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Abstract: We investigate asymptotic properties of a family of sufficient dimension

reduction estimators when the number of predictors p diverges to infinity with the

sample size. We adopt a general formulation of dimension reduction estimation

through least squares regression of a set of transformations of the response. This

formulation allows us to establish the consistency of reduction projection estima-

tion. We then introduce the SCAD max penalty, along with a difference convex

optimization algorithm, to achieve variable selection. We show that the penalized

estimator selects all truly relevant predictors and excludes all irrelevant ones with

probability approaching one, meanwhile it maintains consistent reduction basis es-

timation for relevant predictors. Our work differs from most model-based selection

methods in that it does not require a traditional model, and it extends existing

sufficient dimension reduction and model-free variable selection approaches from

the fixed p scenario to a diverging p.

Key words and phrases: Central subspace, diverging parameters; SCAD, sliced

inverse regression.

1. Introduction

As data with a large number of predictors prevail in many scientific fields
such as computational biology, dimension reduction is becoming central to high-
dimensional regression analysis of these datasets. Among many dimension reduc-
tion methodologies, research in sufficient dimension reduction (SDR), pioneered
by Li (1991) and formulated by Cook (1998), has gained considerable interest
in recent years. It aims to reduce the predictor dimension by a linear projec-
tion of the predictor vector while preserving full regression information. For
high-dimensional data, it is often further believed that only a subset of predic-
tors suffice to fully characterize response-predictor relation. Toward this end,
simultaneous variable selection along with dimension reduction projection can
be achieved (Ni, Cook, and Tsai (2005), Ni et al. (2008), Zhou and He (2008),
Bondell and Li (2009). In this article we investigate asymptotic properties of a



708 YICHAO WU AND LEXIN LI

family of sufficient dimension reduction methods, in terms of both reduction pro-
jection estimation and variable selection, while we allow the number of predictors
p to diverge as the sample size n approaches infinity.

Specifically, for regression of a univariate response Y given a predictor vector
X = (X1, . . . , Xp)T ∈ IRp×1 , SDR seeks a minimum subspace S, with a p × d

basis matrix B, such that Y X|BT X. Under minor conditions (Cook (1996),
Yin, Li, and Cook (2008)), such a subspace uniquely exists and is a parsimo-
nious population parameter that contains all regression information of Y |X. It
is named the central subspace, and is denoted by SY |X (Cook (1998)). Since
the seminal sliced inverse regression (SIR) proposed by Li (1991), there have
been a variety of methods proposed to estimate SY |X including, for instance,
sliced average variance estimation (Cook and Weisberg (1991)), directional re-
gression (Li and Wang (2007)), constructive estimation (Xia (2007)), and sliced
regression (Wang and Xia (2008)). Among those methods, SIR is perhaps the
most commonly used one for estimating SY |X , and there have been a number
of elaborations on the original methodology of SIR, see for instance, Fung et al.
(2002), Yin and Cook (2002), and Cook and Ni (2006). The asymptotic prop-
erties of SIR were studied in Li (1991), Hsing and Carroll (1992), Zhu and Ng
(1995), and Zhu and Fang (1996). In all those cases, however, the predictor
dimension p is treated as fixed. Toward variable selection, Ni, Cook, and Tsai
(2005) introduced the lasso type of penalty to SIR to select important predictors
along with dimension reduction basis estimation. Zhou and He (2008) imposed
the lasso penalty along with thresholding for variable filtering. Ni et al. (2008)
and Bondell and Li (2009) generalized the penalized estimation idea to a family
of inverse regression estimators and obtained asymptotic properties in terms of
consistency in variable selection. Again, p is fixed in those studies and extension
to a diverging p is by no means trivial. Recently, there has been work on the
diverging p case in the context of sufficient dimension reduction: Zhu, Miao, and
Peng (2006) studied the asymptotic properties of SIR as p diverges, but their
result is for SIR only, and variable selection is not studied at all; Zhu and Zhu
(2009a) investigated weighted partial least squares with a diverging p, but again
variable selection is not tackled; Zhu and Zhu (2009b) studied variable selection
with a diverging number of predictors through inverse regression, but focused
on single-index models only. By contrast, we establish asymptotic properties for
a family of inverse regression estimators that includes SIR, study simultaneous
dimension reduction and variable selection with a particular emphasis on the
latter, and encompass more general model forms.

More specifically, we employ a general formulation of a family of SDR esti-
mators that estimate the central subspace through least squares regression of a
set of transformations of the response given the original predictors. This formu-
lation can be viewed as a generalization of the original sliced inverse regression,
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and includes SIR as a special case in certain situations. Based on this formula-
tion, we investigate the asymptotic properties of our dimension reduction basis
estimator while we allow p = pn to increase with the sample size n. Under rea-
sonable regularity conditions, we find the rate of convergence of the estimator to
be Op(

√
p/n).

In terms of variable selection, we adopt the SCAD type penalty that was first
proposed by Fan and Li (2001), then further developed in Fan and Li (2002), Li
and Liang (2008), among others, and combine it with our dimension reduction
estimator. It is important to note that exclusion of a predictor in our context
of reduction basis estimation requires an entire row of the corresponding basis
matrix estimator be zero simultaneously. For this purpose, we employ the SCAD
max penalty. We also note that the SDR estimators generally impose no as-
sumption on the conditional distribution Y |X and thus require no traditional
models. As a consequence, the penalized SDR estimators achieve variable se-
lection in a model-free fashion. This characteristic distinguishes our result of
variable selection with a diverging p from the existing literature, e.g., Fan and
Peng (2004), where a parametric model and most often a homoscedastic linear
model is assumed. We employ the pseudo-likelihood approach in our proof since
no parametric model is imposed. Under suitable conditions, we show that our
estimator achieves consistency in variable selection, i.e., the estimator selects all
truly relevant predictors with probability approaching one. In addition, the basis
estimator of all the relevant predictors is consistent with a

√
n-rate.

The rest of the article is organized as follows. In Section 2, we review a
family of SDR estimators and study the convergence as p diverges. In Section
3, we propose the SCAD regularized SDR estimator for variable selection, and
investigate its asymptotics with a diverging p in terms of variable selection con-
sistency and basis estimation consistency. We also propose a difference convex
algorithm for optimization. We present numerical studies in Section 4, and con-
clude the paper with a discussion in Section 5. Some technical proofs are given
in the Appendix.

2. Dimension Reduction Basis Estimation

2.1. Dimension reduction via response transformation

Throughout, we assume the central subspace SY |X exists and its dimension
d = dim(SY |X) is fixed when p → ∞. This assures that there is a well-defined
population parameter as the target of our dimension reduction estimation.

By marginal standardization, if necessary, we assume E(X) = 0 and Var (Xj)
= 1, j = 1, . . . , p. Let Σ = Cov (X), and define the first moment inverse mean
function φ(Y ) = Σ−1E(X|Y ). Sliced inverse regression is based upon the key ob-
servation that, if the linearity condition is satisfied, which states that E(X|BT X)
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is a linear function of BT X with B denoting a basis of SY |X , then φ(Y ) ∈ SY |X .
The linearity condition is satisfied when X is multivariate normally distributed.
Furthermore, Hall and Li (1993) proved that linear combinations of the predic-
tors are approximately normally distributed when p → ∞ as n → ∞, which
assures that the linearity condition is satisfied asymptotically. It is also interest-
ing to note that this condition is imposed only on the marginal distribution of
X, rather than the conditional distribution Y |X. For this reason, SIR is viewed
as a model-free estimator of the central subspace.

For any function f(Y ) satisfying E{f(Y )} = 0, following Yin and Cook
(2002) one can show that

E{f(Y )φ(Y )} = Σ−1 Cov {X, f(Y )} ∈ SY |X (2.1)

under the linearity condition. Consequently, one can choose a series of trans-
formation functions of the response variable, f1(Y ), . . . , fh(Y ), where h is a pre-
specified number, and obtain the least squares estimates of regressing fk(Y ) on
X, i.e.,

β0
k = arg min

βk

E[{fk(Y ) − XT βk}2], k = 1, . . . , h. (2.2)

Write B0 = (β0
1, . . . , β

0
h) ∈ IRp×h , then Span(B0) ⊆ SY |X by (2.1). By following

the usual protocol in the literature of sufficient dimension reduction, we take
one step further by assuming the coverage condition Span(B0) = SY |X whenever
Span(B0) ⊆ SY |X . This condition often holds in practice; see Cook and Ni
(2006) for a discussion.

There are various choices for the transformation functions fk(Y ). The origi-
nal SIR corresponds to choosing the slice indicator function fk(Y ) = 1 if Y is in
slice k, and 0 otherwise, where the response Y is assumed to take h distinctive val-
ues {1, . . . , h}. Since E{fk(Y )φ(Y )} = P (Y = k)Σ−1E(X|Y = k), k = 1, . . . , h,
we have Span(β1, . . . , βh) = Σ−1Span(E(X|Y = 1), . . . , E(X|Y = h)), and thus
it is equivalent to the traditional SIR estimator. Fung et al. (2002) suggested
choosing the normalized B-spline basis functions for fk(Y ); Yin and Cook (2002)
suggested the normalized polynomial transformation fk(Y ) = Y k up to power
h; Cook and Ni (2006) recommended choosing fk(Y ) = Y if Y is in slice k, and
0 otherwise. We do not address which choice of the transformation function is
the “best”; we focus on the asymptotic properties of this family of estimators in
general. Moreover, the number of the transformation functions h is a tuning pa-
rameter, and although its value matters, it is generally recognized that methods
based on inverse means alone are not overly sensitive to the choice of h as long as
h > d (Li (1991, Remark 4.3), Cook and Ni (2006, p.71)). Since h usually takes
a pre-specified small value in practice, we treat h(> d) as fixed in our asymptotic
investigations.
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Throughout, we assume that we have n i.i.d. realizations of the data, {(Xi, Yi),
i = 1, . . . , n}, and h pre-specified transformation functions f1(·), . . . , fh(·) whose
forms do not depend on the data. We then solve the least squares optimization

β̂k = arg min
βk

n∑
i=1

{fk(Yi) − XT
i βk}2, k = 1, . . . , h. (2.3)

We construct the p × h matrix B̂ = (β̂1, . . . , β̂h), obtain the first d eigenvectors
(v̂1, . . . , v̂d) of the matrix h−1B̂B̂

T
, and take Span(v̂1, . . . , v̂d) as an estimate of

the targeted central subspace. The structure dimension d = dim(SY |X) of the
central subspace can be estimated by an asymptotic test (Li (1991)), a permu-
tation test (Cook and Yin (2001)), or an information criterion (Zhu, Miao, and
Peng (2006)), and as such d is treated as known in our investigation of reduction
basis estimation.

2.2. Asymptotic properties

We now study the asymptotic properties of our estimator of the central
subspace. We begin with a lemma that is a key for our main asymptotic result
in Theorem 1.

Lemma 1. Suppose Conditions (i), (ii), and (iii) of Appendix A hold. When
p(log n)/n → 0, there exists a constant a∗ > 0 such that

P

(
inf

‖β‖=1

n∑
i=1

(XT
i β)2 > a∗n

)
→ 1 as n → ∞.

Proof of Lemma 1. For n i.i.d. standard normal errors εi, i = 1, . . . , n, we
construct artificial data {(Xi, Ỹi), i = 1, . . . , n}, where Ỹi = XT

i β̃ + εi for some
fixed β̃ ∈ IRp . The desired result follows by applying Lemma 3.1 of Portnoy
(1984) with ψ(t) = t.

For any function f(·) satisfying that E{f(Y )} = 0, let

β0 = β0(f) = argmin
β

E
{
f(Y ) − XT β

}2
, (2.4)

β̂ = β̂(f) = argmin
β

n∑
i=1

{
f(Yi) − XT

i β
}2

. (2.5)

Theorem 1. Suppose Conditions (i)−(vii) of Appendix A hold. If p(log n)/n →
0, β̂ is a consistent estimator for β0 with ‖β̂ − β0‖ = Op(

√
p/n).

The proof of this theorem is given in Appendix B. It serves as a basis for our
consistency result for estimating the central subspace.
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Corollary 1. Consider a set of response transformation functions, {f1(·), . . .,
fh(·)}, each of which satisfies Conditions (vi) and (vii) of Appendix A. Under
Conditions (i)−(v) of Appendix A, we have ‖h−1(B̂B̂

T −B0B
T
0 )‖ = Op(

√
p/n),

B0 and B̂ as at (2.2) and (2.3).

Proof of Corollary 1. Note first that we assume h is finite and fixed. Con-
sequently ‖B0‖ = O(1). Theorem 1implies that the Frobenius norm of B̂ − B0

satisfies ‖B̂ − B0‖ = Op(
√

p/n). Therefore,

‖h−1(B̂B̂
T − B0B

T
0 )‖

≤ h−1(‖(B̂ − B0)(B̂ − B0)T ‖ + ‖B0(B̂ − B0)T ‖ + ‖(B̂ − B0)BT
0 ‖)

≤ h−1(‖(B̂ − B0)‖‖(B̂ − B0)T ‖ + ‖B0‖‖(B̂ − B0)T ‖ + ‖(B̂ − B0)‖‖BT
0 ‖)

≤ h−1

(
Op(

√
p

n
)2 + O(1)Op(

√
p

n
) + O(1)Op(

√
p

n
)
)

= Op(
√

p

n
).

Remark 1. Zhu, Miao, and Peng (2006) studied the asymptotics of the original
SIR estimator when p diverges. In their study, they fixed the number of sample
points in each slice while letting the number of slices h → ∞ as n → ∞. In
our study, this notion of fixed number of observations per slice no longer applies
for a choice of transformation functions other than the indicator function. Be-
sides, since in practice h is pre-determined, we choose to treat h as fixed in our
asymptotic investigations. For these reasons, our consistency rate is not directly
comparable to that obtained by Zhu, Miao, and Peng (2006) for the original
SIR, while our result goes beyond SIR and applies to the entire family of SDR
estimators based on the first inverse moment φ(Y ), as discussed in Section 2.1.

We can further bound estimation error of the first d eigenvectors of h−1B̂B̂
T

when the first d eigenvalues of h−1B0B
T
0 are distinct. Let A0 = h−1B0B

T
0 ,

Â = h−1B̂B̂
T
, and E = Â−A0. Denote the eigenvalues and eigenvectors of A0

by {λj , vj}, j = 1, . . . , p.

Theorem 2. Suppose λ1, . . . , λd are unique. Under the conditions of Corollary
1, the estimated eigenvectors v̂js satisfy√

1 − (vT
j v̂j)2 = Op(

√
p

n
), j = 1, . . . , d.

Proof of Theorem 2. For j = 1, . . . , d, we rearrange the order of the first d el-
ements and write Qj = (vj , vj+1, . . . , vd, v1, v2, . . . , vj−1, vd+1, vd+2, . . . , vp) =
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(vj ,Qj2). Then QT
j A0Qj = diag(λj , λj+1, . . . , λd, λ1, λ2, . . . , λj−1, λd+1, λd+2,

. . . , λp). Next write QT
j EQj =

[
εj εj

εT
j E22j

]
and aj = minj 6=i |λi − λj | > 0. Note

that ‖E‖ = Op(
√

p/n) due to Corollary 1. By applying Theorem 8.1.12 of Golub
and van Loan (1996), there exists pj ∈ IRp−1 satisfying ‖pj‖ ≤ 4‖εj‖/aj such

that v̂j = (vj +Qj2pj)/
√

1 + pT
j pj is a unit eigenvector of Â = A0+E. Further-

more,
√

1 − (vT
j v̂j)2 ≤ 4‖εj‖/aj . Since ‖εj‖ ≤ ‖QT

j EQj‖ ≤ ‖Qj‖‖E‖‖Qj‖ =

‖E‖ = Op(
√

p/n), the result follows.

3. Variable Selection

3.1. Regularization via the SCAD max penalty

When the number of predictors p is large in a regression analysis, regu-
larization is often employed to add numerical stability, to improve statistical
robustness, and to achieve variable selection. In the context of model-based
variable selection, there has been an extensive literature on model selection via
regularization for the Lasso (Tibshirani (1996)), the SCAD (Fan and Li (2001)),
the nonnegative garrote (Breiman (1995)), and the adaptive Lasso (Zou (2006)),
among many others. In particular, Fan and Li (2001) first demonstrated that
the SCAD penalty possesses the oracle properties in the sense that the regular-
ized estimator correctly selects predictors with nonzero coefficients in the model,
excludes those with zero coefficients with probability approaching one, and es-
timates those nonzero coefficients with the asymptotic distribution they would
have if all the zero coefficients were known in advance. Fan and Peng (2004)
established these properties of the SCAD for linear models, and Zhu and Zhu
(2009b) employed the SCAD for variable selection in single-index models, both
with a diverging p. Here we adopt the SCAD max penalty for the purpose of
variable selection when p tends to infinity, but we do not impose any parametric
or semi-parametric models.

Before pursuing variable selection in the framework of sufficient dimension
reduction, we first note that the notions of relevant and irrelevant variables need
to be clearly defined, since in SDR estimation no parametric model is imposed.
Toward that end, Cook (2004) and Bondell and Li (2009) showed that, as long as
the central subspace SY |X exists, there exists a unique partition of the predictors
X = (XT

+, XT
−)T , X+ ∈ IRq×1 , and X− ∈ IR(p−q)×1 , such that

Y X−|X+. (3.1)

Thus the regression of Y on X only relies on the set of predictors X+, which
we call the relevant variables, while X− is irrelevant. Without loss of generality,



714 YICHAO WU AND LEXIN LI

we assume that X+ consists of the first q predictors. Moreover we assume the
number of relevant predictors q is fixed as p → ∞. That is, we regard all
regression information as concentrated on a fixed number of predictors with the
rest of additional variables as nuisance information. We think this condition
reasonable, based upon the belief that, in many real applications, increasing
the number of predictors after a certain stage does not necessarily induce an
increasing amount of useful information. We then have a well-defined population
target for the purpose of variable selection in the absence of a traditional model.

Predictor partition as in (3.1) can be directly connected with the basis B of
the central subspace; that is, the last p − q rows of B must all be zeros (Cook
and Ni (2006, Prop. 1)). It also leads to the following lemma in our context of
least squares estimation of the central subspace.

Lemma 2. For β0 at (2.4), we have β0 = (β0T
+ ,0T

(p−q)×1)
T at (3.1), where

β0
+ = argminβ+∈IRq E{f(Y ) − XT

+β+} when the linearity condition is satisfied.

Proof of Lemma 2. Under the linearity condition, we have β0 ∈ SY |X so that
β0 can be written as a linear combination of the columns of the central subspace
basis B. Since the last p − q rows of B must all be zeros, the result follows.

The class of SDR estimators studied in Section 2 yield linear combinations
of all the original predictors and thus perform no variable selection. We intro-
duce a non-concave penalty to achieve selection of relevant predictors. For a set
of transformation functions, f1, . . . , fh, define the negative pseudo loglikelihood
function

Lk(βk) = n−1
n∑

i=1

{
fk(Yi) − XT

i βk

}2
.

Applying the max-type penalty, we propose to minimize

Q(B) =


h∑

k=1

Lk(βk) +
p∑

j=1

pλ( max
1≤k≤h

|βjk|)

 (3.2)

over B = (β1, . . . , βh), where βjk is the j-th element of βk ∈ IRp×1 , j =
1, . . . , p, k = 1, . . . , h. Here pλ(θ) is a general penalty function indexed by a
regularization parameter λ. For now we simply assume pλ is symmetric, singular
at the origin, and non-decreasing and concave on [0,∞). Later in this section,
we introduce a specific non-concave form, the SCAD penalty function, for pλ(θ).

Two observations are noteworthy here. First, the minimization in (3.2) is
over the entire p×h matrix B, since the penalty is imposed on the maximum over
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each row of B. This is different from the dimension reduction basis estimation
without regularization as discussed in Section 2.1, where the minimization is car-
ried over each column βk of B individually. Second, variable selection achieved
through (3.2) requires no dimension reduction basis estimation as a preprocess-
ing step, and thus requires no knowledge of the structural dimension d either.
For this reason, the penalty term in (3.2) has ph parameters rather than pd pa-
rameters. Selection is done essentially in one step instead of two steps, which to
some degree mitigates the dependency of variable selection on the accuracy of
reduction basis estimation, and can be particularly useful if model-free variable
selection is the sole purpose of the study.

With a slight abuse of notation, we denote the minimizer of (3.2) as B̂ =
(β̂1, . . . , β̂h), and denote the minimizer of the corresponding population version∑h

k=1 E{fk(Y ) − βT
k X}2 as B0 = (β0

1, . . . , β
0
h). We use B̂+ = (β̂1+, . . . , β̂h+)

to denote the submatrix of B̂ that consists of its first q rows, and similarly
denote the first q rows of B0 as B0

+ = (β0
1+, . . . , β0

h+). We next aim to show
that β̂k+ → β0

k+ as n → ∞, and that the j-th element β̂jk of β̂k satisfies
P (β̂jk = 0) → 1 for j > q, k = 1, . . . , h.

3.2. Asymptotic properties

Let λ = λn. For a general non-concave penalty function pλn(·), let an =
max1≤j≤p p′λn

(max1≤k≤h |β0
jk|) and bn = max1≤j≤p p′′λn

(max1≤k≤h |β0
jk|), where

β0
jk is the j-th element of β0

k, and p′λn
(·) and p′′λn

(·) denote the first and second
order derivative, respectively.

Lemma 3. Suppose X satisfies Conditions (iv) and (v), and that each of the
response transformation functions f1(·), . . . , fh(·), satisfies Conditions (vi) and
(vii) in Appendix A. If p = o(n1/4), and the penalty function pλn(·) has an =
O(1/

√
n) and bn = o(1), then there exists a local minimizer B̂ = (β̂1, . . . , β̂h) of

Q(B) in (3.2) such that ‖β̂k − β0
k‖ = Op(

√
p(n−1/2 + an)), k = 1, 2, . . . , h.

Lemma 4. Suppose that each of the response transformation functions, f1(·), . . .,
fh(·), satisfies Conditions (vi) and (vii) in Appendix A, and that pλn satisfies
lim infn→∞ infθ→0+ p′λn

(θ)/λn > 0. If λn → 0,
√

p/n/λn → 0, and p = o(n1/4)
as n → ∞, then for any given q × h submatrix B+ = (β1+, . . . , βh+) satisfying
‖βk+ − β0

k+‖ = Op(
√

p/n), k = 1, . . . , h, and any (p − q) × h submatrix B− =
(β1−, . . . , βh−) satisfying that ‖βk−‖ ≤ C

√
p/n for a constant C, k = 1, . . . , h,

with probability tending to one,

Q((BT
+,0T

(p−q)×h)T ) = min
‖βk−‖≤C

√
p/n

Q((BT
+, BT

−)T ).
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The proofs of these two lemmas are given in Appendix B.

Theorem 3. Under the conditions of Lemmas 3 and 4, with probability tending
to one, the

√
p/n-consistent local minimizer of Q(B) satisfies

(i) β̂jk = 0 for j > q and 1 ≤ k ≤ h;

(ii) β̂jk for 1 ≤ j ≤ q and 1 ≤ k ≤ h have the same asymptotic distribution as
the minimizers of

Q̃(B+) = n−1
h∑

k=1

n∑
i=1

(fk(Yi) − XT
i+βk+)2 +

q∑
j=1

pλn( max
1≤k≤h

|βjk|)

over B+ = (β1+, . . . , βh+), where βjk is the j-th element of βk+ ∈ IRq×1 ,
j = 1, . . . , q, k = 1, . . . , h, and Xi+ is the i-th observation of X+.

Proof of Theorem 3. By Lemma 3, there exists a
√

p/n-consistent local

minimizer B̂ of Q(B). Part (1) holds by Lemma 4, that is, B̂ = (B̂
T
+,0T

(p−q)×h)T

with probability tending to one. Consequently, with probability tending to one,
we are in effect minimizing Q̃(·). Then part (2) follows.

Remark 2. The asymptotic distributional result is given in a way similar to that
in Knight and Fu (2000). For a non-concave max penalty, in general, the explicit
asymptotic normality result, as in Fan and Li (2001) and Fan and Peng (2004), is
not available because there may exist a tie |β0

jk| = |β0
jk′ | for some 1 ≤ j ≤ q and

k 6= k′. For some specific non-concave max penalty, the asymptotic normality
result is possible, as we discuss next.

We introduce a specific form of a non-concave penalty function, the SCAD
penalty first proposed by Fan and Li (2001). Define a penalty function pλn(θ)
through its first derivative

p′λn
(θ) = λn

{
I(θ ≤ λn) +

(aλn − θ)+
(a − 1)λn

I(θ > λn)
}

, θ ≥ 0, (3.3)

where a is an additional parameter. It is easy to see that this function satisfies
the non-concave penalty condition. Note that pλn(θ) flattens out for |θ| > aλn.
Consequently, an = 0 and bn = 0 as long as λn < a−1 max1≤j≤q,1≤k≤h |β0

jk|. This
feature enables us to refine the result of Theorem 3, and leads to the following
corollary.

Corollary 2. For the SCAD penalty, an = 0 and bn = 0 when λn <

a−1 max1≤j≤q,1≤k≤h |β0
jk|. Then under the conditions of Lemmas 3 and 4, with

probability tending to one, the
√

p/n-consistent local minimizer of Q(B) satisfies
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(i) β̂jk = 0 for j > q and 1 ≤ k ≤ h;

(ii)
√

n(β̂k+−β0
k+)→N(0,Σ−1

+ Σk+Σ−1
+ ) for k=1, . . . , h, where Σ+ =Cov (X+)

and Σk+ = Var {fk(Y )X+}.

Proof of Corollary 2. It is straightforward to verify that the SCAD penalty sat-
isfies all the penalty-related conditions in Theorem 3. Since β̂k+, k = 1, . . . , h, are
consistent, and λn < a−1 max1≤j≤q,1≤k≤h |β0

jk| asymptotically, we are optimiz-
ing Q̃(B+) in a neighborhood of (β1+, . . . , βh+) satisfying max1≤k≤h |βjk| > aλ

for j = 1, . . . , q. Correspondingly, pλn(max1≤k≤h |βjk|) reduces to pλn(aλn) =
(a + 1)λ2

n/2, which does not depend on βk+, k = 1, . . . , h. As such,

argmin
β1+,...,βh+

1
n

h∑
k=1

n∑
i=1

{
fk(Yi) − XT

i+βk+

}2
+

q∑
j=1

pλn( max
1≤k≤h

|βjk|)

is the same as

argmin
β1+,...,βh+

h∑
k=1

n∑
i=1

1
n

{
fk(Yi) − XT

i+βk+

}2
.

The desired result follows.

Remark 3. Corollary 2 is a special case of Theorem 3 since the SCAD penalty
function is a special case of the general non-concave penalty function. This refined
result is possible because that the SCAD function is flat when its argument is
larger than aλ in magnitude. Consequently there is no asymptotic bias in using
B̂+ to estimate B+. This is in a similar spirit as the result of Theorem 2 of Fan
and Li (2001).

Remark 4. We obtain the
√

n-rate for dimension reduction basis estimation
after variable selection because the number of truly relevant predictors q is as-
sumed fixed. Consequently, with the SCAD regularized estimator selecting all
truly relevant predictors and excluding all irrelevant ones with probability one,
the basis estimation based on those relevant predictors achieves a

√
n-rate.

Remark 5. Our results differ from those of Fan and Li (2001) and Fan and Peng
(2004), in that they require a parametric linear model and all results hinge on
the model being correctly specified. By contrast, our approach does not require
a traditional model, and our technical proofs are based on the pseudo-likelihood
function.
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Figure 1. Decomposition of the SCAD penalty as pλ(θ) = pλ,1(θ) − pλ,2(θ),
with parameters λ = 2 and a = 3.7

3.3. Optimization algorithm

We propose an algorithm to minimize Q(B) in (3.2). Note that the SCAD
type penalty is non-concave, and thus it requires some specially designed opti-
mization algorithm. In the literature, there exist a number of such algorithms, in-
cluding local quadratic approximation (Fan and Li (2001)), the minorize-maximize
algorithm (Hunter and Li (2005)), local linear approximation (Zou and Li (2008)),
and the difference convex algorithm (DC, An and Tao (1997) Wu and Liu (2009).
For our problem, we employ the DC algorithm, that solves a non-concave opti-
mization problem via a sequence of convex optimizations by decomposing the
non-concave objective function as the difference of two convex functions.

For the SCAD penalty, we note that its first derivative as given in (3.3) can
be decomposed as p′λ(θ) = p′λ,1(θ) + p′λ,2(θ), where p′λ,1(θ) = λ is a constant
and p′λ,2(θ) = λ[1 − (aλ − θ)+/{(a − 1)λ}]I(θ > λ) is a decreasing function on
the range θ > 0. Accordingly, the SCAD penalty function can be decomposed
as pλ(θ) = pλ,1(θ) − pλ,2(θ), where both pλ,1(·) and pλ,2(·) are convex, with
p′λ,1(θ) and p′λ,2(θ) as the derivative, respectively. Figure 1 illustrates such a
decomposition for a SCAD function with a particular set of parameters, a = 3.7
and λ = 2, where the left panel plots pλ,1(θ), the central panel pλ,2(θ), and the
right panel pλ(θ) = pλ,1(θ) − pλ,2(θ).

We next decompose the objective function in (3.2) as Q(B) = Qvex(B)
+Qcav(B), where

Qvex(B) =
h∑

k=1

Lk(βk) +
p∑

j=1

pλ,1( max
1≤k≤h

|βjk|),

Qcav(B) = −
p∑

j=1

pλ,2( max
1≤k≤h

|βjk|).
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We initialize B = B(0) and then update B iteratively. At the (t+1)-th step, the
DC algorithm uses a linear function −

∑p
j=1 p′λ,2(max1≤k≤h |β

(t)
jk |)(max1≤k≤h |βjk|

−max1≤k≤h |β
(t)
jk |) to approximate the concave part Qcav(B), where β

(t)
jk denotes

the (j, k)-th element of the solution B(t) from the t-th step. Then minimizing
Q(B) amounts to solving

B(t+1) =argmin
B

{
Qvex(B)−

p∑
j=1

p′λ,2( max
1≤k≤h

|β(t)
jk |)( max

1≤k≤h
|βjk|− max

1≤k≤h
|β(t)

jk |)
}

.(3.4)

Optimization in (3.4) can be further formulated as a quadratic programming
problem by letting ξ

(t)
j = max1≤k≤h |β

(t)
jk |, then minimizing

n−1
h∑

k=1

n∑
i=1

(fk(Yi) − XT
i βk)

2 +
p∑

j=1

(λ − p′λ,2(ξ
(t)
j ))ξj

over B = (β1, . . . , βh) subject to ξj ≥ βjk and ξj ≥ −βjk, j = 1, . . . , p, k =
1, . . . , h. Existing software is available to solve this quadratic programming prob-
lem.

Hunter and Li (2005) studied the convergence property of their minorize-
maximize (MM) algorithm for the SCAD penalty. Our DC solution can also be
viewed as an instance of their MM algorithm, since we replace the concave part
Qcav(B) by its affine minorization at each iteration. As the objective function
Q(B) is nonnegative, by the descent property of the MM algorithm, our DC
algorithm is bound to converge to an ε-local minimizer in finite steps. Practically,
we deem the algorithm convergent if

∑h
k=1

∑p
j=1 |β

(t)
jk −β

(t+1)
jk | is sufficient small,

e.g., less than 10−4.

4. Numerical Studies

In this section, we examine the finite sample performance of the pro-
posed method using both simulations and a data example. We employed the
BIC type criterion to select the tuning parameter λ for the SCAD penalty,∑h

k=1

∑n
i=1(fk(yi)−XT

i β̂
(λ)

k )2+n(λ) log n, where n(λ) = #{j : max1≤k≤h |β̂
(λ)
jk | >

0} denotes the number of active predictors at λ. The BIC criterion has been com-
monly used in regularized variable selection, e.g., Wang, Li and Tsai (2007). For
transformation functions, we implemented the slice indicator function that gives
the usual SIR estimate, and the B-spline basis function suggested in Fung et al.
(2002). For the former, we fixed the number of slices at h = 5 and, for the latter,
we used a linear spline with three inner knots, which also yields h = 5.



720 YICHAO WU AND LEXIN LI

Table 1. Evaluation of dimension reduction basis estimation for Examples
4.1 and 4.2. Reported are the mean and standard deviation (in parentheses)
of the vector correlation coefficients.

Example 4.1 with d = 2 Example 4.2 with d = 3
Slicing Spline Slicing Spline

p = 20, n = 400 p = 20, n = 600
w/o penalty 0.92 (0.03) 0.88 (0.04) 0.88 (0.03) 0.85 (0.06)

SCAD 0.98 (0.02) 0.92 (0.11) 0.96 (0.03) 0.96 (0.04)
p = 40, n = 800 p = 40, n = 1, 200

w/o penalty 0.92 (0.02) 0.87 (0.03) 0.87 (0.02) 0.84 (0.04)
SCAD 0.99 (0.01) 0.99 (0.01) 0.98 (0.01) 0.98 (0.01)

4.1. Simulations

For Examples 4.1 and 4.2, we generated independent Xj from the standard
normal. We also considered correlated predictors with Corr(Xi, Xj) = 0.5|i−j|,
1 ≤ i, j ≤ p.

Example 4.1. Here

Y =
XT β1

0.5 + (1.5 + XT β2)2
+ 0.2ε,

where ε ∼ Normal(0, 1) is independent of X. In this model the structural di-
mension d = 2. We chose β1 = (1, 1, 0, . . . , 0)T and β2 = (0, 0, 1, 1, 0, . . . , 0)T .
We considered n = 400, p = 20 and n = 800, p = 40. We employed the vector
correlation coefficient (Hotelling (1936)) to evaluate the accuracy of the dimen-
sion reduction basis estimation, and it ranges between 0 and 1 with a larger value
indicating a better estimate. Results based on 100 data replications are reported
in Table 1 (left half), where the mean and standard deviation (in parentheses)
of the vector correlations between the true and the estimated central subspace
basis are shown. We compared the usual SDR estimator without penalty and
the one with the SCAD max penalty. Due to the sparse nature of the central
subspace basis, the penalized SDR estimator achieved a better estimation accu-
racy. To evaluate the performance in terms of variable selection, we employ the
true positive rate and the false positive rate, a pair of criteria that are commonly
used in biomedical research. Table 2 (left half) reports the average results of
the penalized SDR estimator. It is clearly seen that all truly relevant predictors
were selected, while the false positive rate was low. Moreover, two choices of
transformation functions had similar empirical performance in this example.

Example 4.2. Here Y = sign(XT β1) log |XT β2 + 5| + XT β3 + 0.2ε, where
ε ∼ Normal(0, 1) is independent of X. In this example, the structural dimension
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Table 2. Evaluation of variable selection for Examples 4.1 and 4.2. Reported
are the mean and standard deviation (in parentheses) of true positive rate
(TPR) and false positive rate (FPR).

Example 4.1 with d = 2 Example 4.2 with d = 3
Slicing Spline Slicing Spline

p = 20, n = 400 p = 20, n = 600
TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FPR 0.04 (0.05) 0.01 (0.02) 0.02 (0.05) 0.04 (0.04)

p = 40, n = 800 p = 40, n = 1, 200
TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FPR 0.00 (0.00) 0.02 (0.02) 0.06 (0.04) 0.00 (0.01)

Table 3. Evaluation of dimension reduction basis estimation and variable
selection for Examples 4.1 and 4.2 with correlated predictors.

Example 4.1 with d = 2 Example 4.2 with d = 3
Slicing Spline Slicing Spline

p = 40, n = 800 p = 40, n = 1, 200
w/o penalty 0.77 (0.05) 0.73 (0.06) 0.77 (0.03) 0.74 (0.05)

SCAD 0.95 (0.04) 0.86 (0.13) 0.95 (0.03) 0.96 (0.03)
TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FPR 0.00 (0.01) 0.01 (0.01) 0.04 (0.04) 0.00 (0.01)

d is 3. We chose β1 = (1, 1, 0, . . . , 0)T , β2 = (0, 0, 1, 1, 0, . . . , 0)T , and β3 =
(0, 0, 0, 0, 1, 1, 0, . . . , 0)T , where n = 600, p = 20 and n =1,200, p = 40. Results
of reduction basis estimation are reported in Table 1 (right half), and results of
variable selection are reported in Table 2 (right half). Again, the proposed SDR
estimator with the SCAD max penalty achieved a good performance in terms of
both basis estimation and variable selection.

We next consider the performance with correlated predictors. Table 3 reports
the results of reduction basis estimation and variable selection when p = 40. It is
seen from the table that correlation among the predictors had some bearing on the
method, but the overall performance resembled the results for the case without
correlation: the penalized SDR estimator improved the estimation accuracy in
terms of reduction basis estimation, and achieved a high true positive rate and
a low false positive rate.

4.2. A data example

We briefly analyze the motif discovery data of Zhong et al. (2005) to illustrate
the proposed method, though our analysis is by no means comprehensive. The
goal here is to identify a subset of transcription factor binding motifs that affect
the gene expression values. The response variable is the expression value obtained
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by DNA microarray experiments, the predictors are the motif-matching scores of
p̃ = 414 candidate motifs, and the data consist of n =5,970 genes as the sample
observations. To bring the number of candidate predictors to the order of

√
n, we

employed univariate regression for an initial screening, following the spirit of Fan
and Lv (2008). We set the cutoff p-value at 0.05, and obtained p = 118 motifs
for subsequent analysis. Zhong et al. (2005) suggested that the central subspace
is two-dimensional and that the predictors affect the response in some nonlinear
fashion. We applied our variable selection method to these data. The slicing
transformation selected 16 motifs, whereas the spline transformation selected 9
motifs, that form a subset of the 16.

5. Discussion

There are a number of ways to extend this work. First, in our current
development, we have treated the number of transformations h as fixed since
it usually takes a pre-specified small value, and it helps simplify the technical
derivations. For some particular transformation choices, a fixed h may result in
an estimate of a proper subspace of the central subspace. As such it is of interest
to extend our results to a diverging h. We speculate that the results of Corol-
lary 1 would be modified accordingly, with the convergence rate of h−1B̂B̂

T
at

Op

(√
log(h)p/n

)
, while a rigorous conclusion needs more careful study. Second,

the SDR estimators discussed in Section 2.1 rely on the first inverse moment
E(X|Y ). When E(X|Y ) = 0, the estimated subspace obtained may be a proper
subspace of the central subspace. There have been proposals of SDR estimators
that take advantage of the second or higher inverse moments, for instance, Cook
and Weisberg (1991), Yin and Cook (2003), Li, Zha, and Chiaromonte (2005),
and Li and Wang (2007). It is of interest to investigate the asymptotics of those
SDR estimators with a diverging p. Finally, in many recent microarray and
genetics studies, the number of predictors exceeds the number of observational
units. Asymptotic properties of both dimension reduction and variable selection
with p > n remain to be explored. Full investigations of those extensions are to
be our future research.
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Appendix A: Technical Conditions

(i) There are constants a∗ > 0 and C > 0 such that, for all β with ‖β‖ = 1,

P (
∑
i∈I

(XT
i β)2 > a∗n) → 1 as n → ∞,

where I = I(β, C) = {i = 1, . . . , n : |XT
i β| ≤ C}.

(ii) For any ε > 0, there exists a constant C > 0 such that, for all β with ‖β‖ = 1,

P
( ∑

i6∈I

(XT
i β)2 ≤ εn

)
→ 1 as n → ∞.

(iii)There is a constant C such that P (maxi=1,...,n ‖Xi‖2 ≤ Cn2) → 1 as n → ∞.

(iv) E(X4
j ) < C for some constant C > 0, j = 1, . . . , p.

(v) Σ = Cov (X) is positive definite with all its eigenvalues bounded between c

and c, 0 < c < c < ∞, for all p = pn.

(vi) E{f(Y )} = 0 and Var {f(Y ) − XT β0} < ∞.

(vii)The eigenvalues of the pseudo-Fisher information matrix I(β0) of β0(f) are
bounded for all p = pn:

0 < λ < λmin(I(β0)) ≤ λmax(I(β0)) < λ < ∞ for all p = pn,

where, up to a constant,

I(β0) = E
(
[X{f(Y ) − XT β0}][X{f(Y ) − XT β0}]T

)
.

Remark 6. The regularity Conditions (i), (ii), and (iii) are simplified versions
of Conditions X1, X2, and X3 of Portnoy (1984). Portnoy (1984) showed that
these conditions hold in probability if {X1, X2, . . . , Xn} are i.i.d. according to a
distribution satisfying his (4.3). As our Conditions (i), (ii), and (iii) are weaker,
the same result applies.

Appendix B: Proofs

Proof of Theorem 1. Let F (α) =
∑n

i=1 Xi{f(yi) − XT
i β0 − XT

i α} with
α ∈ IRp×1 . Due to the convexity of the squared loss and the fact that β̂ = β0+α̂,
it suffices to show that there is a root α̂ of F (α) satisfying ‖α̂‖2 = Op(p/n).
According to 6.3.4 of Ortega and Rheinboldt (1970), it in turn suffices to show
that αT F (α) < 0 for ‖α‖2 = Bp/n for some B > 0. Toward that end, write
αT F (α) =

∑n
i=1 XT

i α{f(Yi) − XT
i β0} −

∑n
i=1(X

T
i α)2 ≡ A1 − A2.

For A2, we have A2 =
∑n

i=1(X
T
i α)2 ≥‖α‖2 inf‖β‖=1

∑n
i=1(X

T
i β)2 ≥a∗n‖α‖2

in probability for some constant a∗ > 0, due to Lemma 1.
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For A1, we have that |A1| ≤ ‖α‖‖
∑n

i=1 Xi{f(Yi) − XT
i β0}‖. Then,

E‖
n∑

i=1

Xi{f(Yi) − XT
i β0}‖2

= E

 p∑
j=1

[
n∑

i=1

Xij{f(Yi) − XT
i β0}

]2


= E

 p∑
j=1

n∑
i=1

n∑
i′=1

XijXi′j{f(Yi) − XT
i β0}{f(Yi′) − XT

i′β
0}


=

p∑
j=1

n∑
i=1

E
(
X2

ij{f(Yi) − XT
i β0}2

)
+

p∑
j=1

∑
1≤i6=i′≤n

EijEi′j

≤ B′np for some B′ > 0,

where Eij = E[Xij{f(Yi) − XT
i β0}]. The last inequality is true because β0 =

argminE{f(Y ) − XT β}2, which implies that E(XT X)β0 = E{f(Y )X}, and

thus for any 1 ≤ j ≤ p,
∑p

m=1 E(XjXm)β0
m = E{f(Y )Xj}, so Eij = 0. Then

by Chebychev’s inequality, for any ε > 0, there is a constant B∗ such that

P
{
A1 ≤ B∗√np‖α‖ for all α

}
≥ 1 − ε.

Combining the above two results, we have

P
{
A1 − A2 ≤ B∗√np‖α‖ − a∗n‖α‖2 for all α

}
≥ 1 − 2ε.

Set B = (2B∗/a∗)2 and ‖α‖2 = Bp/n. Then we have

P
{

αT F (α) < 0 for all α with ‖α‖2 = B
p

n

}
≥ P

{
A1 − A2 ≤ −1

2
Ba∗p for ‖α‖2 = B′ p

n

}
≥ 1 − 2ε.

Our desired result then follows from Ortega and Rheinboldt (1970).

Proof of Lemma 3. Let αn =
√

pn(n−1/2 + an). We need to show that for any

ε > 0 there exists a constant C > 0 such that

P

{
inf

‖U‖=C
Q(B + αnU) > Q(B)

}
≥ 1 − ε.
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Note that

Q(B0 + αnU) − Q(B0)

≥
h∑

k=1

{
Lk(β0

k + αnuk) − Lk(β0
k)

}
+

q∑
j=1

(
pλ( max

1≤k≤h
|β0

jk + αnujk|) − pλ( max
1≤k≤h

|β0
jk|)

)
≡ D1 + D2.

We decompose D1 and D2, respectively, as D1 = D11 + D12 and D2 =
D21 + D22, where

D11 = αn

h∑
k=1

uT
k

∂

∂β
Lk(β0

k),

D12 =
1
2
α2

n

h∑
k=1

uT
k

{
∂2

∂β2 Lk(β0
k)

}
uk,

D21 =
q∑

j=1

p′λ( max
1≤k≤h

|β0
jk|)( max

1≤k≤h
|β0

jk + αnujk| − max
1≤k≤h

|β0
jk|),

D22 =
q∑

j=1

1
2
p′′λ( max

1≤k≤h
|β0

jk|)( max
1≤k≤h

|β0
jk + αnujk| − max

1≤k≤h
|β0

jk|)2(1 + o(1)).

For D11, by Condition (vii), the eigenvalues of the pseudo-Fisher Information
matrix I(β0

k) are bounded away from both zero and infinity. Therefore we have

‖ ∂

∂β
Lk(β0

k)‖ = Op(
√

p

n
). (B.1)

Then

|D11| ≤ αn

h∑
k=1

|uT
k

∂

∂β
Lk(β0

k)| ≤ αn

h∑
k=1

‖uk‖ · ‖
∂

∂β
Lk(β0

k)‖

= Op(αn

√
p

n
)

h∑
k=1

‖uk‖ = Op(α2
n)

h∑
k=1

‖uk‖.

For D12, we note that

D12 =
1
2
α2

n

h∑
k=1

uT
k

(
1
n

n∑
i=1

XiX
T
i

)
uk

=
1
2
α2

n

h∑
k=1

uT
k

{
1
n

(
n∑

i=1

XiX
T
i

)
− Σ

}
uk +

1
2
α2

n

h∑
k=1

uT
k Σuk.
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As in the proof of Lemma 8 of Fan and Peng (2004), by Chebyshev’s inequality,
for any ε > 0 we have

P

(
‖ 1
n

n∑
i=1

XiX
T
i − Σ‖ ≥ ε

p

)
≤ p2

n2ε2
E

p∑
j,m=1

(XijXim − σij)2 = O(
p4

n
) = o(1),

where σij is the (i, j)-element of Σ. Thus we can write

D12 = op(1)
1
2
α2

n

h∑
k=1

‖uk‖2 +
1
2
α2

n

h∑
k=1

uT
k Σuk.

We have

|D21| ≤
q∑

j=1

an

h∑
k=1

αn|ujk| ≤ anαn
√

q

h∑
k=1

‖uk‖,

|D22| ≤
q∑

j=1

1
2
p′′λ( max

1≤k≤h
|β0

jk|)

(
h∑

k=1

αn|ujk|

)2

(1 + o(1))

≤ 1
2

q
max
j=1

p′′λ( max
1≤k≤h

|β0
jk|)α2

nh

h∑
k=1

‖uk‖2.

Combining the above results, D12 is asymptotically positive and dominates
other terms. Setting C = ‖U‖ = (

∑h
k=1 ‖uk‖2)1/2 large enough, the desired

result follows.

Proof of Lemma 4. It suffices to show that with probability tending to one as
n → ∞, for any given

{
βk+, k = 1, . . . , h

}
satisfying ‖βk+ − β0

k+‖ = Op(
√

p/n)
and any constant C, for j = q + 1, . . . , p,

∂

∂βr
jk

Q(B) < 0 for 0 < βjk < C

√
p

n
and βjk =

h
max
m=1

|βjm|,

∂

∂βl
jk

Q(B) > 0 for −C

√
p

n
< βjk < 0 and βjk = − h

max
m=1

|βjm|,

where ∂/∂βl
jk and ∂/∂βr

jk denote the left and right hand partial derivative, re-
spectively.

By a Taylor expansion,

∂

∂βjk
Lk(βk) =

∂

∂βjk
Lk(β0

k) +
p∑

l=1

∂2

∂βjk∂βlk
Lk(β0

k)(βlk − β0
lk) ≡ E1 + E2.
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Due to (B.1), we have E1 = Op(
√

p/n). Next we decompose E2 as

E2 =
p∑

l=1

[
∂2

∂βjk∂βlk
Lk(β0

k) − E

{
∂2

∂βjk∂βlk
Lk(β0

k)
}]

(βlk − β0
lk)

+
p∑

l=1

E

{
∂2

∂βjk∂βlk
Lk(β0

k)
}

(βlk − β0
lk) ≡ E21 + E22.

For E21, we have

E21 ≤ ‖βk − β0
k‖

(
p∑

l=1

[
∂2

∂βjk∂βlk
Lk(β0

k) − E

{
∂2

∂βjk∂βlk
Lk(β0

k)
}]2

)1/2

= ‖βk − β0
k‖

 p∑
l=1

[
1
n

n∑
i=1

XijXil − E(XjXl)

]2
1/2

= Op(
√

p

n
)Op(

√
p

n
) = Op(

p

n
),

where the second to last equality comes from the moment Condition (iv) and
the fact that all the eigenvalues of Σ are bounded away from both 0 and ∞ by
Condition (v).

For E22, by Cauchy-Schwarz inequality and ‖βk − β0
k‖ = Op(

√
p/n),

E22 ≤

∣∣∣∣∣
q∑

l=1

E(XijXil)(βjk − βjl)

∣∣∣∣∣ = Op(
√

p

n
)

(
p∑

l=1

σjl

)1/2

= Op(
√

p

n
),

where σij is the (i, j)-element of Σ, and the last equality comes from the fact
that

∑p
l=1 σjl = O(1) which is ensured by Conditions (iv) and (v).

Combining the above two results, we have ∂
∂βjk

Lk(βk) = Op(
√

p/n).

Finally, note that
√

p/n/λn → 0 and lim infn→∞ infθ→0+ p′λn
(θ)/λn > 0.

When |βjk| = maxh
m=1 |βjm|, we have

∂Q(B)
βr

jk

= λn

{
p′λn

(maxh
m=1 |βjm|)
λn

+ Op

(√
p/n

λn

)}
if βjk > 0,

∂Q(B)
βl

jk

= λn

{
−

p′λn
(maxh

m=1 |βjm|)
λn

+ Op

(√
p/n

λn

)}
if βjk < 0.

In both cases, the first term dominates the second. Thus the result of Lemma 4
follows.
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