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Abstract: Principal component regression has been perceived as a remedy for multi-

collinearity. Cook (2007) suggested that principal components and related method-

ology actually play a broader role than previously thought. Recently, Artemiou and

Li (2009) provided a probabilistic explanation of the phenomenon that the response

is often highly correlated with the leading principal components of the predictors.

This article reinforces the previous results and offers an alternative perspective.
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1. Introduction

Principal component regression has been used widely for years (Kendall
(1957), Massy (1965)) with much emphasis on dealing with the collinearity among
predictors. Recently, Cook (2007) argued that the role of principal components
and related methodology may be broader than previously seen. Commenting on
Cook (2007), Li (2007) conjectured that if nature arbitrarily selects a covariance
matrix for the predictor and coefficients for the regression, then the principal
components of higher rank tend to have stronger correlations with the response
than those of lower rank. This conjecture subsequently was proved by Artemiou
and Li (2009), which helps explain the fact that the response is often highly
correlated with the leading principal components, even when there is no logical
reason for this connection.

Consider a linear model with an additive random error,

Y = βT X + ε, (1.1)

where E(X) = 0, var(X) = Σ, E(ε) = 0, and var(ε) = σ2, cov(X, ε) = 0.
For ease of exposition, we repeat the main result of Artemiou and Li (2009) as
Proposition 1:

Proposition 1.(Theorem 3.1 in Artemiou and Li (2009)) Suppose Σ is a p × p

orientationally uniform random matrix, β is a p-dimensional random vector such
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that β (X, Σ) and ε (X,β, Σ) (here indicates independence), and Pr(β ∈
G) > 0 for any nonempty open set G ∈ Rp. Let ρi be the squared correlation
coefficient between Y and the ith principal component of X. Then, if i < j,
Pr(ρi ≥ ρj) > 1/2.

Here a random matrix is said to be orientationally uniform if its eigenvalues
are exchangeable random variables, its eigenvectors are exchangeable random
vectors, and the eigenvalues are independent of the eigenvectors. The proposi-
tion provides a partial explanation of the popularity of the principal component
regression. However, as pointed out in the rejoinder of Cook (2007) the leading
principal components may not be a sufficient reduction for the regression since
they do not take account of the information of Y .

In this article, we discuss two cases: the first focuses on the orientational
uniformness of the covariance of X, which follows the path of Artemiou and
Li (2009); the second focuses on the randomness of the regression coefficients
as an alternative explanation. Both could be reasonable manifestations of the
“unbiasedness” of nature. We show that both cases lead to the conclusion that
the principal components of higher rank tend to have stronger correlations with
the response than those of lower rank.

Working on model (1.1), we introduce some notation. Suppose Σ has a
spectral decomposition Σ = UΛUT , where U is orthonormal, and Λ is a diagonal
matrix. For any vector α ∈ Rp, let

f(α, β) = cor2(αT X,Y ) =
(αT UΛUT β)2

(αT UΛUT α)(βT UΛUT β + σ2)
.

2. Orientationally Uniform Σ

Suppose that Σ is an orientationally uniform random matrix. For any set
of orthonormal vectors {v1, . . . , vp}, any random variable among vT

1 X, . . . , vT
p X

is equally likely to be the first, second, . . ., or pth principal component of X.
In other words, there is no particular preference among predictors in how they
organize themselves. If so, we have Theorem 1 which reinforces Proposition 1.

Theorem 1. Suppose β is a fixed vector or a measurable random vector indepen-
dent of (X, ε), and the covariance matrix Σ is an orientationally uniform random
matrix. Let λ(i) and U(i) denote its ith largest eigenvalue and the corresponding
eigenvector. For i < j,

Pr[cor2(UT
(i)X,Y |β) ≥ cor2(UT

(j)X,Y |β)] =
2
π

E
[
arctan

(√
λ(i)

λ(j)

)]
≥ 1

2
.
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Proof. Let Um and Ul denote any generic pair of columns of U . We have

Pr[f(U(i), β) ≥ f(U(j), β)]

= Pr
[(UT

(j)β)2

(UT
(i)β)2

≤
λ(i)

λ(j)

]
= Pr

[
(UT

mβ)2

(UT
l β)2

≤
λ(i)

λ(j)

]
= E

{
Pr

[(UT
mβ)2

(UT
l β)2

≤
λ(i)

λ(j)

∣∣∣ β
]}

= E

{
Pr

[UT
mβ

UT
l β

≤

√
λ(i)

λ(j)

∣∣∣ β, UT
mβ > 0, UT

l β > 0
]}

=
2
π

E
[
arctan

(√
λ(i)

λ(j)

)]
≥ 1

2
.

The second equality holds because of the independence between U and Λ by the
orientationally uniformness. The fourth equality follows the geometric argument
in the proof of Theorem 1 in Arnold and Brockett (1992). Conditioning on β, the
random vector UT β is uniformly distributed on a p-dimensional hypersphere with
a radius ‖β‖. Because of the symmetry, we need only consider the first quadrant.
The fifth equality follows the examination of the bivariate joint distribution of
(UT

mβ, UT
l β) that only depends on the distance to the origin. Therefore, the

probability we search for should be proportional to the angle of the area. It is easy
to see the proportionality constant should be the inverse of π/2 = arctan(+∞).

The leading principal component is often of special interest. Theorem 1
states that the first principal component tends to have higher correlation with
the response than any other component. In some situations, we can calculate this
probability. Consider the simulation example in Li (2007, pp. 33) where p = 2,
λ1 and λ2 are i.i.d. Uniform(0, c), c > 0. Let ρi denote the squared correlation
between the ith principal component and the response. Based on Theorem 1, we
have

Pr[ρ1 > ρ2] = 2 ∗ 2
π

∫ 1

0

∫ 1

v
arctan(

√
u

v
)dudv =

2
π

= 0.6366.

Li (2007) reported a sample estimate of 0.65 with 200 replicates that is quite
close to the true probability.
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Table 1. Estimated Probabilities. (a) Pr[ρ1 > ρ2]; (b) Pr[ρ1 = max ρi]; (c)
pPr[ρ1 = max ρi].

λ ∼ Beta(1, 3) λ ∼ Beta(1, 1) λ ∼ Beta(3, 1)
p (a) (b) (c) (a) (b) (c) (a) (b) (c)
2 0.6647 0.6647 1.3293 0.6383 0.6383 1.2765 0.5532 0.5532 1.1064
3 0.5551 0.5306 1.5918 0.5423 0.4897 1.4691 0.5129 0.3937 1.1810
4 0.5259 0.4538 1.8152 0.5174 0.4055 1.6220 0.5052 0.3115 1.2458
6 0.5116 0.3635 2.1809 0.5033 0.3098 1.8590 0.5030 0.2229 1.3375
8 0.5046 0.3134 2.5075 0.5026 0.2508 2.0064 0.5008 0.1753 1.4022

16 0.5012 0.2154 3.4466 0.5003 0.1528 2.4442 0.5043 0.0981 1.5702

It may also be of interest to obtain the probability that the leading princi-
pal component has the highest correlation among all components, i.e. Pr[ρ1 =
max ρi]. Under the assumptions in Theorem 1, the probability depends on both
the dimension p and the distributions of λi’s. While a generic closed-form solu-
tion seems elusive, we can always estimate it by Monte Carlo simulation. Table
1 provides the result of a simulation study based on 100,000 replicates, where
the eigenvalues are i.i.d. from Beta(1, 3), Beta(1, 1) (uniform), and Beta(3, 1),
respectively. For any setting, Column (a) shows the advantage of the first com-
ponent over the second component; Column (b) shows the probability that the
first component has the highest correlation among all components. As expected,
these probabilities are decreasing as the number of predictors increases. However,
if one considers the ratio of Column (b) to 1/p, the fair share for any compo-
nent if no partiality exists, Column (c) suggests the advantage of the leading
component actually is strengthening rather than diminishing. Meanwhile, the
comparison of the sections of the Table clearly demonstrates the impact of the
distribution of λ’s on the probabilities. The Beta distributions were used only for
illustration here. However, the stipulation of orientationally uniform covariance
provides a framework where the exchangeability and the unspecified distribution
of eigenvalues offer a great deal of flexibility.

3. Spherically Symmetric β

Assume that β is a random vector that is spherically symmetric, i.e., Γβ has
the same distribution as β for any orthonormal matrix Γ. In words, regardless of
the structure of predictors, the response has no preference among the predictors
in terms of the magnitude of the linear coefficients. As a first step, we consider a
fixed Σ. For simplicity of the notation, let λi indicate the ith largest eigenvalue.
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For i < j,

Pr[f(Ui, β) ≥ f(Uj , β)] = Pr[λi(UT
i β)2 ≥ λj(UT

j β)2]

= Pr
[(UT

j β)2

(UT
i β)2

≤ λi

λj

]
=

2
π

arctan
(√

λi

λj

)
,

which is no less than 1/2 since λi ≥ λj . The third equality follows the logic of
the proof of Theorem 1. In other words, the leading eigenvectors are more likely
to have closer correlations with the response than any other eigenvector.

We can take a further step to show that the leading eigenvector has highest
expectation of the squared correlation with the response among all possible di-
rections without knowledge of β. Let a = UT α and b = UT β. Searching for a
decision rule α is equivalent to searching for a = UT α. Note that b also has the
spherically symmetric distribution. Let

g(α) = Eβ [f(α, β)] = Eβ

[ ∑
λ2

i a
2
i b

2
i

(
∑

λia2
i )(

∑
λib2

i + σ2)

]
=

∑
i

wiE(vi), (3.1)

where wi = λia
2
i /

∑
λja

2
j , vi = λib

2
i /(

∑
λjb

2
j + σ2). The second equality holds

because E[λiλjaiajbibj ] = 0 when i 6= j. Obviously
∑

wi = 1, so mini E(vi) ≤
g(α) ≤ maxi E(vi). Based on the Lemma 1 in the Appendix, we have E(v1) =
max E(vi) and E(vp) = min E(vi). It is easy to see that g(·) reaches a maximum
when α = U1,

g(U1) = E

[
λ1(UT

1 β)2( ∑
λi(UT

i β)2 + σ2
)]

.

Similarly, we can show that the g(·) reaches a minimum at α = Up. These results
with a fixed Σ can be generalized to a random Σ, as summarized in Theorem 2.

Theorem 2. Suppose β is a random spherically symmetric vector. Let λ(i) and
U(i) denote the ith largest eigenvalue and its eigenvector of either a random or a
fixed covariance matrix Σ = var(X). For i < j,

Pr[cor2(UT
(i)X,Y |Σ) ≥ cor2(UT

(j)X,Y |Σ)] =
2
π

E

[
arctan

(√
λ(i)

λ(j)

)]
≥ 1

2
.

Moreover, E[cor2(UT
(1)X,Y |Σ)] = maxα E[cor2(αT X,Y |Σ)], where α is restricted

to be a function of Σ.
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Proof. Let Um and Ul denote any generic pair of columns of U . We have

Pr[f(U(i), β) ≥ f(U(j), β)]

= E

{
Pr

[(UT
(j)β)2

(UT
(i)β)2

≤
λ(i)

λ(j)

∣∣∣ Λ, U
]}

= E

{
Pr

[(UT
mβ)2

(UT
l β)2

≤
λ(i)

λ(j)

∣∣∣ Λ
]}

=
2
π

E
[
arctan(

√
λ(i)

λ(j)
)
]

≥ 1
2
.

The second equality holds because UT β has the same spherically symmetric dis-
tribution as β, regardless of U . Based on (3.1), we know that conditioning on
var(X), α = U(1) maximizes g(α), i.e., U(1) has the highest expectation of the
squared correlation.

Acknowledgement

The author is grateful to Andreas Artemiou and Bing Li for providing their
manuscript. He also wishes to thank the Editor, an associate editor, and two
referees for their helpful comments, which have substantially improved the paper.
This work was supported in part by National Science Foundation grant DMS
0805409.

Appendix

Lemma 1. Suppose that {W1, . . . ,Wn} are nonnegative exchangeable random
variables. For any constants a1 ≥ · · · ≥ an ≥ 0 and c > 0, with

E
[ a1W1

(
∑

aiWi + c)

]
≥ E

[ akWk( ∑
aiWi + c

)]
, k = 2, . . . , n.

Proof. Let T =
∑

aiWi + c, and

Tk =
∑

i/∈{1,k}

aiWi + (a1 + ak)
(W1 + Wk)

2
+ c.

Since the Wi are exchangeable, E[(a1 + ak)(W1 −Wk)/Tk] = 0. We only need to
show that

E
[(a1W1 − akWk)

T
− (a1 + ak)

2
(W1 − Wk)

Tk
] ≥ 0,
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which is equivalent to

E{(a1W1 − akWk)Tk − (a1 + ak)
2

(W1 − Wk)T}

= E
{1

2
(a1 − ak)(W1 + Wk)

( ∑
i/∈{1,k}

aiWi + c
)

+ (a1 + ak)W1Wk

}
≥ 0.

The above inequality holds since all Wi are nonnegative.
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