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Abstract: We consider the problem of testing for a general parametric form against

a nonparametric alternative for a coefficient function in a varying coefficient mul-

tivariate regression model. We propose a test statistic and derive its asymptotic

null and alternative distributions. We analyze the asymptotic power of the test in

shrinking neighborhoods of the null hypothesis and show that the test is asymp-

totically optimal. These results are derived under the fairly general condition of

absolute regularity (β-mixing) for the predictor variables. We give numerical re-

sults that support the theory. We also illustrate usefulness of the method through

an application to a body fat dataset where we build a simple, yet accurate, model

that predicts individual body fat values well.
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1. Introduction

Many useful nonparametric models have been suggested and studied to relax
the parametric assumptions usually imposed on traditional regression models.
One of them is the varying coefficient model, originally suggested by Hastie and
Tibshirani (1993). This model inherits simplicity and easy interpretation of the
classical linear model, yet is intrinsically nonparametric so that it is flexible
enough to accommodate various complicated relationships between the response
and predictor variables. The model has been studied by Chen and Tsay (1993),
Cai, Fan, and Li (2000), Cai, Fan, and Yao (2000), and Yang et al. (2006), among
others.

For the observations (Xi,Ti, Y i), i = 1, . . . , n, with Y i being responses and
Xi ≡ (Xi

1, . . . , X
i
d)

>, Ti ≡ (T i
1, . . . , T

i
d)

> being d-dimensional predictors, the
varying coefficient model is given by

Y i =
d∑

j=1

fj(X i
j)T

i
j + σ(Xi,Ti)εi, (1.1)
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where εi are independent and identically distributed white noises, independent
of the predictors (Xi,Ti). In this model we assume

d∑
j=1

mj(Xi
j)T

i
j = 0 a.s. ⇒ mj ≡ 0 for 1 ≤ j ≤ d. (1.2)

One needs the condition (1.2) for the identifiability of fj . It is a sufficient con-
dition for avoiding concurvity as termed by Hastie and Tibshirani (1990). Con-
curvity in additive models is known as an analog of collinearity in linear models.

Yang et al. (2006) proposed and studied a testing procedure for the hypoth-
esis that a particular coefficient function fs is constant. The method is certainly
useful when some of the coefficient functions are in fact constant and the true
model actually partially linear. However, a more interesting and more general
problem is to test whether a coefficient function has a certain parametric form,
since in many cases partial linear models fail to fit the data sufficiently well, as in
the data example we consider in Section 5.3. In those cases, a testing procedure
for such hypothesis may be used to build a simple, yet accurate, parametric or
semiparametric model that predicts sufficiently well the values of the response.
We illustrate this in the data example.

Here we consider the problem of testing for the null hypothesis that a coeffi-
cient function fs belongs to a general parametric family, against a nonparametric
alternative. We propose a testing procedure based on the distance between a non-
parametric estimator of fs and the parametric model of the null hypothesis. We
use the local polynomial marginal integration method to define a nonparametric
estimator of fs; this was studied by Yang et al. (2006) for the varying coefficient
model (1.1). One might use other techniques of additive fitting, such as the or-
dinary backfitting of Friedman and Stuetzle (1981) or the smooth backfitting of
Mammen, Linton, and Nielsen (1999). However, there has been no estimation
theory developed for these methods when applied to fitting the varying coefficient
model (1.1).

The problem with the general parametric hypothesis is quite different from
the one with the constant null, the latter being studied by Yang et al. (2006).
We find that a smoothing bias incurred by nonconstant coefficient functions in
the null hypothesis produces some non-negligible terms in the expansion of the
test statistic. Due to the additional terms, the procedure of Yang et al. (2006) to
obtain critical values for their test is inappropriate for our problem. This leads
us to propose a new method of obtaining critical values. Another point is that
we derive the asymptotic distribution of the test statistic not only under the
null hypothesis, but also under the alternative. Using these results we show that
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the proposed test achieves an optimal rate in the sense of the minimum distance
between the null and alternative hypotheses that is necessary to attain a specified
level of power. The theory is developed under fairly general condition of absolute
regularity (β-mixing) for the predictors, to accommodate dependent data. Thus,
it allows endogenous as well as exogenous random variables as predictors. We
investigate the finite-sample performance of the test through a simulation study.
We also illustrate usefulness of the method through a data example.

The paper is organized as follows. In the next section we propose the test
statistic. In Section 3, we give the asymptotic null distribution. Section 4 is
devoted to a discussion of the asymptotic power and rate-optimality of the pro-
posed test. In Section 5, we propose a new method of obtaining critical values
for our test, illustrate the finite-sample properties of the testing procedure, and
then apply the method to a body fat dataset. All technical details are contained
in Section 6.

2. Proposed Test Statistic

For a given s ∈ {1, . . . , d}, we want to test the null hypothesis H0 : fs ∈ F0,
where

F0 ≡ {g(·, θ) : θ ∈ Θ, g is a known function} (2.1)

is a parametric family and Θ is a subset of Rk. The alternative hypothesis we
consider is given by H1 : fs ∈ F1, where F1 is a nonparametric family that is
apart from F0 at a certain distance. An example of F0 is the polynomial model
where g(x, θ) = θ0 + θ1x + · · · + θk−1x

k−1.

The proposed test statistic is based on a nonparametric estimator of fs.
We employ the marginal integration method with local polynomial estimation
proposed by Yang et al. (2006). To describe estimation of fs at xs, write

Xi
−s = (Xi

1, . . . , X
i
s−1, X

i
s+1, . . . , X

i
d)

>,

Ti
−s = (T i

1, . . . , T
i
s−1, T

i
s+1, . . . , T

i
d)

>.

First, we fit the model m(x, t) =
∑d

j=1 fj(xj)tj locally at x = (xs,x−s) for a
(d− 1)-dimensional point x−s. We approximate fs by a pth order polynomial in
a neighborhood of xs, and the other coefficient functions fj (j 6= s) by constants
in a neighborhood x−s. We use a univariate kernel K with a bandwidth h for
the xs-direction and a (d − 1)-dimensional kernel L with a bandwidth vector
b−s = (b1, . . . , bs−1, bs+1, . . . , bd) for the others. This yields full-dimensional
estimators, α̂s(x) ≡ (α̂s,0(x), . . . , α̂s,p(x)) and γ̂j(x), j 6= s, that minimize

n∑
i=1

Y i −
p∑

l=0

αs,l(Xi
s − xs)lT i

s −
∑
j 6=s

γjT
i
j


2

K

(
X i

s − xs

h

)
L

(
Xi

−s − x−s

b−s

)
,
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where u/v = (u1/v1, . . . , uk/vk)> for k-dimensional vectors u and v.

Note that α̂s,0(x) is given by

α̂s,0(x) = e>0
[
Zs(xs)>Ws(x)Zs(xs)

]−1
Zs(xs)>Ws(x)Y, (2.2)

where Y = (Y1, . . . , Yn)>, e0 = (1, 0, . . . , 0)> is the (p + d)-dimensional unit
vector,

Ws(x) = diag
[
K

(
X i

s − xs

h

)
L

(
Xi

−s − x−s

b−s

)]
1≤i≤n

,

Zs(xs) =

[
p

(
X i

s − xs

h

)>
T i

s , Ti>
−s

]
1≤i≤n

,

and p(u) = (1, u, . . . , up)>. This depends not only on xs, but also on x−s, thus is
not a relevant estimator of fs(xs). We estimate fs(xs) by integrating α̂s,0(xs,x−s)
with respect to x−s at the observed data Xi

−s. Thus, the marginal integration
estimator of fs(xs) is

f̂s(xs) =

{
n∑

i=1

w−s(Xi
−s)

}−1 n∑
i=1

w−s(Xi
−s)α̂s,0(xs,Xi

−s), (2.3)

where the weight function w−s(·) has a compact support with nonempty interior,
introduced to avoid technical difficulties that may arise when the density of Xi

−s

has an unbounded support. The marginal integration estimator at (2.3) needs
the values of α̂s,0(xs, ·) only at the observed data points Xi

−s. This is certainly
computationally less intensive than

f̄s(xs) =
[∫

w−s(x−s) dx−s

]−1 ∫
w−s(x−s)α̂s,0(x) dx−s.

The latter requires evaluation of α̂s,0(xs, ·) on a fine grid of x−s in Rd−1 and
thus the amount of computation increases rapidly as the dimension d gets high.
Yang et al. (2006) showed that the estimators at (2.3) have the univariate rate
of convergence, and that they are asymptotically normally distributed.

Our test statistic for testing H0 : fs ∈ F0, where F0 is as given at (2.1), is
based on a minimum distance principle. Let ws is a weight function supported
on a compact set in R. We propose to use

Vn = n−1 min
θ∈Θ

n∑
i=1

{
f̂s(Xi

s) − g(Xi
s, θ)

}2
ws(Xi

s).
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The statistic Vn is an estimator of minθ∈Θ E{fs(Xs) − g(Xs, θ)}2ws(Xs). The
value of the latter is zero if fs ∈ F0. If Vn is large, then one would reject the
null hypothesis H0. A critical value may be obtained from the null distribution
of Vn or its estimate. In the next two sections we see that Vn, under the null and
alternative hypotheses, converges to normal.

3. Asymptotic Null Distribution

We treat the case where the vector process {(Xi,Ti)}n
i=1 is strictly stationary

and β-mixing, with mixing coefficients satisfying β(j) ≤ Cρj for some constants
C > 0 and 0 < ρ < 1. Here

β(j) = sup
k

E
[
sup

{∣∣P (A|Gk
−∞) − P (A)

∣∣ : A ∈ G∞
j+k

}]
,

where Gu
l is the σ-algebra generated by (Xl,Tl), (Xl+1,Tl+1), . . . , (Xu,Tu) for

l < u.

Define

Sn(θ) = n−1
n∑

i=1

{
f̂s(X i

s) − g(Xi
s, θ)

}2
ws(X i

s), (3.1)

so that Vn = minθ∈Θ Sn(θ). Let θ̂ denote the minimizer of Sn(θ) in Θ. Theorem 1
below gives a higher-order stochastic expansion of the test statistic Vn under the
null hypothesis H0. To state the theorem, we need to introduce more notation.

Let K∗(u, t,x) = e>0 D−1
s (x)qs(u, t)>K(u), where qs(u, t)> =

(
tsp(u)>, t−s

)
and

Ds(x) =
∫

E
[
qs(u,T)qs(u,T)>

∣∣X = x
]
K(u) du. (3.2)

It can be seen that α̂s,0(x) defined at (2.2) satisfies:

α̂s,0(x) ' n−1h−1b−1
s,prod

n∑
i=1

Y iK∗
(

Xi
s − xs

h

)
L

(
Xi

−s − x−s

b−s

)
,

where bs,prod = b1 × · · · × bs−1 × bs+1 × · · · × bd. Let

K̃∗(u, t, t′,x,x′
−s) =

∫
K∗(w, t,x)K∗(w + u, t′, xs,x′

−s) dw.

Let w∗
−s(x−s) = w−s(x−s)/E{w−s(X−s)} so that E{w∗

−s(X−s)} = 1, and let

κ(x, θ) = E

[
w∗
−s(X−s)Ts

∫
up+1K∗(u;T,X) du

∣∣∣Xs = x

]
× 1

(p + 1)!
g(p+1)(x, θ),
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where g(j)(x, θ) denotes the jth derivative of g(x, θ) with respect to x. Let ġ(x, θ)
denote the vector of the first partial derivative of g(x, θ) with respect to θ. Denote
the density function of (X,T) by ψ, and the density function of X by ϕ. Let ϕ−s

and ϕs be the marginal density functions of X−s and Xs, respectively. Define
η(x, t) = w∗2

−s(x−s)ϕ2
−s(x−s)ϕs(xs)ϕ−2(x)σ2(x, t), and

c1(θ) =
∥∥Π

(
κ(·, θ)

∣∣ [ġ(·, θ)]⊥
)∥∥2

s
,

c2 = E

[
ws(Xs)η(X,T)

∫
K∗2(u;T,X) du

]
, (3.3)

where Π(·|S) denotes the projection operator onto S, [ġ(·, θ)], the linear span of
ġ(·, θ) in a Hilbert space with inner product 〈q1, q2〉s = E [ws(Xs)q1(Xs)q2(Xs)]
and ‖ · ‖s the corresponding norm. Specifically,

Π
(
κ(·, θ)

∣∣ [ġ(·, θ)]
)
(x) = (E [ws(Xs)κ(Xs, θ)ġ(Xs, θ)])

>

×
(
E

[
ws(Xs)ġ(Xs, θ)ġ(Xs, θ)>

])−1
ġ(x, θ).

Also, we define

γ11 =
∫ [

η(x, t)η(xs,x′
−s, t

′)
∫

K̃∗2(u; t, t′,x,x′
−s) du

]
×ψ(x, t)ψ(xs,x′

−s, t
′) dx dx′

−s dt dt′,

γ22(θ) = E

[
w2

s(Xs)η(X,T)ϕs(Xs)
{
κ(Xs, θ) − 2Π

(
κ(·, θ)

∣∣ [ġ(·, θ)]
)
(Xs)

}2

×
{∫

K∗(u,T,X) du

}2
]
.

We note that c1(θ), c2, γ11, γ22(θ) ≥ 0.

Theorem 1. Suppose that fs = g(·, θ0) for some θ0 ∈ Θ, and that the assump-
tions (A1)−(A9) in the Appendix hold. Then, one has

Vn = c1(θ0)h2p+2 + c2n
−1h−1 + γ

1/2
11 n−1h−1/2Z1,n + γ22(θ0)1/2n−1/2hp+1Z2,n

+ op

(
h2p+2 + n−1h−1/2 + n−1/2hp+1

)
,

where Z1,n and Z2,n are uncorrelated and asymptotically N(0, 1) as n → ∞.

The deterministic term c1(θ)h2p+2 in the expansion of Vn comes from the
bias of the estimator f̂s. Note that the constant factor c1(θ0) = 0 if p is even and
the kernel K is symmetric. Thus, in the discussion below we assume p is odd.
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Note also that c1(θ0) does not depend on other component functions, since the
smoothing bias of the estimator f̂s due to local averaging for other components
fj , j 6= s, is made negligible by choosing the bandwidth bj small enough and
using a higher-order kernel L; see the conditions on the bandwidth bj and the
kernel L in Section 6.1.

From Theorem 1, one can deduce that, if fs is a constant,

nh1/2Vn − h−1/2c2
d→ N(0, γ11).

This coincides with the results of Theorem 5 in Yang et al. (2006). If fs = g(·, θ0)
and the (p + 1)th derivative of g(·, θ0) is not identically zero on the support of
ws, then the smoothing bias incurred by the pth order local polynomial fitting
produces the stochastic term of order Op(n−1/2hp+1) and the non-stochastic term
of order O(h2p+2).

One can derive the asymptotic null distribution of the test statistic, depend-
ing on the size of the bandwidth h. For simplicity we state only the result for the
case nh2p+3 → 0, in which the stochastic term Op(n−1/2hp+1) is negligible. We
note that h ∼ n−2/(4p+5) is the order of the bandwidth h that gives a rate-optimal
test, see Section 4.

Corollary 1. Suppose that nh2p+3 → 0 as n → ∞. Under the conditions of
Theorem 1,

nh1/2Vn − c1(θ0)nh2p+(5/2) − c2h
−1/2 d−→ N(0, γ11).

In the corollary, the term c1(θ0)nh2p+(5/2), which is negligible in comparison
with the term c2h

−1/2 under the condition that nh2p+3 → 0 as n → ∞, should
not be removed, since it may not converge to zero as n → ∞. We also note
that the limit distribution of Vn depends on σ2, ψ, and only on fs among the
coefficient functions fj .

For each level 0 < α < 1, one can construct a test that has the level α
asymptotically. Define c∗1 = supθ∈Θ c1(θ). Let ĉ∗1, ĉ2, and γ̂11 be estimates of c∗1,
c2, and γ11, respectively, such that

ĉ∗1 − c∗1 = op(n−1h−2p−(5/2)), ĉ2 − c2 = op(h1/2), γ̂11 − γ11 = op(1). (3.4)

Define
vn,α = ĉ∗1h

2p+2 + ĉ2n
−1h−1 + γ̂

1/2
11 n−1h−1/2z1−α, (3.5)

where z1−α denotes the (1 − α)-quantile of N(0, 1). Let F denote the triple
(fs, ψ, σ2), and PF be the probability measure associated with F . Then, we see
from Corollary 1 that limn→∞ supF∈H0

PF (Vn > vn,α) = α. Thus, the test

Tn(α) : Reject H0 if Vn > vn,α (3.6)
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has the asymptotic size and level α.

If one uses the optimal bandwidth h ∼ n−2/(4p+5), then the conditions at
(3.4) are simply

ĉ∗1 − c∗1 = op(1), ĉ2 − c2 = op(n−1/(4p+5)), γ̂11 − γ11 = op(1).

Estimation of the constants c∗1, c2, and γ11 involves that of Ds at (3.2), the
conditional expectation in the definition of κ, the density function ψ, and the
variance function σ2. These are typical nonparametric function estimation prob-
lems. Thus, one may construct their estimators that satisfy the conditions at
(3.4), sufficient smoothness of ψ and σ2 being permitted.

4. Properties Under Local Alternatives

4.1. Asymptotic alternative distribution

In this section, we derive the asymptotic distribution of the test statistic
when fs lies in a nonparametric alternative F1 that is apart from the null class
F0. It can be verified that the test statistic converges to a strictly positive
constant in probability when fs (/∈ F0) is fixed. Also, from the results of the
previous section, we know that the critical value at a certain level that is derived
from the null distribution converges to zero as n tends to infinity. This means
that the power of the test at a fixed fs not in F0 converges to one as the sample
size increases to infinity. Thus, it would be of interest to calculate the asymptotic
power of the test in a neighborhood of F0 that shrinks to F0 at a certain rate.

Specifically, we take as an alternative

F1 = {g(·, θ) + ρn∆(·) : θ ∈ Θ, ∆ ∈ G, ρn ≥ Crn} , (4.1)

where C is a positive constant, rn is a sequence of real numbers converging to zero
as n → ∞, and G is the class of functions ∆ that have p derivatives, a Lipschitz
condition of order 1 on the pth derivative, and satisfy ‖∆‖s = 1, ‖∆2‖s < ∞
and ∆ ⊥ F0. Note that without loss of generality we may assume ‖∆‖s = 1.
To derive the asymptotic alternative distribution and compute the asymptotic
power of the test, we take an arbitrary local alternative

fs,n(x) = g(x, θ1) + ρn∆(x), (4.2)

where θ1 ∈ Θ, ∆ ∈ G, and ρn is a sequence of real numbers converging to zero
as the sample size n tends to infinity.

Define

c1n(θ, ∆) =
∥∥∥ρn∆ + hp+1Π

(
κ(·, θ)

∣∣ [ġ(·, θ)]⊥
)∥∥∥2

s
,
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γ23(θ, ∆) = 2 E

[
w2

s(Xs)η(X,T)ϕs(Xs)∆(Xs)
{∫

K∗(u,T,X) du

}2

×
{
κ(Xs, θ) − 2Π

(
κ(·, θ)

∣∣ [ġ(·, θ)]
)
(Xs)

}]
,

γ33(∆) = 4 E

[
w2

s(Xs)η(X,T)ϕs(Xs)∆2(Xs)
{∫

K∗(u,T,X) du

}2
]
.

We are now ready to state a theorem that details the asymptotic behavior of Vn

when the sth coefficient function takes the form at (4.2).

Theorem 2. Suppose that (4.2) and the assumptions (A1)−(A9) in the Ap-
pendix hold. Assume that ‖∆2‖s < ∞, ∆ ⊥ F0, ‖∆‖s = 1, and ∆ has p deriva-
tives and a Lipschitz condition of order 1 on the pth derivative. Then

Vn = c1n(θ1, ∆) + c2 n−1h−1

+ γ
1/2
11 n−1h−1/2Z1,n + γ22(θ1)1/2n−1/2hp+1Z2,n + γ33(∆)1/2n−1/2ρnZ3,n

+ op

(
h2p+2 + hp+1ρn + n−1h−1/2 + n−1/2hp+1 + n−1/2ρn

)
,

where the marginal distributions of Z1,n, Z2,n and Z3,n are asymptotically N(0, 1),
Z1,n, and (Z2,n, Z3,n) are uncorrelated, and

Cov(Z2,n, Z3,n) = γ22(θ1)−1/2γ33(∆)−1/2γ23(θ1,∆) + o(1).

4.2. Asymptotic power analysis

Theorem 2 enables us to analyze the power of the test given at (3.6) in
Section 3. For this, we fix θ1 and ∆. Let βn(θ1, ∆, ρn) denote the power of the
test when the sth coefficient function is given by fn,s(x) = g(x, θ1) + ρn∆(x).
Note that the asymptotic distribution of the test statistic Vn depends only on
the sth coefficient function fs among {fj}d

j=1. In the discussion below, we assume
that the ĉ∗1, ĉ2, and γ̂11 in the definition of vn,α at (3.5) satisfy (3.4).

To avoid too much complication, we confine ourselves, as in Corollary 1, to
the case where nh2p+3 → 0. This covers a bandwidth range that gives an optimal
test as we discuss in the next subsection. We also assume that n1/2ρn → ∞ as
n → ∞. Note that ρn ∼ n−1/2 is the minimal distance between a null hypothesis
and a local alternative that are ‘distinguishable’ from each other in parametric
models. Certainly, it is more difficult to discriminate one from the other in
nonparametric models. Therefore, the ρn that makes the corresponding local
alternative distinguishable from H0 is of larger order than n−1/2.
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(i) The case that nhρ2
n → 0 as n → ∞: Here γ

1/2
11 n−1h−1/2Z1,n in the expansion

of Vn in Theorem 2 is the leading stochastic term. Thus,

βn(θ1, ∆, ρn) = P
[
Z1,n > z1−α + γ

−1/2
11

(
c∗1nh2p+(5/2) − nh1/2c1n(θ1, ∆)

)]
+ o(1). (4.3)

Recall that c1n(θ1, ∆) is of order O(h2p+2 + ρ2
n).

Suppose that ρn << hp+1 (an << bn means an/bn → 0 as n → ∞). Then
the asymptotic power at (4.3) reduces to

βn(θ1,∆, ρn) = P
[
Z1,n > z1−α + γ

−1/2
11 nh2p+(5/2)(c∗1 − c1(θ1))

]
+ o(1).

By definition, c∗1 ≥ c1(θ1) for all θ1 ∈ Θ. Thus, βn(θ1,∆, ρn) → β∗ as n → ∞ for
some β∗ such that 0 ≤ β∗ ≤ α. The constant β∗ depends on the value of θ1 and
the speed at which the bandwidth h → 0.

Suppose that ρn >> hp+1. Then ρn in c1n(θ1, ∆) is the dominating term, so
that

βn(θ1, ∆, ρn) = P
[
Z1,n > z1−α − γ

−1/2
11 nh1/2ρ2

n

]
+ o(1)

→


α if nh1/2ρ2

n → 0,

1 if nh1/2ρ2
n → ∞,

β′
∗ if nh1/2ρ2

n → a (0 < a < ∞),

for some β′
∗ such that α < β′

∗ < 1. The constant β′
∗ in this case depends on a,

the limit of nh1/2ρ2
n.

Finally, suppose that ρn ∼ hp+1. If we write ρn = Chp+1 for some constant
C, then c1n(θ1, ∆) = c′1(C, θ1, ∆)h2p+2, where

c′1(C, θ1, ∆) = ‖C∆ + Π
(
κ(·, θ1)

∣∣ [ġ(·, θ1)]⊥
)
‖2

s. (4.4)

It holds that

βn(θ1,∆, ρn) = P
[
Z1,n > z1−α + γ

−1/2
11 nh2p+(5/2)

(
c∗1 − c′1(C, θ1,∆)

)]
+ o(1). (4.5)

From this we deduce that

βn(θ1, ∆, ρn) →



α if nh(4p+5)/2 → 0 or c∗1 = c′1(C, θ1, ∆),

1 if nh(4p+5)/2 → ∞ and c∗1 < c′1(C, θ1, ∆),

0 if nh(4p+5)/2 → ∞ and c∗1 > c′1(C, θ1, ∆),

β+ if nh(4p+5)/2 → a′ (0 < a′ < ∞) and c∗1 < c′1(C, θ1,∆),

β− if nh(4p+5)/2 → a′ (0 < a′ < ∞) and c∗1 > c′1(C, θ1,∆),
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for some β+ and β− such that 0 < β− < α < β+ < 1. The two constants
β+ and β− depend on the constant a′, the limit of nh(4p+5)/2, and the value of
c∗1 − c′1(C, θ1, ∆).

(ii) The case that nhρ2
n → ∞ or nhρ2

n → a′′ for some 0 < a′′ < ∞ as n → ∞: Here
ρn dominates hp+1, since we assume nh2p+3 → 0 as n → ∞. When nhρ2

n → ∞,
we have

βn(θ1, ∆, ρn) = P [Z3,n > −γ33(∆)−1/2n1/2ρn] + o(1) → 1

since n1/2ρn → ∞ as n → ∞. On the other hand, if nhρ2
n → a′′ for some

0 < a′′ < ∞, then

βn(θ1,∆, ρn) = P

[
Z4,n >

z1−α − γ
−1/2
11 nh1/2ρ2

n√
1 + a′′(γ33(∆)/γ11)

]
+ o(1) → β′′

∗

for some β′′
∗ such that α < β′′

∗ ≤ 1, where Z4,n is asymptotically N(0, 1). Here
β′′
∗ = 1 is achieved only when nh1/2ρ2

n → ∞ as n → ∞, and β′′
∗ in the range

(α, 1) depends on a′′ and the limit of nh1/2ρ2
n.

In some of the cases above, the asymptotic power of the test is smaller than
the level of the test. One is the case where ρn is too small, and the other is the
case where ρn ∼ hp+1 but c∗1 > c′1(C, θ1, ∆). This is intrinsic to all nonparametric
methods and can be explained as follows. Note that the acceptance region for
the testing procedure is

An = {f : min
θ∈Θ

‖f − g(·, θ)‖s,n ≤ v1/2
n,α} ⊃ F0,

where ‖·‖s,n is an empirical version of the Hilbert norm ‖·‖s, defined by ‖f‖2
s,n =

n−1
∑n

i=1 f(X i
s)

2ws(Xi
s). The distance v

1/2
n,α from F0 is the limit within which

f̂s lies asymptotically with probability (1 − α) when the true function actually
belongs to F0, and it accommodates the smoothing bias of f̂s, the term of order
hp+1. When the true function is away from F0 at a distance ρn, the smoothing
bias interacts with the model bias ρn. It may push f̂s further away from F0,
or take f̂s to the opposite direction toward F0. In the latter case, f̂s has better
chance to belong to the acceptance region An than under the null.

4.3. Rate-optimality

We consider the class of functions given at (4.1) for the alternative
hypothesis. Let Tn(α) denote the test given at (3.6). Quality of a test is
often measured by the minimum distance between the null and alternative
hypotheses that is necessary to achieve a specified level of power, see Ingster
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(1993), Lepski and Tsybakov (2000), Pouet (2001), and Emarkov (2003), for
example. Under this approach, we seek the fastest possible rate of rn for the test
Tn(α) such that

for any number 0 < β0 < 1 there exists C > 0 for which

lim
n→∞

inf
F∈H1

PF [Tn(α) = 1] ≥ β0. (4.6)

From the results of the previous subsection the only cases where a specified
power may be achieved are: (i) nhρ2

n << 1 and ρn >> hp+1; (ii) nhρ2
n << 1

and ρn ∼ hp+1; (iii) nhρ2
n >> 1 or nhρ2

n ∼ 1. For each given bandwidth h,
the second case involves the smallest ρn. Also, when ρn ∼ hp+1, the case where
nh(4p+5)/2 → ∞ gives a slower rate for the bandwidth, thus larger ρn, than
the case where nh(4p+5)/2 converges to a positive constant. For simplicity, we
consider h = n−2/(4p+5) without a constant factor. One can show that

lim
ε→0

inf
θ∈Θ

‖∆ + εΠ
(
κ(·, θ)

∣∣ [ġ(·, θ)]⊥
)
‖s → ‖∆‖s = 1.

This means π(C) ≡ infθ∈Θ,∆∈G c′1(C, θ1, ∆) converges to infinity as C tends to
infinity. This, together with (4.5), shows that with rn = n−(2p+2)/(4p+5) and
h = n−2/(4p+5),

lim
n→∞

inf
F∈H1

PF [Tn(α) = 1] = 1 − Φ
(
z1−α − γ

−1/2
11 (π(C) − c∗1)

)
→ 1

as C tends to infinity, where Φ denotes the distribution function of the standard
normal distribution. This establishes the fact that rn = n−(2p+2)/(4p+5) is the
fastest possible rate for the test Tn(α).

Theorem 3. Suppose that the assumptions (A1)−(A9) hold. Assume that (3.4)
holds. Then, with rn = n−(2p+2)/(4p+5), the test given at (3.6) with a bandwidth
choice h ∼ n−2/(4p+5) satisfies (4.6) for testing H0 : fs ∈ F0 versus H1 : fs ∈ F1,
where F0 and F1 are given at (2.1) and (4.1), respectively.

One may verify that the rate rn = n−(2p+2)/(4p+5) is a lower bound, which
means that there is no test that achieves a specified level of power if rn <<

n−(2p+2)/(4p+5). This can be proved similarly as in Ingster (1993) or Pouet
(2001). In this sense, the proposed test with a bandwidth choice h ∼ n−2/(4p+5)

is minimax-optimal.

If the mean of f̂s − g(·, θ̂) is available, then one might use a bias-corrected
version of the test statistic Vn. One can show that the bias-corrected test statis-
tic does not have the terms h2p+2 and n−1/2hp+1 in its expansions analogous



TESTING VARYING COEFFICIENT MODELS 761

to Theorems 1 and 2. Also, one can argue along the lines of Sections 4.2 and
4.3 that it can achieve a rate rn arbitrarily close to n−1/2 by letting the band-
width h tend to zero slowly enough. However, the mean of f̂s − g(·, θ̂) is not
available, but needs to be estimated. The magnitude of the estimation error
depends the smoothness of fs. If we assume that fs is (k +1)-times continuously
differentiable, then the estimation error contributes h2k+2 + n−1/2hk+1 to the
expansion of the corresponding bias-corrected test statistic. Thus, one might get
better asymptotic power with the bias-corrected test than with Vn for a function
class with higher-order smoothness (k > p). However, the same rate can be also
achieved without bias-correction if one applies kth order, rather than pth order,
polynomial fitting in the construction of Vn.

5. The Methods in Practice

5.1. Obtaining critical values

The critical value vn,α given in Section 3 needs to be obtained in practice.
One might think of a bootstrap procedure such as the one proposed by Yang
et al. (2006). As was pointed out by Yang et al. (2006) and observed by Wu
(1986), Liu (1988), Härdle and Mammen (1993), and Sperlich, Tjøstheim, and
Yang (2002), among others, methods based on ordinary bootstrapping fail when
the errors are heteroscedastic. As an alternative, the wild-bootstrap, introduced
by Wu (1986), has been used in many problems, see, for example, Härdle and
Mammen (1993), Franke, Kreiss, and Mammen (2002), Franke, Kreiss, Mammen,
and Neumann (2002), Li and Wang (1998), Härdle et al. (2004), and Yang et al.
(2006).

If one follows the procedure of Yang et al. (2006), one would fit m(x, t) =
g(xs, θ)ts +

∑d
j 6=s fj(xj)tj to the data under the null model and find m̃(x, t) =

g(xs, θ̃)ts +
∑d

j 6=s f̃j(xj)tj ; generate bootstrap residuals ei
∗ and the bootstrap

responses Y i
∗ = m̃(Xi,Ti) + ei

∗; compute a bootstrap version V ∗
n of Vn using the

bootstrap sample {(Y i
∗ ,Xi,Ti)}n

i=1; and then obtain the (1 − α) quantile of the
distribution of V ∗

n . Recall that our aim of bootstrapping in the current problem
is to find an estimate of supθ∈Θ vn,α(θ), where

vn,α(θ) = c1(θ)h2p+2 + c2n
−1h−1 + γ

−1/2
11 n−1h−1/2z1−α.

The latter is the asymptotic (1 − α) quantile of the distribution of Vn when
fs = g(·, θ). The problem is different from the one treated in Yang et al. (2006),
since vn,α(θ) depends on θ under the null model. The point is that one should
mimic different null models for different θ to generate bootstrap samples, while
the approach taken by Yang et al. (2006) uses the same bootstrap null model
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m̃(x, t) = g(xs, θ̃)ts +
∑d

j 6=s f̃j(xj)tj regardless of the values of θ ∈ Θ. Certainly,
the latter approach would choose a cut-off value that gives an actual level that
is higher than a nominal level.

Our proposal is to first estimate vn,α(θ) for each θ ∈ Θ by using bootstrap
samples generated from an estimated null model that incorporates fs = g(·, θ),
and then take the maximum of the estimates over θ ∈ Θ. To do this, we suggest
the following procedure.

1. Fit m̂(x, t) =
∑d

j=1 f̂j(xj)tj to the data and obtain the residuals ei = Y i −
m̃(Xi,Ti), where f̂j are the marginal integration estimates defined at (2.3).

2. Generate i.i.d. random variables Z1
W , . . . , Zn

W such that EZi
W = 0, E(Zi

W )2 =
1 and E(Zi

W )3 = 1, and then compute the (wild-)bootstrap residuals ei
∗ =

eiZi
W .

3. For each θ ∈ Θ, put Y i
∗ (θ) = g(X i

s, θ)T
i
s +

∑d
j=1,j 6=s f̂j(X i

j)T
i
j + ei

∗

4. Calculate the bootstrap version of Vn, say V ∗
n (θ), based on the wild-bootstrap

sample {(Y i
∗ (θ),Xi,Ti)}n

i=1.

5. Repeat Steps 2, 3 and 4 many times, and find the (1 − α) quantile, denoted
by v̂n,α(θ), of the distribution of V ∗

n (θ) for each θ ∈ Θ.

6. Obtain vn,α = supθ∈Θ v̂n,α(θ).

For the distribution of Zi
W , one can choose any distribution that satisfies the

above moment conditions in the step (2), see Mammen (1992) for some examples.
In the simulation study of the current paper, we used a two points distribution
such that ZW = (1−

√
5)/2 with probability (5 +

√
5)/10 and ZW = (1 +

√
5)/2

with probability (5 −
√

5)/10.

5.2. Simulation study

We conducted a simulation study to see the performance of the proposed test-
ing procedure. In this simulation we used the wild-bootstrap method described
in the previous subsection with 200 bootstrap replications. We chose p = 1 (local
linear fitting) and the quartic kernel K(x) = 0.9375(1 − x2)2I(−1,1)(x). For sim-
plicity we used the bandwidth h = n−2/(4p+5) and took bj = (log n)−1h(p+1)/q =
(log n)−1n−(2p+2)/{q(4p+5)}. Although the procedure is sensitive to the choice of
the bandwidths, we found that this simple choice worked very well. If one wants
to use a more deliberate choice, one can develop a data-driven procedure, suit-
able for the testing problem, along the lines of Yang et al. (2006). For the weight
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functions, we chose ws(x) = I[0,1](x) and w−s(x−s) = I[0,1]d−1(x−s). In each sim-
ulation setting, we generated a total of 200 independent datasets of sizes n = 100
and 400.

We simulated two cases. One is the case where (Xi,Ti) are independent and
identically distributed, and the other is the case where they are lagged observa-
tions of the response Y . For the iid case, we generated the data as

Y i = f1(Xi
1)T

i
1 + f2(X i

2)T
i
2 + σ(Xi,Ti)εi,

where εi were iid standard normal random variables that are independent of
(Xi,Ti), Xi were from the uniform distribution on the unit cube [0, 1]2, T i

1 ≡ 1,
T i

2 were from the standard normal distribution independently of Xi, and

σ(x, t) =
1
2

+
t22

t21 + t22
exp

(
−2 +

x1

2

)
.

For the kernel function L in this case, we used L = K. For the time series case,
we generated the data from a VCAR (Varying Coefficient Autoregressive) model
as

Y t = f1(Y t−3)Y t−1 + f2(Y t−4)Y t−2 + 0.2εt,

where εt were iid standard normal random variables. We took L = K in this
case, too.

For the parametric families to test, we took

F0 = {f1 : f1(x) = θ0 + θ1x, θj ∈ R for j = 0, 1}

for both the iid and the time series cases. The rejection probabilities for the
tests at the nominal levels α = 0.05 and 0.10 were obtained based on the 200
pseudo-samples. In these experiments, we took the models

f1(x) = θ0 + θ1x + ρ cos(2πx)

for various choices of θ0, θ1, and ρ in the ranges −1 ≤ θ0 ≤ 1, 0 ≤ θ1 ≤ 2, and
0 ≤ ρ ≤ 1. Note that ρ = 0 corresponds to the case where H0 is true. For the
second coefficient function f2, we took f2(x) = cos(2πx2).

Tables 1 and 2 contain the rejection probabilities in the case of (θ0, θ1) =
(1, 1) and (−1, 2). The results for other choices of (θ0, θ1) are not reported here,
but give similar lessons. The results suggest that the test procedure works quite
well. The actual levels are fairly close to the corresponding nominal levels for
moderate sample sizes. As the sample size increases, the actual levels approach
the corresponding nominal levels. Also, the power of the test increases rapidly
as the sample size increases, or as the true function f1 gets more distant from
the null, which is consistent with the theory.
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Table 1. Rejection probabilities of H0 : f1 ∈ F0 in the i.i.d. case.

(θ0, θ1) ρ level α n = 100 n = 400
(1, 1) 0 0.05 0.065 0.055

0.10 0.110 0.095
0.5 0.05 0.255 0.565

0.10 0.380 0.690
1 0.05 0.420 0.780

0.10 0.575 0.885
(−1, 2) 0 0.05 0.070 0.040

0.10 0.110 0.105
0.5 0.05 0.295 0.510

0.10 0.370 0.615
1 0.05 0.375 0.635

0.10 0.455 0.810

Table 2. Rejection probabilities of H0 : f1 ∈ F0 in the time series case.

(θ0, θ1) ρ level α n = 100 n = 400
(1, 1) 0 0.05 0.035 0.060

0.10 0.115 0.095
0.5 0.05 0.210 0.555

0.10 0.325 0.660
1 0.05 0.390 0.710

0.10 0.560 0.845
(−1, 2) 0 0.05 0.055 0.060

0.10 0.120 0.110
0.5 0.05 0.285 0.515

0.10 0.350 0.060
1 0.05 0.370 0.660

0.10 0.515 0.775

5.3. A data example

There is interest in healthy lifestyles, and body fat contents can be used to
assess health, at least in part. Body fat can be predicted from age, weight, height,
measurements on abdominal and thigh circumferences, skin-fold measurements,
etc. We applied the proposed testing procedure to build a simple, yet accurate,
model that predicts numerical body fat percentage values.

The body fat data we used can be found in the “fat” data set in the “Us-
ingR” package in R software. The data are composed of the percentage of body
fat determined by underwater weighing and various body circumference mea-
surements for 252 men. Although abdomen circumference is often considered as
the main indicator of body fat, we did not include this variable to see how well
other variables can be used to predict body fat percentage. We chose the five
predictors which were age(years), weight(lbs), height(inches), thigh and wrist
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circumferences(cm).
The varying coefficient model we considered was

Y = f1(X1)T1 + f2(X2)T2 + f3(X3)T3 + ε,

where Y is the body fat percentage, X1 age, X2 height, X3 wrist circumference,
T1 ≡ 1, T2 weight, and T3 thigh circumference. We set the influence of age as a
purely nonparametric additive component; put weight and height together, and
the two circumference measurements as a pair, as the other two additive compo-
nents. Since people with higher weight typically have higher body fat percentage
but height is understood not to have such a monotone property, we model the in-
fluence of (weight, height) as an additive component f2(X2)T2. With this model,
an increase of weight by one unit with height being fixed, at x2, as well as other
variables, increases the body fat percentage by f2(x2) on the average. When
weight is fixed, the influence of height is determined by the function f2. The same
interpretation is valid for the pair (thigh circumference, wrist circumference).

In the analysis of the data, we removed the 39th and 42th observations which
were considered as outliers. For the parametric families to test, we considered

F (0)
0 = {f : f(x) = θ0, θ0 ∈ R},

F (1)
0 = {f : f(x) = θ0 + θ1x, θj ∈ R},

F (2)
0 = {f : f(x) = θ0 + θ1x + θ2x

2, θj ∈ R}.

We chose p = 1 (local linear fitting), the quartic kernel for K, and the product
kernel L(x1, x2) = K(x1)K(x2). We used the same bandwidths h and bj as in the
simulation study; the weight functions ws and w−s were also the same. Testing
f1 ∈ F (j)

0 , we found that the null hypothesis was rejected for j = 0, but accepted
for j = 1 at the level α = 0.05. The hypothesis f2 ∈ F (j)

0 was rejected for j = 0,
but accepted for j = 1. Finally, the hypothesis f3 ∈ F (j)

0 was rejected for j = 0
and j = 1, but accepted for j = 2. These results suggested that we could take f1

and f2 as a linear and f3 as a quadratic function.

The nonparametric estimates of the fj are depicted in the three panels of Fig-
ure 1, where the parametric estimates of the functions obtained by least squares
fitting of the chosen parametric model

Y = (θ10 + θ11X1)T1 + (θ20 + θ21X2)T2 + (θ30 + θ31X3 + θ32X
2
3 )T3 + ε (5.1)

are also displayed. One can see that the nonparametric estimates are fairly
well approximated by the corresponding parametric estimates. The results also
suggest that people tend to have more body fat as they get older, and the body
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Figure 1. In the panels (a)–(c), the solid curves are the nonparametric
estimates of the component functions fj in the analysis of the body fat
data, and the dotted are the parametric estimates of the functions f1(x1) =
θ10 +θ11x1, f2(x2) = θ20 +θ21x2 and f3(x3) = θ30 +θ31x3 +θ32x

2
3, under the

chosen parametric model (5.1). The panel (d) is the scatter plot of (Yi, Ŷi),
where Ŷ i are the predicted values of Yi under the model (5.1).

fat of people who are taller and have larger wrist circumference is less affected
by weight and thigh circumference.

To see how well the chosen parametric model (5.1) fits the data, we plotted
(Y i, Ŷ i) in the bottom-right panel of Figure 1, where Ŷ i are the predicted values
of Yi under the model (5.1). One can see that the model fits the data fairly
well. We also computed the R2 value for the model (5.1) and compared it with
the R2 value for the full linear model that contains all twelve predictors in the
regression equation. We found that the model (5.1) with only five predictors
yielded R2 = 0.6582, which was higher than 0.6469 of the full linear model with
twelve predictors.



TESTING VARYING COEFFICIENT MODELS 767

6. Technical Details

6.1. Assumptions

Below we collect the assumptions for Theorems 1 and 2. For j < k < l < m,
let ψj,k,l,m be the joint probability density function of (Xj ,Tj ; Xk,Tk; Xl,Tl;
Xm,Tm). Let X = {x : xs ∈ supp(ws),x−s ∈ supp(w−s)}, and for ε > 0 define
Xε = {x: there exists z ∈ X such that ‖z − x‖ ≤ ε}.

(A1) The parameter space Θ is compact, and

E{g(Xs, θ) − g(Xs, θ
′)}2ws(Xs) > 0 for all θ 6= θ′.

(A2) The function g(·, θ) has (p + 1) continuous derivatives on supp(ws); the
functions fj for j 6= s have q bounded derivatives.

(A3) The function g(x, θ) is twice partially continuously differentiable with re-
spect to θ, and ġ(x, θ) and g̈(x, θ) are continuous in x ∈ supp(ws) and
θ ∈ Θ. For g and its partial derivatives up to order two, all represented by
the generic function G, there exists a function M(·) such that

sup
θ∈Θ

G(x, θ)2 ≤ M(x) for all x and Ews(Xs)M(Xs) < ∞,

and E
[
ws(Xs)ġ(Xs, θ)ġ(Xs, θ)>

]
is invertible for all θ ∈ Θ.

(A4) The univariate kernel K and (d − 1)-variate kernel L are symmetric, Lips-
chitz continuous, have compact supports with nonempty interiors, and sat-
isfy

∫
K(u) du = 1 =

∫
L(u) du. While K is nonnegative, the kernel L is of

order q.

(A5) The vector process {(Xi,Ti)}n
i=1 is strictly stationary and β-mixing, with

mixing coefficients β(k) ≤ C1ρ
k, 0 < C1 < ∞, 0 < ρ < 1.

(A6) On the supports of weight functions w−s and ws, the functions ϕ−s and ϕs

are uniformly bounded away from zero and infinity. The marginal density
ϕ and E(TsTs′ |X = ·), 1 ≤ s, s′ ≤ d, are Lipschitz continuous. Also, σ2(·, t)
and ψ(·, t) are equicontinuous. All the above functions have continuous first
derivatives on the interior of supports of ws and w−s.

(A7) The weight functions w−s and ws are nonnegative, have compact supports
with nonempty interiors, and are continuous on their supports, and differ-
entiable on the interior of their supports.
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(A8) The error term εi satisfies E|εi|4+c < ∞ for some c > 0. There exist ε > 0,
σ̃(t), and ϕ̃j,k,l,m(tj , tk, tl, tm) such that σ(x, t) ≤ σ̃(t), ψ(x, t) ≤ ϕ̃(t) for
all x ∈ Xε,

ψj,k,l,m(xj , tj ;xk, tk;xl, tl;xm, tm) ≤ ϕ̃j,k,l,m(tj , tk, tl, tm)

for all xj ,xk,xl,xm in Xε, and∫
‖tj‖2+cσ̃(tj)2+cϕ̃(tj) dtj ≤ C < ∞,∫
(‖tj‖‖tk‖‖tl‖‖tm‖)2+c{σ̃(tj)σ̃(tk)σ̃(tl)σ̃(tm)}2+c

× ϕ̃j,k,l,m(tj , tk, tl, tm) dtjdtkdtldtm ≤ C < ∞

for some c > 0 and C > 0.

(A9) nh3 → ∞, h2p+1b−1
s,prod → 0, (nhbs,prod)−1/2 log n = O(n−a) for some a > 0,

(nh log n)1/2bq
s,max → 0, and h−1b−1

s,prodb
2q
s,max → 0 as n → ∞, where

bs,max = max{bj : j 6= s}.

Remark 1. To see how the conditions in (A9) can be reduced to a simpler
one on q, the order of the kernel L, suppose h ∼ n−2/(4p+5) and bj ≡ b ∼
(log n)−1h(p+1)/q. As discussed in Section 4, the bandwidth order n−2/(4p+5) gives
an optimal test. With the magnitude for bjs, the biases that are produced by the
local constant fitting in the directions xj (j 6= s) with a qth order kernel L have
the same order of magnitude as the bias due to the pth order local polynomial
fitting in the direction of xs. With these choices the condition nh3 → ∞ is
satisfied for all p > 0. Also, (nh log n)1/2bq

s,max → 0 for all q ≥ 1. The condition
that (nhbs,prod)−1/2 log n = O(n−a) for some a > 0 holds if q > {2(p+1)(d−1)−
d}/(4p+3). The last two conditions and h2p+1b−1

s,prod → 0 and h−1b−1
s,prodb

2q
s,max →

0 hold if q > (p+1)(d−1)/(2p+1). Thus, all the conditions in (A9) are satisfied
if q > (p + 1)(d − 1)/(2p + 1).

Remark 2. Suppose that we use bandwidths h and bj that are of the same
order, and fit pth order local polynomials for all varying coefficients with both K

and L being of second order. Set bj = h, 1 ≤ j 6= s ≤ d, for simplicity. Assume,
instead of (A2), that all the coefficient functions are (p + 1)-times continuously
differentiable. Then, one can verify that the results in the theorems are still valid
if, instead of (A9), the dimension d is smaller than 2(p + 1) and the universal
bandwidth h satisfies nhd → ∞ and nh2p+3 → 0 as n → ∞.
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6.2. Proof of Theorems 1

To prove the theorem, we need to establish that θ̂ converges to θ0 in prob-
ability, as n → ∞. The proof of this is based on the following two lemmas.
Let

K∗
h(u, t,x) = h−1K∗(

u

h
, t,x) and Lb−s(u−s) = b−1

s,prodL(
u−s

b−s
).

Writing ξi = (Xi,Ti, εi), define

qn,1(ξi) = εi

∫
ws(xs)w−s(z−s)w−s(x−s)

ϕ(xs, z−s)ϕ(x)
σ(Xi,Ti)

×K∗
h(X i

s − xs,Ti, xs, z−s)K∗
h(us − xs, t,x)

×Lb−s(X
i
−s − z−s)Lb−s(u−s − x−s)

×

[
g(us, θ0) −

p∑
k=0

g(k)(xs, θ0)
(us − xs)k

k!

]
tsϕ−s(z−s)

×ϕs(xs)ϕ−s(x−s)ψ(u, t) du dt dx dz−s. (6.1)

Lemma 1. Under the conditions of Theorem 1,

Sn(θ0) = h2p+2‖κ(·, θ0)‖2
s + n−1h−1c2 + n−1h−1/2γ

1/2
11 Z1,n

+ n−1/2hp+1ν−2W1,n + op(h2p+2 + n−1h−1/2 + n−1/2hp+1),

where ν = E[w−s(X−s)], and Z1,n is asymptotically N(0, 1) and is uncorrelated
with W1,n ≡ n−1/2h−(p+1)

∑n
i=1 qn,1(ξi).

Proof. Define

δ =

(
h + bq

s,max +
1√

nhbs,prod

)
log n,

and let c be an integer such that δc+1 = o(hp+2). Put Zs = Zs(xs), Wi
s =

(hbs,prod)−1Ws(xi
s,X

i
−s). Then, we can write

f̂s(xs) − g(xs, θ0) =
3∑

j=1

[
pj,n(xs) +

c∑
l=1

rj,l,n(xs) + πs,j,n(xs)

]

×

[
n−1

n∑
i=1

w−s(Xi
−s)

]−1

,

where, for 1 ≤ j ≤ 3 and 1 ≤ l ≤ c,

pj,n(xs) = n−2
n∑

i=1

n∑
i′=1

w−s(Xi
−s)

ϕ(xs,Xi
−s)

K∗
h(X i′

s − xs,Ti′ , xs,Xi
−s)
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× Lb−s(X
i′
−s − Xi

−s)H
i,i′

j (xs),

rj,l,n(xs) = n−1
n∑

i=1

w−s(Xi
−s)

ϕ(xs,Xi
−s)

e>0 D−1
s (xs,Xi

−s)

×

[
Ip+d −

Z>
s Wi

sZsD
−1
s (xs,Xi

−s)
ϕ(xs,Xi

−s)

]l

× Z>
s Wi

s

(
H i,k

j (xs)
)n

k=1
,

πs,j,n(xs) = n−1
n∑

i=1

w−s(Xi
−s)e

>
0 λs,n(xs,Xi

−s)Z
>
s Wi

s

(
H i,k

j (xs)
)n

k=1
,

H i,i′

j (xs) =


σ(Xi′ ,Ti′)εi′ j = 1,

T i′
s

{
g(Xi′

s , θ0) −
∑p

k=0 g(k)(xs, θ0)
(Xi′

s −xs)k

k!

}
j = 2,∑d

s′ 6=s{fs′(Xi′
s′) − fs′(Xi

s′)}T i′
s′ j = 3.

In the above, λs,n(x) depends on (Xi,Ti) only, which is o(hp+2) a.s. uniformly
for x ∈ supp(ws) × supp(w−s), and H i,i′

j (xs) does not depend on i for j = 1, 2.

Using the theory of von Mises’ differential statistics, see Yoshihara (1993)
for example, we may write

n−1
n∑

k=1

p2
1,n(Xk

s )ws(Xk
s ) = n−1h−1ν2c2 + n−1h−1/2ν2γ

1/2
11 Z1,n,

n−1
n∑

k=1

p2
3,n(Xk

s )ws(Xk
s ) = op(n−1h),

n−1
n∑

k=1

r2
1,l,n(Xk

s )ws(Xk
s ) = op(n−1),

n−1
n∑

k=1

r2
3,l,n(Xk

s )ws(Xk
s ) = op(δ2b2q

s,max),

n−1
n∑

k=1

π2m
s,1,n(Xk

s )π2(1−m)
s,3,n (Xk

s )ws(Xk
s ) = op(h2p+4),

n−1
n∑

k=1

p1,n(Xk
s )p3,n(Xk

s )ws(Xk
s ) = op(n−1),

n−1
n∑

k=1

p1,n(Xk
s )r1,l,n(Xk

s )ws(Xk
s ) = op(n−1h−1/2δ),

n−1
n∑

k=1

p1,n(Xk
s )r3,l,n(Xk

s )ws(Xk
s ) = op(n−1/2δ bq

s,max),

n−1
n∑

k=1

p1,n(Xk
s )πm

s,1,n(Xk
s )π1−m

s,3,n(Xk
s )ws(Xk

s ) = op(n−1/2hp+(3/2))
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for m = 0, 1 and 1 ≤ l ≤ c, where Z1,n
d→ N(0, 1). In fact, derivation of the first

approximation starts with the representation

n−1
n∑

k=1

p2
1,n(Xk

s )ws(Xk
s ) = n−5

n∑
i1,...,i5

qn(ξi1 , . . . , ξi5)

for some function qn that is symmetric in its arguments, where ξi = (Xi,Ti, εi).
From the theory of von Mises’ differential statistics, the leading term of the V -
statistic is its second-order projection, given by Vn,2 ≡ n−2

∑n
i,j qn,2(ξi, ξj), where

qn,2(ξi, ξj) =
∫

qn(ξi, ξj , ξk1 , ξk2 , ξk3) dF (ξk1)dF (ξk2)dF (ξk3), (6.2)

and F is the distribution function of ξi. The first term in the approximation of
the V -statistic comes from n−2

∑n
i=1 qn,2(ξi, ξi), the diagonal sum of Vn,2, and

the second term from its off-diagonal sum n−2
∑n

i6=j qn,2(ξi, ξj).
Using the same theory again, we can prove

n−1
n∑

k=1

p2
2,n(Xk

s )ws(Xk
s ) = h2p+2ν2E[ws(Xs)κ2(Xs, θ0)] + op(h2p+2),

n−1
n∑

k=1

p1,n(Xk
s )p2,n(Xk

s )ws(Xk
s ) = n−1/2hp+1W1,n + op(n−1/2hp+1),

n−1
n∑

k=1

r2
2,l,n(Xk

s )ws(Xk
s ) = op(δ2h2p+2),

n−1
n∑

k=1

π2
s,2,n(Xk

s )ws(Xk
s ) = op(h2p+4),

for 1 ≤ l ≤ c. The fact that W1,n and Z1,n are uncorrelated follows from the fact
that the covariances of qn,1(ξi) at (6.1) and qn,2(ξj , ξk) at (6.2), for all i and all
j < k, are zero. Now Lemma 1 follows from the assumptions on the bandwidths
h and b−s in (A9), since

Sn(θ0) = n−1
n∑

i=1

 3∑
j=1

{
pj,n(Xi

s) +
c∑

l=1

rj,l,n(Xi
s) + πs,j,n(Xi

s)

}2

ws(Xi
s)

×

{
n−1

n∑
i=1

w−s(Xi
−s)

}−2

.
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Lemma 2. Under the conditions of Theorem 1,

n−1
n∑

i=1

[
g(Xi

s, θ0) − g(Xi
s, θ)

]2
ws(Xi

s) = S(θ) + op(1)

uniformly for θ ∈ Θ, where S(θ) = E{g(Xs, θ0) − g(Xs, θ)}2ws(Xs).

Proof. By (A3), there exists an envelope function G ∈ L1(ϕs) such that

sup
θ∈Θ

[g(x, θ) − g(x, θ0)]
2 ws(x) ≤ G(xs)

for all x ∈ supp(ws). Since the lemma holds for independent and identically
distributed X i

s, it is valid, too, for the β-mixing process {X i
s}n

i=1, by Theorem 1
of Nobel and Dembo (1993).

Lemma 3. Under the conditions of Theorem 1, θ̂ → θ0 in probability as n → ∞.

Proof. By Lemma 1,

n−1
n∑

i=1

{f̂s(Xi
s) − g(Xi

s, θ0)}2ws(Xi
s) = op(1). (6.3)

Also, from Lemma 2

sup
θ∈Θ

∣∣∣∣∣n−1
n∑

i=1

{g(Xi
s, θ0) − g(X i

s, θ)}2ws(X i
s) − S(θ)

∣∣∣∣∣ = op(1). (6.4)

Hölder’s inequality, together with (6.3) and (6.4), gives uniform convergence of
Sn(θ) to S(θ):

sup
θ∈Θ

|Sn(θ) − S(θ)| = op(1).

Since S(θ) is minimized uniquely at θ0 and is continuous in θ, the lemma follows.

Define

qn,3(ξi) = εi

∫
ġs(xs, θ0)ws(xs)

w−s(x−s)
ϕ(xs,x−s)

K∗
h(Xi

s − xs,Ti,x)

×Lb−s(X
i
−s − x−s)σ(Xi,Ti)ϕ−s(x−s)ϕ(xs) dx. (6.5)

Let Ṡn(θ) and S̈n(θ) denote the gradient and the Hessian matrix of Sn(θ), re-
spectively.

Lemma 4. Suppose that (A1)−(A9) hold. Then, under the null hypothesis,

Ṡn(θ0) = −2hp+1τ(θ0) − 2n−1/2ν−1W2,n + op(hp+1 + n−1/2),

where W2,n ≡ n−1/2
∑n

i=1 qn,3(ξi) is uncorrelated with Z1,n in Lemma 1, and
τ(θ) = E[ws(Xs)κ(Xs, θ)ġ(Xs, θ)].
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Proof. First, we observe that

Ṡn(θ0) = −2n−1
n∑

i=1

 3∑
j=1

{
pj,n(Xi

s) +
c∑

l=1

rj,l,n(X i
s) + πs,j,n(X i

s)

}
×ġ(X i

s, θ0)ws(Xi
s)

{
n−1

n∑
i=1

w−s(Xi
−s)

}−1

.

As in the proof of Lemma 1, we can verify that

n−1
n∑

i=1

r1,l,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = op(n−1/2δ),

n−1
n∑

i=1

r2,l,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = op(δ hp+1),

n−1
n∑

i=1

r3,l,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = op(δ bq

s,max),

n−1
n∑

i=1

πs,j,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = op(hp+2),

n−1
n∑

i=1

p2,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = hp+1ντ(θ0) + op(hp+1),

n−1
n∑

i=1

p3,n(X i
s)ġ(X i

s, θ0)ws(Xi
s) = op(n−1/2h1/2).

Now we derive an expansion of the term in Ṡn(θ0) that involves p1,n(Xi
s).

One can write

n−1
n∑

i=1

p1,n(Xi
s)ġ(X i

s, θ0)ws(X i
s) = n−3

∑
i,j,k

q∗n(ξi, ξj , ξk), (6.6)

where q∗n(ξi, ξj , ξk) =
∑

i′,j′,k′ q̃n(ξi′ , ξj′ , ξk′
)/3!, with the summation being for all

permutations (i′, j′, k′) of (i, j, k), and

q̃n(ξi, ξj , ξk) = ġ(Xk
s , θ0)ws(Xk

s )
w−s(Xi

−s)
ϕ(Xk

s ,Xi
−s)

K∗
h(Xj

s − Xk
s ,Tj , Xk

s ,Xi
−s)

×Lb−s(X
j
−s − Xi

−s)σ(Xj ,Tj)εj .

Note that qn,3(ξi) defined at (6.5) has mean zero. Furthermore, from the theory
of von Mises’ differential statistics, the leading term of the V -statistic at (6.6) is
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its first-order projection, so that

n−1
n∑

i=1

p1,n(Xi
s)ġ(X i

s, θ0)ws(X i
s) = n−1

n∑
j=1

qn,1(ξj) + op(n−1).

As in the proof of Lemma 1, one can verify that qn,3(ξi) at (6.5) and qn,2(ξj , ξk)
at (6.2) are uncorrelated for all i and all j < k, so that W2,n is also uncorrelated
with Z1,n. This completes the proof of the lemma.

Lemma 5. Define Γ(θ) = E[ws(Xs)ġ(Xs, θ)ġ(Xs, θ)>]. Under the conditions
of Theorem 1, S̈n(θ̌) = 2Γ(θ0) + op(1) for any θ̌ that lies on the line segment
between θ̂ and θ0.

Proof. Since S̈n(θ̌)− S̈n(θ0) = op(1) by Lemma 3, and S̈n(θ0) = 2Γ(θ0) + op(1),
we establish the lemma.

The following lemma gives the asymptotic joint distribution of W1,n in
Lemma 1 and W2,n in Lemma 4. To state the lemma, we need more notation.
Define

V11(θ) = E

[
w2

s(Xs)η(X,T)κ(Xs, θ)2ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
,

V12(θ) = E

[
w2

s(Xs)ġ(Xs, θ)η(X,T)κ(Xs, θ)ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
,

V22(θ) = E

[
w2

s(Xs)ġ(Xs, θ)ġ(Xs, θ)>η(X,T)ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
.

Lemma 6. Under the conditions of Theorem 1, W1,n and W2,n are jointly
asymptotically N(0, Σ), where

Σ =
(

ν4V11(θ0) ν3V12(θ0)>

ν3V12(θ0) ν2V22(θ0)

)
.

Proof. The asymptotic normality can be proved by using Lemma 3.2 of Hjellvik,
Yao, and Tjøstheim (1998), for example. The formula for the variance matrix of
(W1,n,W>

2,n)> can be obtained by employing the change of variable technique.

Proof of Theorem 1. Since Ṡn(θ̂) = 0, it follows that

Sn(θ0) = Sn(θ̂) +
1
2
(θ̂ − θ0)>S̈n(θ̃)(θ̂ − θ0)

= Sn(θ̂) +
1
2
Ṡn(θ0)>S̈n(θ̄)−1S̈n(θ̃)S̈n(θ̄)−1Ṡn(θ0), (6.7)
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where θ̃ and θ̄ lie on the line segment joining θ̂ and θ0. By Lemma 1, we have

Sn(θ0) = ‖κ(·, θ0)‖2
sh

2p+2 + c2n
−1h−1

+γ
1/2
11 n−1h−1/2Z1,n + ν−2n−1/2hp+1W1,n

+op(h2p+2 + n−1h−1/2 + n−1/2hp+1), (6.8)

where ν, Z1,n and W1,n are defined in the lemma. Lemma 1 also asserts that
Z1,n and W1,n are uncorrelated. Furthermore, by Lemmas 4 and 5, the following
expansions hold:

Ṡn(θ0) = −2hp+1τ(θ0) − 2 ν−1n−1/2W2,n + op(hp+1 + n−1/2), (6.9)

S̈n(θ̌) = 2Γ(θ0) + op(1), (6.10)

where τ(θ) and W2,n are defined in Lemma 4, Γ(θ) in Lemma 5, and θ̌ is an
arbitrary stochastic term that lies on the line segment joining θ̂ and θ0. Lemma 4
also asserts that W2,n and Z1,n are uncorrelated. The last two expansions yield

Ṡn(θ0)>S̈n(θ̄)−1S̈n(θ̃)S̈n(θ̄)−1Ṡn(θ0)

= 2 τ(θ0)>Γ(θ0)−1τ(θ0)h2p+2 + 4 ν−1τ(θ0)>Γ(θ0)−1n−1/2hp+1W2,n

+ Op(n−1) + op(h2p+2 + n−1/2hp+1). (6.11)

The expansions (6.8), (6.11), and Lemma 6 conclude the theorem.

6.3. Proof of Theorem 2

Define µ(θ,∆) = E[ws(Xs)κ(Xs, θ)∆(Xs)]. Let

qn,4(ξi) = εi

∫
∆(xs)ws(xs)

w−s(x−s)
ϕ(xs,x−s)

K∗
h(Xi

s − xs,Ti,x)

×Lb−s(X
i
−s − x−s)σ(Xi,Ti)ϕ−s(x−s)ϕ(xs) dx.

Lemma 7. Under the conditions of Theorem 2,

2 n−1ρn

n∑
i=1

{
f̂s(X i

s) − g(Xi
s, θ1) − ρn∆(Xi

s)
}

∆(Xi
s)

= 2µ(θ1, ∆)hp+1ρn + 2n−1/2ρnν−1W3,n + op(hp+1ρn + n−1/2ρn),

where W3,n ≡ n−1/2
∑n

i=1 qn,4(ξi) is uncorrelated with Z1,n.

Proof. The proof is the same as that of Lemma 4, except that g(·, θ0) and ġ(·, θ0)
there are replaced by g(·, θ1) + ρn∆ and ∆, respectively.
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In the following lemma, let W ′
1,n and W ′

2,n denote those in Lemmas 1 and 4,
respectively, with θ0 being replaced by θ1. Define

V13(∆) = E

[
w2

s(Xs)∆(Xs)η(X,T)κ(Xs)ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
,

V23(θ, ∆) = E

[
w2

s(Xs)ġ(Xs, θ)∆(Xs)η(X,T)ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
,

V33(∆) = E

[
w2

s(Xs)∆(Xs)2η(X,T)ϕs(Xs)
{∫

K∗(u,T,X) du

}2
]
,

Lemma 8. Under the conditions of Theorem 2, W ′
1,n, W ′

2,n, and W3,n are jointly
asymptotically N(0, Σ′), where

Σ′ =


ν4V11(θ1) ν3V12(θ1)> ν3V13(∆)

ν3V12(θ1) ν2V22(θ1) ν2V23(θ1, ∆)

ν3V13(∆) ν2V23(θ1, ∆)> ν2V33(∆)

 .

Proof. The proof is similar to that of Lemma 6.

Proof of Theorem 2. Under the assumptions of the theorem, one can show,
similarly as in the proof of Lemma 3, that θ̂n → θ1 in probability. Also, the
expression at (6.7) is still valid with θ0 being replaced by θ1. For an expansion
of Sn(θ1), we note that

Sn(θ1) = n−1
n∑

i=1

{
f̂s(Xi

s) − fs,n(X i
s)

}2
ws(Xi

s) + n−1ρ2
n

n∑
i=1

∆(Xs)2ws(Xi
s)

+ 2 n−1ρn

n∑
i=1

{
f̂s(Xi

s) − fs,n(Xi
s)

}
∆(Xs).

Call these three sums Sn,1, Sn,2, and Sn,3, respectively. Expansion of the first
term Sn,1 is the same as that in Lemma 1, with κ(θ0) being replaced by κ(θ1).
In the proof of the lemma, we only need to replace g(·, θ0) by g(·, θ1) + ρn∆.
The additional term ρn∆ contributes Op(h2p+2ρn) only in the expansion, which
is absorbed into op(h2p+2). For the second term Sn,2, we have Sn,2 = ρ2

n +
Op(n−1/2ρ2

n). By Lemma 7, the third term has the expansion

Sn,3 = 2µ(θ1, ∆)hp+1ρn + 2 ν−1n−1/2ρnW3,n + op(hp+1ρn + n−1/2ρn),

where W3,n defined in the lemma is uncorrelated with Z1,n.
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For an expansion of Ṡn(θ1), we observe that

Ṡn(θ1) = −2n−1
n∑

i=1

{
f̂s(X i

s) − fs,n(Xi
s)

}
ġ(Xi

s, θ1)ws(X i
s)

−2n−1ρn

n∑
i=1

∆(Xs)ġ(X i
s, θ1)ws(Xi

s).

Call these two terms Ṡn,1 and Ṡn,2. The first term has the same expansion as the
one at (6.9) with τ(θ0) being replaced by τ(θ1). Since ∆ ⊥ ġs(·, θ1), we obtain
Ṡn,2 = Op(n−1/2ρn). Since (6.10) continues to hold with Γ(θ1) replacing Γ(θ0),
we get

Vn = c1(θ1)h2p+2 + 2µ(θ1, ∆)hp+1ρn + ρ2
n + c2n

−1h−1 + γ
1/2
11 n−1h−1/2Z1,n

+ n−1/2hp+1
[
ν−2W ′

1,n − 2 ν−1τ(θ1)>Γ(θ1)−1W ′
2,n

]
+ 2 ν−1n−1/2ρnW3,n

+ op

(
h2p+2 + hp+1ρn + n−1h−1/2 + n−1/2hp+1 + n−1/2ρn

)
,

where Z1,n is the same as the one in the proof of Theorem 1. Recall that W ′
j,n

for j = 1, 2 and W3,n are uncorrelated with Z1,n. The asymptotic normality of
Zj,n, j = 1, 2, 3, and the formula for the covariance of Z2,n and Z3,n follow from
Lemma 8.
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