∣ , (2.3)

whose derivation in the finite variance case can be found in Wu and Davis (2010).
The LAD estimator κ̂κκLAD is defined as any minimizer of ln (κκκ). Given a κκκ value,
the residuals zt(κκκ) in the summands of the LAD objective function can be com-
puted as follows. Take the augmented observations X1−p = · · · = X0 = 0 and
Xn+1 = · · · = Xn+p = 0. It follows from the equation φ (B) Xt = θ+ (B) V ∗

t (κκκ)
that

V ∗
t (κκκ) = φ (B) Xt − θ+

1 V ∗
t−1 (κκκ) − · · · − θ+

r V ∗
t−r (κκκ) . (2.4)

Setting V ∗
t (κκκ) = 0 for t ≤ 0, we compute V ∗

t (κκκ) forwards by applying (2.4)
recursively for t = 1, . . . , n + p. Then it follows from V ∗

t (κκκ) = θ∗ (B) zt (κκκ) that

zt (κκκ) =
1
θ∗s

[
V ∗

t+s (κκκ) − zt+s (κκκ) − θ∗1zt+s−1 (κκκ) − · · · − θ∗s−1zt+1 (κκκ)
]
, (2.5)

and zt (κκκ) is computed backwards by setting zt (κκκ) = 0 for t > n + p − s and
using (2.5) recursively for t = n + p − s, . . . ,−s + 1.

3. Asymptotic Results

To circumvent the difficulty caused by the non-convexity of the objective
function ln (κκκ) in κκκ when studying the asymptotic behavior of κ̂κκLAD, we adopt
the local linearization technique of Davis and Dunsmuir (1997) that was used for
studying LAD estimation for causal-invertible ARMA processes. To be specific,
for t = 1, . . . , n + p − q, we approximate (θ∗s/φ∗

s′)zt (κκκ) by

θ∗0s

φ∗
0s′

zt (κκκ0) − DT
t (κκκ0) (κκκ − κκκ0) ,
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where

Dt (κκκ) = −
∂

(
(θ∗s/φ∗

s′)zt (κκκ)
)

∂κκκ
= (Dt,1 (κκκ) , . . . , Dt,p+q (κκκ))T .

It can be shown that, for t = 1, . . . , n + p − q, Dt,` (κκκ) satisfies the difference
equations

θ(B)Dt,`(κκκ)=
θ∗s
φ∗

s′
U∗

t−`(φφφ
∗), for `=1, . . . , r′,

θ(B)Dt,`(κκκ)=
θ∗s
φ∗

s′
U+

t+r′−`(φφφ
+), for `=r′ + 1, . . . , p − 1,

θ(B)Dt,`(κκκ)=
θ∗s

(φ∗
s′)

2
φ∗(B)U+

t (φφφ+) +
θ∗s
φ∗

s′
U+

t−s′(φφφ
+), for `=p,

θ(B)Dt,`(κκκ)=
θ∗s
φ∗

s′
V ∗

t+p−`(κκκ), for `=p + 1, . . . , p + r,

θ(B)Dt,`(κκκ)=
θ∗s
φ∗

s′
V +

t+p+r−`(κκκ), for `=p+r+1, . . . , p+q−1,

θ(B)Dt,`(κκκ)=− 1
φ∗

s′
θ∗(B)V +

t (κκκ) +
θ∗s
φ∗

s′
V +

t−s(κκκ), for `=p + q.

Moreover, Dt,` (κκκ0) is well approximated by

θ∗0s

φ∗
0s′

W1,t−`, for ` = 1, . . . , r′,

θ∗0s

φ∗
0s′

W2,t+r′−`, for ` = r′ + 1, . . . , p − 1,

θ∗0s

φ∗
0s′

(
W2,t−s′ +

1
φ∗

0s′
Zt

)
, for ` = p,

θ∗0s

φ∗
0s′

W3,t+p−`, for ` = p + 1, . . . , p + r,

θ∗0s

φ∗
0s′

W4,t+p+r−`, for ` = p + r + 1, . . . , p + q − 1,

θ∗0s

φ∗
0s′

(
W4,t−s −

1
θ∗0s

Zt

)
, for ` = p + q,

where Wj,t, j = 1, 2, 3, 4, are AR processes defined by the recursions

φ+
0 (B) W1,t =Zt, φ∗

0 (B) W2,t =Zt, θ+
0 (B) W3,t =Zt, and θ∗0 (B) W4,t =Zt,

respectively. The polynomials φ+
0 (z), φ∗

0 (z), θ+
0 (z), and θ∗0 (z) correspond to the

true parameter κκκ0. The reciprocals of these polynomials can be expressed as

1
φ+

0 (z)
=

∞∑
i=0

β+
0iz

i,
1

φ∗
0 (z)

=
∞∑

j=s′

β∗
0jz

−j ,
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1
θ+
0 (z)

=
∞∑
i=0

α+
0iz

i,
1

θ∗0 (z)
=

∞∑
j=s

α∗
0jz

−j ,

where β+
00 = α+

00 = 1, β∗
0s′ = −1/φ∗

0s′ , α∗
0s = 1/θ∗0s, and each of the sequences

{β+
0i}, {β∗

0j}, {α
+
0i}, and {α∗

0j} is absolutely summable. It follows that

W1,t =
∞∑
i=0

β+
0iZt−i, W2,t =

∞∑
j=s′

β∗
0jZt+j ,

(3.1)

W3,t =
∞∑
i=0

α+
0iZt−i, W4,t =

∞∑
j=s

α∗
0jZt+j .

Now define Qt =
(
WT

1 ,WT
2 ,WT

3 ,WT
4

)T , where

W1 =
(
W1,t−1, . . . ,W1,t−r′

)T
,

W2 =
(

W2,t−1, . . . ,W2,t−s′+1,

(
W2,t−s′ +

Zt

φ∗
0s′

))T

,

W3 = (W3,t−1, . . . ,W3,t−r)
T ,

W4 =
(

W4,t−1, . . . ,W4,t−s+1,

(
W4,t−s −

Zt

θ∗0s

))T

.

Then Dt (κκκ0) is well approximated by (θ∗0s/φ∗
0s′)Qt. Note that W1,W3 ∈ F t−1

−∞
and W2,W4 ∈ F∞

t+1, where F t
−∞ and F∞

t are σ-fields generated by {Zk, k ≤ t}
and {Zk, k ≥ t}, respectively. Therefore, W1 and W3 are independent of W2

and W4. Moreover, Qt is independent of Zt.
To examine the asymptotic behavior of κ̂κκLAD, let an = inf{x : P (|Z1| > x) ≤

n−1}, and build it into the parameterization ννν = an (κκκ − κκκ0). Under this param-
eterization, minimizing ln (κκκ) with respect to κκκ is equivalent to minimizing

Sn (ννν) ≡
n+p−q∑

t=1

(∣∣∣∣ θ∗s
φ∗

s′
zt

(
κκκ0 + a−1

n ννν
)∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣) (3.2)

with respect to ννν. Let

Yt (ννν) = QT
t ννν = WT

1 ννν1 + WT
2 ννν2 + WT

3 ννν3 + WT
4 ννν4, (3.3)

where the vectors ννν1 = (ν1, . . . , νr′)T , ννν2 = (νr′+1, . . . , νp)T , ννν3 = (νp+1, . . .,
νp+r)T , and ννν4 = (νp+r+1, . . . , νp+q)T . By (3.1), for any given ννν we can express
Yt (ννν) as a two-sided moving average of {Zt}:

Yt (ννν) =
∞∑

i=−∞

(
c′i + ci

)
Zt−i,
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where c′0 = c0 = 0 and

c′i = β+
0,i−1ν1 + β+

0,i−2ν2 + · · · + β+
0,i−r′νr′ for i > 0,

c′i = β∗
0,−i+1νr′+1 + β∗

0,−i+2νr′+2 + · · · + β∗
0,−i+s′νp for i < 0,

ci = α+
0,i−1νp+1 + α+

0,i−2νp+2 + · · · + α+
0,i−rνp+r for i > 0,

ci = α∗
0,−i+1νp+r+1 + α∗

0,−i+2νp+r+2 + · · · + α∗
0,−i+sνp+q for i < 0 ,

with the conventions that β+
0i = α+

0i = 0 for i < 0, β∗
0j = 0 for j < s′, and α∗

0j = 0
for j < s. Furthermore, for any given ννν let

Y −
t (ννν) =

∞∑
i=1

(
c′i + ci

)
Zt−i, and Y +

t (ννν) =
∞∑
i=1

(
c′−i + c−i

)
Zt+i.

Then, Yt (ννν) = Y −
t (ννν) + Y +

t (ννν).

Theorem 1. Let {Xt} be the ARMA(p, q) process (2.1), where the underlying
noise {Zt} satisfies conditions (C1) and (C2) and has median zero if α ≥ 1. For
each of (a) α < 1, (b) α > 1 and E(|Zt|β) < ∞ for some β < 1 − α, and (c)
α = 1 and E(ln |Zt|) > −∞, Sn (ννν) converges to

S (ννν) =
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ ∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

+
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ ∞∑
i=1

∞∑
k=1

(∣∣∣Zk,−i −
(
c′−i + c−i

)
δkΓ

−1/α
k

∣∣∣ − |Zk,−i|
)

in distribution on C (Rp+q), where

(1) {Zk,±i} is i.i.d. with Zk,±i
d= Z1,

(2) {δk} is i.i.d. with P(δk = 1) = ρ and P(δk = −1) = 1 − ρ,
(3) Γk = E1+· · ·+Ek where {Ek} is a sequence of i.i.d. unit exponential random

variables,
(4) {Zk,±i}, {δk}, and {Ek} are independent.

Proof. The theorem is an immediate consequence of Lemmas 6−8 in the Ap-
pendix.

Remark 1. Note that, S (ννν) is well-defined in all three cases by Proposition 5 in
the Appendix.

Theorem 2. Under the conditions postulated in Theorem 1, if S (ννν) has a unique
minimizer νννmin almost surely, then there exists a sequence of LAD estimators
κ̂κκLAD such that an (κ̂κκLAD − κκκ0)

d→ νννmin.
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Proof. Note that, the weak convergence of an (κ̂κκLAD − κκκ0) is equivalent to that
of ν̂ννLAD, where ν̂ννLAD is a minimizer of Sn (ννν). Since Sn (ννν) d→ S (ννν) on C (Rp+q)
and νννmin is the unique minimizer of S (ννν), the result follows from Remark 1 of
Davis, Knight, and Liu (1992).

4. Numerical Examples

4.1. Simulation study

In general, the random variable νννmin cannot be expressed in a closed form and
its distribution is intractable. In order to permit statistical inferences such as the
construction of tests of hypotheses and confidence intervals, one typically needs
to turn to nonparametric methods for an approximation of the limit distribution
(see Section 5). In regard to the finite sample performance of LAD estimation, a
simulation study was conducted that was limited to the comparison of LAD and
LS estimations.

We generated data of size 100 from each of the following three models

1. AR(1) model: Xt − φXt−1 = Zt,

2. MA(1) model: Xt = Zt + θZt−1,

3. ARMA(1, 1) model: Xt − φXt−1 = Zt + θZt−1,

where {Zt} was a sequence of i.i.d. symmetric α-stable (SαS) random variables,
and three values of α were considered: 0.5, 1.0, and 1.5. For each case, we
simulated 1,000 replications, estimated the parameters of interest using both
LAD and LS methods, and here report the empirical mean and mean absolute
deviation of the estimates. It is easy to see that, for general ARMA processes,
the correct objective function of LS estimation is

lLS
n (κκκ) =

n+p−q∑
t=1

[
θ∗s
φ∗

s′
zt (κκκ)

]2

.

When searching for the minimizer of the LAD objective function, for each repli-
cation we used 10 starting values and found the optimized value for each of them
such that the chance of being trapped in a local minimum was reduced. Among
the 10 optimized values we chose as estimate the one that yielded the smallest
evaluation of the LAD objective function. When searching for the minimizer of
the LS objective function, however, we had to restrict the range of parameters to
be compatible with the (non)causality and (non)invertibility of the true model.
This is because, for general ARMA processes, the LS objective function has mul-
tiple global minimizers. To see this, we took the AR(1) model Xt = φXt−1 + Zt
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(a) (b)

Figure 1. (a) The average LS objective function versus φ, and (b) the average
LAD objective function versus φ.

(a) φ0 = 0.5 (b)φ0 = 1.2

Figure 2. Boxplots of LAD and LS estimates for the AR(1) model: (a)
φ0 = 0.5 and (b) φ0 = 1.2.

with true parameter value φ = 0.5 and index of the SαS distribution of inno-
vations α = 1.5. We generated ten thousand xt values from the true model and
plotted the average LS objective function lLS

n (φ)/n versus φ. From Figure 1(a)
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(a) θ0 = 0.5 (b) θ0 = 1.2

Figure 3. Boxplots of LAD and LS estimates for the MA(1) model: (a)
θ0 = 0.5 and (b) θ0 = 1.2.

we see that both the true model parameter 0.5 and its reciprocal 2 are global
minimizers. In contrast, Figure 1(b) for the LAD estimation case shows clearly
that the true parameter 0.5 is the unique global minimizer; its reciprocal 2 is
only a local minimizer.

For the first model, the true value of φ was taken to be 0.5 and 1.2. The
results are reported in Table 1, and side-by-side boxplots are given in Figure 2.
The LAD estimates in general outperformed the LS estimates. This is expected
since LAD estimation is more efficient than LS method for heavy-tailed data. In
addition, there was more improvement in performance of LAD estimation over
LS estimation as the tail of the noise distribution grew heavier. On the other
hand, for both LAD and LS estimates the performance improved as the tail of the
noise distribution grew heavier. From Theorem 2, the convergence rate of κ̂κκLAD

is n1/α, which is the same as in the causal-invertible case; and the convergence
rate of κ̂κκLS should also be in agreement with that in the causal-invertible case,
namely (n/ log n)1/α.

For the MA(1) model, the true value of θ was taken to be 0.5 and 1.2. The
simulation results are reported in Table 2, and side-by-side boxplots are given
in Figure 3. The true values of (φ, θ) for the ARMA(1,1) model were taken to
be (0.5, 1.2) and (1.2, 0.5), and the simulation results are reported in Table 3.
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Table 1. Mean and mean absolute deviation for LAD and LS estimates for
the AR(1) model.

True value α LAD estimates LS estimates
0.5 0.5000 (5.0648e-5) 0.5000 (0.0030)

φ = 0.5 1.0 0.4993 (0.0080) 0.5006 (0.0258)
1.5 0.5002 (0.0391) 0.4918 (0.0530)
0.5 1.2000 (3.4469e-5) 1.1997 (0.0098)

φ = 1.2 1.0 1.1998 (0.0066) 1.2007 (0.0310)
1.5 1.2055 (0.0355) 1.2125 (0.0483)

Table 2. Mean and mean absolute deviation for LAD and LS estimates for
the MA(1) model.

True value α LAD estimates LS estimates
0.5 0.5000 (5.4845e-5) 0.4998 (0.0026)

θ = 0.5 1.0 0.4993 (0.0083) 0.4983 (0.0266)
1.5 0.5013 (0.0350) 0.5000 (0.0553)
0.5 1.2000 (3.7825e-5) 1.2003 (0.0095)

θ = 1.2 1.0 1.2013 (0.0084) 1.1990 (0.0356)
1.5 1.2042 (0.0382) 1.1942 (0.0644)

Table 3. Mean and mean absolute deviation for LAD and LS estimates for
the ARMA(1,1) model.

True values α LAD estimates LS estimates
0.5 0.5000 (7.1848e-5) 0.5000 (0.0048)

1.2000 (5.6999e-5) 1.2012 (0.0110)
φ = 0.5 1.0 0.4992 (0.0092) 0.4997 (0.0281)
θ = 1.2 1.2028 (0.0088) 1.2030 (0.0375)

1.5 0.4948 (0.0391) 0.4981 (0.0527)
1.2186 (0.0471) 1.2189 (0.0696)

0.5 1.2000 (4.4627e-5) 1.2022 (0.0143)
0.5000 (7.0291e-5) 0.4962 (0.0109)

φ = 1.2 1.0 1.2008 (0.0079) 1.2074 (0.0357)
θ = 0.5 0.4970 (0.0094) 0.4944 (0.0384)

1.5 1.2084 (0.0369) 1.2221 (0.0564)
0.4905 (0.0393) 0.4898 (0.0602)

The side-by-side boxplots display a similar pattern as in the AR(1) and MA(1)
cases, and hence are omitted. In all cases the LAD estimates outperformed the
LS estimates, especially when the tail of the noise distribution got heavier.

4.2. Empirical example

Figure 4 shows the natural logarithms of the traded Microsoft (MSFT) stock
volumes from June 3, 1996 to May 27, 1999. Based on the normal probability
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Figure 4. Log-volumes of Microsoft stock transactions.

(a) (b)

Figure 5. (a) Sample ACF of log-volumes, and (b) sample PACF of log-
volumes.

plot, not included, the log-volumes appear heavy-tailed rather than Gaussian.
The Jarque-Bera test for normality yields a p-value of 0.0021, while the Shapiro–
Wilk test gives a p-value of 0.0149; both indicate strong evidence to reject normal-
ity of the data. Even if data are heavy-tailed, a variety of techniques commonly
used in the Gaussian framework for exploratory data analysis are still useful to
get insight into the underlying data structure. For example, the sample auto-
correlation function (ACF) and partial autocorrelation function (PACF) plots
can be employed for visualizing dependency and for tentative identification of a
suitable ARMA model for the data; see Adler, Feldman, and Gallagher (1998)
and Andrews, Calder, and Davis (2009). Based on the sample ACF and PACF
plots of the log-volume series shown in Figure 5, it is reasonable to consider fit-
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ting an AR(3) model to the data. Breidt, Davis, and Trindade (2001) studied
the same data set and fitted an AR(1) model to illustrate noncausal AR model
fitting using all-pass models.

Note that, LAD estimation does not require the specification of the density of
innovations in order to estimate ARMA coefficients. Instead, the distribution of
innovations can be specified and distribution parameters can be estimated based
on the resulting residuals from the model-fitting. We applied the LAD method
to the mean-corrected series to obtain a purely noncausal AR(3) model

Xt = −0.0643Xt−1 − 3.3954Xt−2 + 6.4155Xt−3 + Zt. (4.1)

All the roots of the AR polynomial lie inside the unit circle, namely 0.7910 and
−0.1309 ± 0.4242i. The residual sequence appears independent based on the
sample ACF plots in Figure 6(b)–(d). The p-values of 3.741e-6 and 0.0003 from
the Jarque-Bera and Shapiro–Wilk tests, together with the normal probability
plot, support heavy-tailedness of the residuals with strong evidence. On the
other hand, under the false assumption of finite variance noise, the best causal
AR model-fitting based on AIC is given by

Xt = 0.5139Xt−1 + 0.0237Xt−2 + 0.1378Xt−3 + Wt. (4.2)

Although the sample ACF plot in Figure 7(b) indicates that the residual sequence
is white noise, the sample ACF plots of squared residuals and absolute values of
residuals in Figure 7(c),(d) suggest that the residual sequence is dependent be-
cause both squared residuals and absolute values of residuals have significant lag
1 sample autocorrelation. Therefore, in regard to the independence assumption of
the noise term, the model (4.1) provides a better description for the log-volumes
of Microsoft stock transactions. The McLeod–Li test of independence performed
on the residuals from both model-fittings also supports the superiority of the
model (4.1).

Based on the residuals obtained from the fitted model (4.1), it was plausible
to consider a non-Gaussian stable distribution for the innovation sequence {Zt}.
The distribution parameters were estimated using maximum likelihood method,
implemented with R package “fBasics”. And the estimates were α = 1.9200, β =
0.3069, γ = 1.3832, and δ = −0.0539.

5. Discussion

The LAD estimator κ̂κκLAD is n1/α-consistent, and, as α ∈ (0, 2), it has a
higher convergence rate than the standard one of n1/2, a desirable property when
conducting finite sample studies, especially with small α. However, its limiting
distribution is in general intractable. To overcome this hurdle in applying our
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Figure 6. (a) Residuals from the AR model-fitting using the LAD method,
(b) sample ACF of the residuals, (c) sample ACF of the squared residuals,
and (d) sample ACF of the absolute values of residuals.

Figure 7. (a) Residuals from the causal AR model-fitting, (b) sample ACF
of the residuals, (c) sample ACF of the squared residuals, and (d) sample
ACF of the absolute values of residuals.

asymptotic results to statistical inferences with respect to κκκ, we can resort to such
techniques as the bootstrap to approximate the limiting distribution. To this end,
Davis and Wu (1997) explored the bootstrap procedure for causal autoregressive
processes with infinite variance, and showed its asymptotic validity. Extension
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of such a procedure to the present setup is a topic for future research.
Alternatively, one might consider extending the weighted LAD estimation

proposed by Pan, Wang, and Yao (2007) to general ARMA models. Although
we conjecture, in agreement with two anonymous referees, that the extension
ought to be valid, the derivation of asymptotic normality is quite challenging. For
example, martingale central limit theorems (see e.g., Hall and Heyde (1980)), on
which the derivation of Pan, Wang, and Yao (2007) relies heavily, are no longer
applicable. Indeed, with the assumptions of causality and invertibility removed,
the ARMA process Xt cannot be expressed in terms of present and past Zt’s,
and likewise Zt cannot be written in terms of present and past Xt’s. Therefore,
a new device is called for in order to establish the asymptotic normality of the
weighted LAD estimator. This is the subject of on-going research. Once the
asymptotic properties of the weighted LAD estimator are established for general
ARMA models, numerical comparison between the two LAD estimators is in
order.
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Appendix

The Appendix contains the lemmas used in establishing Theorem 1, and
their proofs. Throughout the Appendix we denote by C an unspecified constant
whose value may vary. To facilitate our argument, we introduce some preliminary
results that extend the results given in the Appendix of Davis, Knight, and Liu
(1992) to two-sided moving average processes.

Suppose {Yt} is the two-sided linear process

Yt =
∞∑

i=−∞
ciZt−i, (A.1)

where {Zt} is a sequence of i.i.d. random variables satisfying (C1) and (C2), and
{ci} is a sequence of constants such that c0 = 0 and

∑∞
i=−∞ |ci|δ < ∞ for some

δ < min (α, 1). Write

Y −
t =

∞∑
i=1

ciZt−i and Y +
t =

∞∑
i=1

c−iZt+i.

Then, Yt = Y −
t + Y +

t .
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Proposition 3. Suppose {Yt} is the process given by (A.1). For any continuous
function f of Zt, a−1

n Y −
t and a−1

n Y +
t on R × (R2 \ {0}) with compact support,

n∑
t=1

f
(
Zt, a

−1
n Y −

t , a−1
n Y +

t

)
d→

∞∑
i=1

∞∑
k=1

[
f

(
Zk,i, ciδkΓ

−1/α
k , 0

)
+ f

(
Zk,−i, 0, c−iδkΓ

−1/α
k

)]
. (A.2)

Proof. See Calder (1998).

Proposition 4. Suppose {Yt} is the process given by (A.1). Let {Vt} be a
sequence of i.i.d. random variables with finite mean such that, for every t, {Vt}
and {Yt} are independent. Then for all δ > 0 and η > 0,

(a) lim sup
n→∞

P

(
n∑

t=1

|Vt|
∣∣a−1

n Yt

∣∣γ 1{|a−1
n Yt|≤δ} > η

)
≤ η−1CE |V1| δγ−α

for all γ > α.

(b) lim sup
n→∞

P

(
n∑

t=1

|Vt|
∣∣a−1

n Yt

∣∣γ 1{|a−1
n Yt|>δ} > η

)
≤ Cδ−αP (|V1| > 0)

for all γ > 0.

If in addition {V1} has zero mean and finite variance σ2 and α ∈ [1, 2), then

(c) Var

(
n∑

t=1

Vta
−1
n Yt1{|a−1

n Yt|≤δ}

)
= na−2

n E
(
Y 2

1 1{|a−1
n Y1|≤δ}

)
EV 2

1 → 0

as n → ∞ and then δ → 0.

Proof. (a) and (c) are straightforward extensions of Proposition A.2 of Davis,
Knight, and Liu (1992). Turning to (b), note that by Theorem 4.1 of Cline
(1983), the two-sided linear process {Yt} is absolutely convergent almost surely
and has regularly varying tails equivalent to those of {Zt}; that is,

lim
x→∞

P (|Y1| > x)
P (|Z1| > x)

=
∞∑

i=−∞
|ci|α .

It follows that

lim
n→∞

nP (|Y1| > anx) =
∞∑

i=−∞
|ci|α x−α

for all x > 0. Then, the argument follows the same lines in Davis, Knight, and
Liu (1992).
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Proposition 5. Let {Zk,i} , k = 1, 2, . . . , i = ±1,±2, . . . , be an array of i.i.d.
symmetric random variables. Suppose {Zk,i} is independent of {δk} and {Γ−1/α

k }.
Let

V =
∞∑
i=1

∞∑
k=1

[(∣∣∣Zk,i − ciδkΓ
−1/α
k

∣∣∣ − |Zk,i|
)

+
(∣∣∣Zk,−i − c−iδkΓ

−1/α
k

∣∣∣ − |Zk,−i|
)]

,

where
∑

i 6=0 |ci| < ∞. Then (a) for α < 1, V is finite with probability 1, (b) for
α > 1, V is finite with probability 1 if and only if E(|Z1,1|1−α) < ∞, and (c) for
α = 1, V is finite with probability 1 if and only if E(ln |Z1,1|) > −∞.

Proof. See Davis, Knight, and Liu (1992, pp.175-176)

Remark 2. As pointed out by Davis, Knight, and Liu (1992), for α ≥ 1, the
sufficiency still holds if the symmetry of Zk,i is weakened to the condition that
Zk,i has median 0.

Lemma 6. For ννν ∈ Rp+q, let

S‡
n (ννν) =

∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n+p−q∑
t=1

(∣∣Zt − a−1
n Yt (ννν)

∣∣ − |Zt|
)
.

If the conditions in Theorem 1 are satisfied, then S‡
n (ννν) d→ S (ννν) on C (Rp+q).

Proof. We first show pointwise weak convergence. Recalling that Yt (ννν) =
Y −

t (ννν) + Y +
t (ννν), we rewrite S‡

n (ννν) as

S‡
n (ννν) =

∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n+p−q∑
t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
so that we can apply Proposition 3 with f (x, y, z) = |x − y − z| − |x|. However,
the convergence holds only if the function f is restricted to compact sets. In this
regard, we define

S‡
n (ννν; δ,M) =

∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n+p−q∑
t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
Iδ,M
nt ,

where Iδ,M
nt = 1{|Zt|≤M}1{|a−1

n (Y −
t (ννν)+Y +

t (ννν))|>δ} for large M > 0 and small δ > 0.

Then, by (A.2), S‡
n (ννν; δ,M) converges in distribution to
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S (ννν; δ,M)

=
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ ∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i−
(
c′i+ci

)
δkΓ

−1/α
k

∣∣∣−|Zk,i|
)

1{|Zk,i|≤M}1{|(c′i+ci)δkΓ
−1/α
k |>δ}

+
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ ∞∑
i=1

∞∑
k=1

(∣∣∣Zk,−i −
(
c′−i + c−i

)
δkΓ

−1/α
k

∣∣∣ − |Zk,−i|
)

1{|Zk,−i|≤M}

×1{|(c′−i+c−i)δkΓ
−1/α
k |>δ}.

Therefore, in order to show S‡
n (ννν) d→ S (ννν), by Theorem 3.2 of Billingsley (1999)

it suffices to show that, for all ε > 0,

lim
δ→0

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
n+p−q∑

t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
(1 − Iδ,M

nt )

∣∣∣∣∣
> ε

)
= 0, (A.3)

and
∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

1{|Zk,i|≤M}1{|(c′i+ci)δkΓ
−1/α
k |>δ}

P→
∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

, (A.4)

∞∑
i=1

∞∑
k=1

(∣∣∣Zk,−i −
(
c′−i+c−i

)
δkΓ

−1/α
k

∣∣∣−|Zk,−i|
)

1{|Zk,−i|≤M}1{|(c′−i+c−i)δkΓ
−1/α
k |>δ}

P→
∞∑
i=1

∞∑
k=1

(∣∣∣Zk,−i −
(
c′−i + c−i

)
δkΓ

−1/α
k

∣∣∣ − |Zk,−i|
)

, (A.5)

as M → ∞ and δ → 0.

Proof of (A.3). For the case of α < 1, since∣∣∣∣∣
n+p−q∑

t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
1{|Zt|>M}1{|a−1

n Yt(ννν)|>δ}

∣∣∣∣∣
≤

n+p−q∑
t=1

∣∣a−1
n Yt (ννν)

∣∣ 1{|a−1
n Yt(ννν)|>δ}1{|Zt|>M}

and, by applying Proposition 4(b) with Vt = 1{|Zt|>M},

lim sup
n→∞

P

(
n+p−q∑

t=1

∣∣a−1
n Yt (ννν)

∣∣ 1{|a−1
n Yt(ννν)|>δ}1{|Zt|>M} > ε

)
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≤ Cδ−αP
(
1{|Zt|>M} > 0

)
= Cδ−αP (|Zt| > M) → 0 as M → ∞,

we have

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣ n+p−q∑
t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
1{|Zt|>M}

× 1{|a−1
n Yt(ννν)|>δ}

∣∣∣∣ > ε

)
= 0. (A.6)

Similarly, since∣∣∣∣∣
n+p−q∑

t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
1{|a−1

n Yt(ννν)|≤δ}

∣∣∣∣∣
≤

n+p−q∑
t=1

∣∣a−1
n Yt (ννν)

∣∣ 1{|a−1
n Yt(ννν)|≤δ}

and, on the other hand by Proposition 4(a),

lim sup
n→∞

P

(
n+p−q∑

t=1

∣∣a−1
n Yt (ννν)

∣∣ 1{|a−1
n Yt(ννν)|≤δ} > ε

)
≤ Cδ1−α

ε
→ 0 as δ → 0,

we obtain

lim
δ→0

lim sup
n→∞

P

(∣∣∣∣∣
n+p−q∑

t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
1{|a−1

n Yt(ννν)|≤δ}

∣∣∣∣∣
> ε

)
= 0. (A.7)

Note that 1 − Iδ,M
nt = 1{|Zt|>M}1{|a−1

n Yt(ννν)|>δ} + 1{|a−1
n Yt(ννν)|≤δ}. Therefore, (A.3)

follows from (A.6) and (A.7).
To show (A.3) for the case α ≥ 1, we use the identity

n+p−q∑
t=1

(∣∣Zt − a−1
n Y −

t (ννν) − a−1
n Y +

t (ννν)
∣∣ − |Zt|

)
= −

n+p−q∑
t=1

a−1
n Yt (ννν) sgn (Zt)

+ 2
n+p−q∑

t=1

(
a−1

n Yt (ννν) − Zt

) (
1{a−1

n Yt(ννν)>Zt>0} − 1{a−1
n Yt(ννν)<Zt<0}

)
. (A.8)
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By an application of Proposition 4(b) with Vt = sgn (Zt) 1{|Zt|>M}, it is easy to
show

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
n+p−q∑

t=1

a−1
n Yt (ννν) sgn (Zt) 1{|Zt|>M}1{|a−1

n Yt(ννν)|>δ}

∣∣∣∣∣ > ε

)
= 0.

Likewise, an application of Proposition 4(c) with Vt = sgn (Zt), together with
Chebyshev’s inequality, yields

lim
δ→0

lim sup
n→∞

P

(∣∣∣∣∣
n+p−q∑

t=1

a−1
n Yt (ννν) sgn (Zt) 1{|a−1

n Yt(ννν)|≤δ}

∣∣∣∣∣ > ε

)
= 0.

It follows that

lim
δ→0

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
n+p−q∑

t=1

a−1
n Yt (ννν) sgn (Zt) (1 − Iδ,M

nt )

∣∣∣∣∣ > ε

)
= 0. (A.9)

Hence, (A.3) holds provided that

lim
M→∞

lim sup
n→∞

P

(
n+p−q∑

t=1

(
a−1

n Yt (ννν) − Zt

)
1{a−1

n Yt(ννν)>Zt>M} > ε

)
= 0,

lim
M→∞

lim sup
n→∞

P

(
n+p−q∑

t=1

(
a−1

n Yt (ννν) − Zt

)
1{a−1

n Yt(ννν)<Zt<−M} < −ε

)
= 0,

lim
δ→0

lim sup
n→∞

P

(
n+p−q∑

t=1

(
a−1

n Yt (ννν) − Zt

)
1{δ≥a−1

n Yt(ννν)>Zt>0} > ε

)
= 0,

lim
δ→0

lim sup
n→∞

P

(
n+p−q∑

t=1

(
a−1

n Yt (ννν) − Zt

)
1{−δ≤a−1

n Yt(ννν)<Zt<0} < −ε

)
= 0,

which can be established using similar arguments in Davis, Knight, and Liu
(1992, pp.158-159)

Proof of (A.4). When α < 1, it is equivalent to showing that

∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

1{|Zk,i|>M}1{|(c′i+ci)δkΓ
−1/α
k |>δ}

P→ 0

(A.10)
as M → ∞ and δ → 0, and

∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

1{|(c′i+ci)δkΓ
−1/α
k |≤δ}

P→ 0 (A.11)
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as δ → 0. Note that∣∣∣∣∣
∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

1{|Zk,i|>M}1{|(c′i+ci)δkΓ
−1/α
k |>δ}

∣∣∣∣∣
≤

∞∑
i=1

∞∑
k=1

∣∣∣(c′i + ci

)
δkΓ

−1/α
k

∣∣∣ 1{|Zk,i|>M}.

On the other hand,

∞∑
i=1

∞∑
k=1

∣∣∣(c′i + ci

)
δkΓ

−1/α
k

∣∣∣ 1{|Zk,i|≤M}
a.s.→

∞∑
i=1

∞∑
k=1

∣∣∣(c′i + ci

)
δkΓ

−1/α
k

∣∣∣
as M → ∞, because the left-hand side is non-decreasing as M → ∞ and the
right-hand side is almost surely finite. Therefore

∞∑
i=1

∞∑
k=1

∣∣∣(c′i + ci

)
δkΓ

−1/α
k

∣∣∣ 1{|Zk,i|>M}
a.s.→ 0.

and hence (A.10) follows. Similarly, (A.11) holds because∣∣∣∣∣
∞∑
i=1

∞∑
k=1

(∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|
)

1{|(c′i+ci)δkΓ
−1/α
k |≤δ}

∣∣∣∣∣
≤

∞∑
i=1

∞∑
k=1

∣∣∣(c′i + ci

)
δkΓ

−1/α
k

∣∣∣ 1{|(c′i+ci)δkΓ
−1/α
k |≤δ}

a.s.→ 0 as δ → 0.

To show (A.4) when α ≥ 1, we write∣∣∣Zk,i −
(
c′i + ci

)
δkΓ

−1/α
k

∣∣∣ − |Zk,i|

= −
(
c′i + ci

)
δkΓ

−1/α
k sgn (Zk,i) + 2

[(
c′i + ci

)
δkΓ

−1/α
k − Zk,i

]
×

(
1{(c′i+ci)δkΓ

−1/α
k >Zk,i>0} − 1{(c′i+ci)δkΓ

−1/α
k <Zk,i<0}

)
.

Each of the terms on the right-hand side, when summed over i and k, is finite
almost surely. After the fashion of proving (A.9), we can show

∞∑
i=1

∞∑
k=1

(
c′i + ci

)
δkΓ

−1/α
k sgn (Zk,i)

(
1 − 1{|Zk,i|≤M}1{|(c′i+ci)δkΓ

−1/α
k |>δ}

)
P→ 0
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as M → ∞ and δ → 0. Moreover, it is easy to show that

∞∑
i=1

∞∑
k=1

[(
c′i + ci

)
δkΓ

−1/α
k − Zk,i

] (
1{(c′i+ci)δkΓ

−1/α
k >Zk,i>0}

−1{(c′i+ci)δkΓ
−1/α
k <Zk,i<0}

)
1{|Zk,i|≤M}1{|(c′i+ci)δkΓ

−1/α
k |>δ}

a.s.→
∞∑
i=1

∞∑
k=1

[(
c′i + ci

)
δkΓ

−1/α
k − Zk,i

] (
1{(c′i+ci)δkΓ

−1/α
k >Zk,i>0}

−1{(c′i+ci)δkΓ
−1/α
k <Zk,i<0}

)
as M → ∞ and δ → 0, by noting that the term on the left-hand side is non-
negative and non-decreasing. This completes the proof of (A.4).

Proof of (A.5). The proof follows along the same lines as that of (A.4), and
hence is omitted.

Now, the weak convergence of finite-dimensional distributions of S‡
n (ννν) to

those of S (ννν) follows by applying the Cramér–Wold device. Moreover, the dis-
tributions of S‡

n (ννν) are tight on compact sets in C (Rp+q) since S‡
n is linear in

ννν. By Theorem 7.1 of Billingsley (1999), therefore, S‡
n (ννν) d→ S (ννν) on C (Rp+q).

This completes the proof.

Lemma 7. For ννν ∈ Rp+q, let

S†
n (ννν) =

n+p−q∑
t=1

(∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣) ,

then S†
n (ννν) − S‡

n (ννν) → 0 in probability uniformly on compact sets in C (Rp+q).

Proof. Let mn = o(n1/2). We rewrite

S†
n (ννν) − S‡

n (ννν) =
mn−1∑
t=1

(∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣)

−
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ mn−1∑
t=1

(∣∣Zt − a−1
n QT

t ννν
∣∣ − |Zt|

)
+

n+p−q∑
t=n−mn+1

(∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣)

−
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n+p−q∑
t=n−mn+1

(∣∣Zt − a−1
n QT

t ννν
∣∣ − |Zt|

)
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+
n−mn∑
t=mn

(∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣)

−
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n−mn∑
t=mn

(∣∣Zt − a−1
n QT

t ννν
∣∣ − |Zt|

)
.

Since an = n1/αg1(n) for some slowly varying function g1, it is easily seen that
each of the first four sums on the right-hand side converges to zero almost surely.
Hence∣∣∣S†

n (ννν) − S‡
n (ννν)

∣∣∣ ∼ ∣∣∣∣∣
n−mn∑
t=mn

(∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

∣∣∣∣ − ∣∣∣∣ θ∗0s

φ∗
0s′

zt (κκκ0)
∣∣∣∣)

−
∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n−mn∑
t=mn

(∣∣Zt − a−1
n QT

t ννν
∣∣ − |Zt|

)∣∣∣∣∣
≤ 2

∣∣∣∣ θ∗0s

φ∗
0s′

∣∣∣∣ n−mn∑
t=mn

|zt (κκκ0) − Zt| + a−1
n

n−mn∑
t=mn

∣∣∣∣DT
t (κκκ0)ννν − θ∗0s

φ∗
0s′

QT
t ννν

∣∣∣∣
≡ I + II,

where the symbol “∼” means that the difference between the two sides goes to
zero in probability as n → ∞.

Now, there exists a constant u ∈ (0, 1) such that

|V ∗
t | ≤ C

∞∑
i=0

ui |Xt−i| and |V ∗
t (κκκ0) − V ∗

t | ≤ C
∞∑
i=0

ui+t |X−i|

for all t (see Davis (1996, p.92)). On the other hand, since

Zt =
∞∑

j=s

α∗
0jV

∗
t+j , for all t,

zt (κκκ0) =
n+p−t∑

j=s

α∗
0jV

∗
t+j (κκκ0) , for t = −s + 1, . . . , n + p − s,

we have, for t = mn, . . . , n − mn,

|zt (κκκ0) − Zt| ≤
n+p−t∑

j=s

∣∣α∗
0j

∣∣ ∣∣V ∗
t+j (κκκ0) − V ∗

t+j

∣∣ +
∞∑

j=n+p−t+1

∣∣α∗
0j

∣∣ ∣∣V ∗
t+j

∣∣
≡ A1 + A2.
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Note that |α∗
0j | ≤ Cuj

1 for some constant u1 ∈ (0, 1). Hence,

A1 ≤ C

n+p−t∑
j=s

∣∣α∗
0j

∣∣ ∞∑
i=0

ui+j+t |X−i| ≤ C

∞∑
i=0

ui+t

n+p−t∑
j=s

(u1u)j

 |X−i|

≤ C

∞∑
i=0

ui+t |X−i| .

Moreover,

A2 ≤ C

∞∑
j=n+p−t+1

∣∣α∗
0j

∣∣ ∞∑
i=0

ui |Xt+j−i|

≤ C
∞∑

j=n+p+1

uuj−t
1 |Xj | + C

∞∑
j=0

un+p−t+1
1 uj+2 |Xn+p−j | .

Then, the term I converges to zero in probability as n → ∞ because, when α > 1,

E

(
n−mn∑
t=mn

|zt (κκκ0) − Zt|

)
≤ C

n−mn∑
t=mn

ut + C

n−mn∑
t=mn

un+p+1−t
1 → 0,

and likewise when α ≤ 1 we have for δ ∈ (0, α),

E

(
n−mn∑
t=mn

|zt (κκκ0) − Zt|

)δ

≤ C

n−mn∑
t=mn

uδt + C

n−mn∑
t=mn

u
δ(n+p+1−t)
1 → 0.

The convergence of the term II to zero in probability can be shown similarly.
Therefore, |S†

n (ννν)−S‡
n (ννν) | → 0 in probability; the convergence is in fact uniform

on compact sets in C (Rp+q) because S†
n (ννν) − S‡

n (ννν) is linear in ννν.

Lemma 8. Sn (ννν) − S†
n (ννν) → 0 in probability uniformly on compact sets in

C (Rp+q).

Proof. The absolute difference |Sn (ννν) − S†
n (ννν) | is bounded by

n+p−q∑
t=1

∣∣∣∣ θ∗s
φ∗

s′
zt

(
κκκ0 + a−1

n ννν
)
−

(
θ∗0s

φ∗
0s′

zt (κκκ0) − a−1
n DT

t (κκκ0)ννν

)∣∣∣∣
=

a−2
n

2

n+p−q∑
t=1

∣∣νννTHt (κκκ∗
t )ννν

∣∣ ,

where Ht (κκκ) = ∂2((θ∗s/φ∗
s′)zt(κκκ))/∂κκκ∂κκκT and κκκ∗

t is between κκκ0 and κκκ0 + a−1
n ννν.

It can be shown that, for all κκκ sufficiently close to κκκ0, the absolute value of
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each element of Ht(κκκ) is upper bounded by C
∑∞

j=−∞ u
|j|
2 |Xj | for a constant

u2 ∈ (0, 1). It follows immediately that the right-hand side converges to zero in
probability uniformly on compact sets in C (Rp+q). This finishes the proof of the
lemma.
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133-158. Birkhäuser, Boston.

Andrews, B., Calder, M. and Davis, R. A. (2009). Maximum likelihood estimation for α-stable

autoregressive processes. Ann. Statist. 37, 1946-1982.

Andrews, B., Davis, R. A. and Breidt, F. J. (2006). Maximum likelihood estimation for all-pass

time series models. J. Multivariate Anal. 97, 1638-1659.

Andrews, B., Davis, R. A. and Breidt, F. J. (2007). Rank-based estimation for all-pass time se-

ries models. Ann. Statist. 35, 844-869.

Billingsley, P. (1999). Convergence of Probability Measures. 2nd edition. Wiley, New York.

Breidt, F. J. and Davis, R. A. (1992). Time-reversibility, identifiability and independence of

innovations for stationary time series. J. Time Ser. Anal. 13, 377-390.

Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation estimation for

all-pass time series models. Ann. Statist. 29, 919-946.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. 2nd edition.

Springer-Verlag, New York.

Calder, M. (1998). Parameter estimation for noncausal and heavy tailed autoregressive pro-

cesses. Ph.D. Dissertation, Department of Statistics, Colorado State University, Fort

Collins, CO.

Chien, H.-M., Yang, H.-L. and Chi, C.-Y. (1997). Parametric cumulant based phase estimation

of 1-d and 2-d nonminimum phase systems by allpass filtering. IEEE Trans. Signal Process

45, 1742-1762.

Cline, D. (1983). Estimation and Linear Prediction for Regression, Autoregression and ARMA

with Infinite Variance Data. Ph.D. Dissertation, Department of Statistics, Colorado State

University, Fort Collins, CO.

Davis, R. A. (1996). Gauss-Newton and M -estimation for ARMA processes with infinite vari-

ance. Stochastic Process. Appl. 63, 75-95.

Davis, R. A. and Dunsmuir, W. T. M. (1997). Least absolute deviation estimation for regression

with ARMA errors. J. Theoret. Probab. 10, 481-497.

Davis, R. A., Knight, K. and Liu, J. (1992). M -estimation for autoregressions with infinite

variance. Stochastic Process. Appl. 40, 145-180.

Davis, R. A. and Wu, W. (1997). Bootstrapping M -estimates in regression and autoregression

with infinite variance. Statist. Sinica 7, 1135-1154.

Donoho, D. (1981). On minimum entropy deconvolution. In Applied Time Series Analysis II

(Edited by D. F. Findley), 565-608. Academic Press, New York.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications. Academic

Press.



LAD ESTIMATION FOR GENERAL ARMA MODELS 805

Horvath, L. and Liese, F. (2004). Lp-estimators in ARCH models. J. Statist. Plann. Inference

119, 227-309.

Huang, J. and Pawitan, Y. (1999). Consistent estimation for non-Gaussian non-causal autore-

gressive processes. J. Time Ser. Anal. 20, 417-423.

Huang, J. and Pawitan, Y. (2000). Quasi-likelihood estimation of non-invertible moving average

processes. Scand. J. Statist. 27, 689-702.

Lii, K. S. and Rosenblatt, M. (1996). Maximum likelihood estimation for nonGaussian nonmin-

imum phase ARMA sequences. Statist. Sinica 6, 1-22.

Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance autore-

gressive models. J. Roy. Statist. Soc. Ser. B 67, 381-393.

Pan, J., Wang, H. and Yao, Q. (2007). Weighted least absolute deviations estimation for ARMA

models with infinite variance. Econometric Theory 23, 852-879.

Rosenblatt, M. (2000). Gaussian and Non-Gaussian Linear Time Series and Random Fields.

Springer-Verlag, New York.

Wiggins, R. A. (1978). Minimum entropy deconvolution. Geoexploration 16, 21-35.

Wu, R. and Davis, R. A. (2010). Least absolute deviation estimation for general autoregressive

moving average time series models. J. Time Ser.Anal. 31, 98-112.

Department of Statistics and Computer Information Systems, Baruch College, The City Uni-

versity of New York, New York, New York 10010, U.S.A.

E-mail: rongning.wu@baruch.cuny.edu

(Received April 2009; accepted October 2009)

file:rongning.wu@baruch.cuny.edu

	1. Introduction
	2. Setup
	3. Asymptotic Results
	4. Numerical Examples
	4.1. Simulation study
	4.2. Empirical example

	5. Discussion
	Appendix

