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Abstract: This paper proposes and discusses the use of composite marginal like-

lihoods for Bayesian inference. This approach allows one to deal with complex

statistical models in the Bayesian framework, when the full likelihood - and thus

the full posterior distribution - is impractical to compute or even analytically un-

known. The procedure is based on a suitable calibration of the composite likelihood

that yields the right asymptotic properties for the posterior probability distribu-

tion. In this respect, an attractive technique is offered for important settings that

at present are not easily tractable from a Bayesian perspective, such as, for in-

stance, multivariate extreme value theory. Simulation studies and an application

to multivariate extremes are analysed in detail.
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1. Introduction

In such areas as geostatistics, spatial extremes, and genetics, there is scope
for using complex models for which writing the full likelihood function poses
not only theoretical but computational challenges, for instance, clustered and
longitudinal studies or space-time models. In these situations, for frequentist
or Bayesian inference, surrogates of the ordinary likelihood are desirable. An
important contribution here is given by approximate likelihoods based on the
composition of marginal distributions (Varin (2008)), particularly for bivariate
marginal distributions (Cox and Reid (2004)), termed composite marginal like-
lihoods. Their use has been widely advocated by several authors in different
complex applications of frequentist inference (see Varin (2008), and Varin, Reid
and Firth (2009) for recent reviews). Although there exist models for which
composite likelihoods can be helpful to Bayesian inference, inference based on
composite marginal likelihoods has not been explored in a Bayesian setting; an
exception here is Smith and Stephenson (2009), where a specific application to
max-stable processes for modeling spatial extremes is discussed.

Bayesian techniques are essential to incorporate information other than the
data into the model in the form of prior distributions. This is a particularly
attractive feature since the inclusion of substantive prior information can help in
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mitigate the problem of scarce data. Other reasons for the Bayesian approach
include the simplicity of predictive inference, and the fact that one can easily han-
dle large numbers of parameters (for example, employing hierarchical models).
The aim of this paper is to discuss the use of the composite marginal likelihood
as a basis for Bayesian inference. To this end, we propose posterior probability
distributions as a useful tool when we are not able to write down the full joint
distribution.

Let Y be a (q × 1) random variable with joint density f(y; θ), θ ∈ Θ ⊆
IRd, d ≥ 1, and let y = (y(1), . . . , y(n)) be a random sample of size n from
Y . When f(y; θ) is complex, composite marginal likelihoods may be useful for
approximating the likelihood. Composite likelihood is defined through a set of
measurable events {Ai; i = 1, . . . ,m} in the sample space: given the likelihood
contributions corresponding to each Ai, the composite likelihood is defined as
the weighted product (see, e.g., Lindsay (1988))

CL(θ) = CL(θ; y) =
m∏

i=1

f(y ∈ Ai; θ)wi , (1.1)

where wi are positive weights, i = 1, . . . ,m. The class of composite likelihoods
contains the usual full likelihood as well as many other alternatives: the Besag
pseudo-likelihood (Besag (1974, 1977)), the m-order likelihood (Azzalini (1983)),
the partial likelihood (Cox (1975)), and the composite marginal likelihood (Cox
and Reid (2004)). Complex models pose a serious problem in the Bayesian set-
ting as well as in the frequestist framework. Indeed, when the full likelihood is
computationally cumbersome or when a fully specified model is out of reach, a
posterior distribution for the parameter of interest may be unavailable. In these
situations, alternative posterior distributions based on composite marginal like-
lihoods may be helpful. In particular, a posterior distribution can be formally
obtained with the composite likelihood (1.1) substituting for the full likelihood,
i.e.,

πCL(θ|y) ∝ π(θ) CL(θ) , (1.2)

where π(θ) is a suitable prior on θ. Although CL(θ) is not a genuine likelihood
function, there is an extensive literature on the use of alternative likelihoods
in the Bayesian setting: the partial likelihood in the context of survival analysis
(Raftery, Madigan and Volinsky (1996)); marginal, conditional, profile, and mod-
ified profile likelihoods for the elimination of nuisance parameters (see, among
others, Sweeting (1987), Monahan and Boos (1992), Reid (1995), Severini (1999),
Fraser et al. (2003), Chang and Mukerjee (2006), Ventura Cabras, and Racugno
(2009), Racugno, Salvan, and Ventura (2010)); quasi- and empirical likelihoods
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derived from estimating functions (Lazar (2003), Chernozhukov and Hong (2003),
Lin (2006), Greco, Racugno, and Ventura (2008), Ventura, Cabras, and Racugno
(2010)). In this paper, we state the properties of (1.2), focusing on a particular
choice of the weights wi, i = 1, . . . ,m, in (1.1). A calibrated composite likelihood
is needed to reach the right asymptotic variance in the normal approximation,
as well as a correct shape of the posterior distribution in its Laplace approxima-
tion. Indeed, the variability of the non-calibrated composite likelihood, wi = 1
for i = 1, . . . ,m, in a posterior distribution is substantially lower than that one
should use, as it leads to a falsely precise inference (see also Smith and Stephenson
(2009)).

The outline of the paper is as follows. After a brief review of definitions and
properties of composite marginal likelihoods, Section 2 discusses the procedure to
obtain and use the proposed posterior probability distribution (1.2). To assess our
proposal, numerical investigations and an application to multivariate extremes
are reported in Sections 3 and 4, respectively. Some final remarks (Section 5)
conclude the paper.

2. Marginal Composite Posterior Distributions

In this section we show that the composite likelihood can be central in the
Bayesian approach when the full likelihood function L(θ), needed to obtain the
full posterior distribution

π(θ|y) ∝ π(θ) L(θ) , (2.1)

is difficult or even impossible to compute. Indeed, the fact that composite like-
lihoods share many asymptotic properties of the full likelihood (see Subsection
2.1) suggests that they can be used as the basis for Bayesian inference (see Sub-
section 2.2). The validation of the proposed posterior distribution relies on its
asymptotic behaviour.

2.1. Background on composite marginal likelihood inference

Composite marginal likelihoods are based on the composition of low-dimen-
sional margins. For instance, when the events Ai in (1.1) are defined in terms of
pairs of observations, the pairwise likelihood can be obtained from the bivariate
marginal densities f(yi, yj ; θ), i, j = 1, . . . , q, as (Le Cessie and Van Houwelingen
(1994), Cox and Reid (2004), Varin (2008))

PL(θ) =
q∏

i=1

∏
j>i

f(yi, yj ; θ)wij , (2.2)

where wij are positive weights, for i, j = 1, . . . , q. In some applications, it may
be preferable to consider higher dimensional margins as triplets of observations
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(Varin and Vidoni (2005), Engler et al. (2006)), or to combine different composite
marginal likelihoods in some optimal way (Cox and Reid (2004)).

Under broad assumptions (see, e.g., Molenberghs and Verbeke (2005)), the
maximum composite likelihood estimator θ̂c is the solution of the composite
score function s(θ) = ∇ log CL(θ) =

∑m
i=1 wisi(θ), with si(θ) = ∇ log f(y ∈

Ai; θ), i = 1, . . . ,m. The composite score s(θ) is unbiased, since it is a linear
combination of valid score functions associated with each log-likelihood term.
Moreover, θ̂c is consistent and asymptotically normal, with mean θ and variance
V (θ) = H(θ)−1J(θ)(H(θ)T )−1, where H(θ) = E(−∇s(θ)) and J(θ) = var(s(θ)).
The matrix G(θ) = V (θ)−1 is the well-known Godambe information (Godambe
(1960)) or sandwich information matrix. The form is due to the failure of the
second Bartlett identity since in general H(θ) 6= J(θ), indicating loss of efficiency
with respect to the maximum likelihood estimator.

Wald tests and confidence intervals for θ based on composite likelihoods can
be obtained in a standard way using consistent estimates of the matrices H(θ) and
J(θ); we refer the reader to Varin (2008) for a detailed discussion. However, as
is well known, Wald-type statistics lack invariance under reparameterization and
force confidence regions to have an elliptical shape. In this respect, a likelihood
ratio type statistic may be preferable. However, the composite likelihood ratio
statistic Wc(θ) = 2(c`(θ̂c) − c`(θ)), with c`(θ) = log CL(θ), has a non-standard
asymptotic null distribution. Indeed, the asymptotic distribution of Wc(θ) is a
linear combination of independent chi-squared variates, Wc(θ)

d→
∑d

i=1 λi(θ)Z2
i ,

where the Zi are independent standard normal variates, and the λi(θ) are eigen-
values of H(θ)−1J(θ), i = 1, . . . , d. This calls for adjustments to Wc(θ) and sev-
eral proposals have been considered (see, e.g., Varin, Reid and Firth (2009), Sec-
tion 2.3). There are adjustments based on moment matching conditions (Geys,
Molenberghs and Ryan (1999)), there is a Satterthwaite-type adjustment sug-
gested in Varin (2008), and there are other proposals based on suitable vertical
scalings of Wc(θ) (Chandler and Bate (2007)). Here we focus on the adjustment
based on first-order moment matching, Geys, Molenberghs and Ryan (1999), who
propose to use W †

c (θ) = Wc(θ)/λ̃, with

λ̃ =
1
d

d∑
i=1

λi(θ̂c) =
tr(H(θ̂c)−1J(θ̂c))

d
,

which has, in general, an approximate χ2
d distribution (see Varin (2008), and

Hanfelt and Liang (1995)). When d = 1, W †
c (θ) d→ χ2

1 and a similar result holds
when interest is on a scalar component, say θj , of θ, and a profile version of the
adjusted composite likelihood ratio test is considered with λ̃ = H(θ̂c)jjJ(θ̂c)jj ,
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where H(θ)jj and J(θ)jj denote the (θj , θj)-components of H(θ)−1 and J(θ),
respectively.

Our application of marginal composite likelihoods in the Bayesian framework
is based on a particular choice of the weights in (1.1) or in (2.2), that alleviates
inefficiency of composite likelihood methods and recovers, approximately, the
asymptotic properties of (1.2). In particular, we consider the calibrated compos-
ite likelihood

CLc(θ) =
m∏

i=1

f(y ∈ Ai; θ)1/λ̃ , (2.3)

with associated loglikelihood c`c(θ) = log CLc(θ). Note that (2.3) is simply the
composite likelihood with a particular choice of weights, namely those that yield
the composite likelihood ratio statistic W †

c (θ).

2.2. Asymptotics for marginal composite posterior distributions

The marginal composite likelihood CLc(θ) can be used for Bayesian inference
on θ, incorporating prior information in the form of a prior distribution π(θ) to
obtain the posterior distribution

πCLc(θ|y) =
π(θ) CLc(θ)∫
π(θ) CLc(θ) dθ

. (2.4)

The validation of (2.4) relies on its asymptotic behaviour (see also the pa-
pers by Lazar (2003), and Greco, Racugno, and Ventura (2008)). In particular,
paralleling the results for the full posterior distribution, we focus on the Laplace
expansion and the asymptotic normality of (2.4); see, for instance, Reid (2003).

The approximation to (2.4) based on the Laplace expansion (see, e.g., Tier-
ney and Kadane (1986)) gives

πCLc(θ|y) =̇ (2π)−d/2|jc(θ̂c)|1/2 exp{c`c(θ) − c`c(θ̂c)}
π(θ)

π(θ̂c)

=̇ (2π)−d/2|jc(θ̂c)|1/2 exp
{
−1

2
W †

c (θ)
}

π(θ)

π(θ̂c)
, (2.5)

with relative error of order O(n−1). In (2.5), jc(θ) = −∂2c`c(θ)/(∂θ∂θT ) is the
composite observed information. The result that the posterior distribution (2.4)
has approximately the asymptotic behavior of (2.1) follows by the χ2

d approxima-
tion used for the null distribution of W †

c (θ), and by the assumption that the prior
has order O(1). When using W †

c (θ), a correct shape of the posterior distribution
in the Laplace approximation is reached.
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Under standard regularity conditions, as n → ∞, straightforward calcula-
tions show that πCLc(θ|y) is approximately a random normal density with mean
θ̂c and variance jc(θ̂c)−1. Indeed, expanding the logarithm of π(θ) and W †

c (θ) at
(2.5) around their maxima, θ0 and θ̂c respectively, one gets

πCLc(θ|y) ∝̇ exp
{
−1

2
W †

c (θ) + log π(θ)
}

∝̇ exp
{
−1

2
(θ − θ̂c)

T jc(θ̂c)(θ − θ̂c) −
1
2
(θ − θ0)

T J0(θ − θ0)
}

∝̇ exp
{
−1

2
(θ − θ̂c0)

T Jc0(θ − θ̂c0)
}

, (2.6)

where J0 = −∂ log π(θ)/(∂θ∂θT )|θ=θ0 , Jc0 = J0 + jc(θ̂c), and θ̂c0 = J−1
c0 (J0θ0 +

jc(θ̂c)θ̂c) (see also Lazar (2003), and Greco, Racugno, and Ventura (2008)). From
(2.6) it follows that πCLc(θ|y) is asymptotically normal with mean θ̂c0 and vari-
ance J−1

c0 . However, for large n, θ̂c0 and J−1
c0 are essentially indistinguishable

from θ̂c and jc(θ̂c)−1, i.e., the influence of the prior vanishes in the limit, as is
expected by requiring the prior to supply an amount of information equivalent to
that contained in one observation. Note also that jc(θ) = J(θ)/λ̃ + op(1). Thus,
for d = 1 or if interest focuses on a scalar component of θ, the asymptotic variance
of πCLc(θ|y) reduces to V (θ̂c), i.e., to the asymptotic variance of θ̂c. When d > 1,
J(θ)/λ̃ approximates V (θ) better than J(θ). In this respect, the calibration of
the composite likelihood is needed to reach the right asymptotic variance in the
normal approximation. Indeed, when using the non-calibrated composite likeli-
hood in (2.4), the asymptotic variance of the posterior probability distribution
is J(θ)−1.

3. A Simulation Study

In this section we discuss Bayesian inference based on the pairwise likelihood
(2.2) for the correlation coefficient ρ of a multivariate normal distribution. This
illustrative example is considered in Cox and Reid (2004) and, as in that case,
attention is restricted to positive ρ.

Let Y be a q-variate normal random variable with standard margins, and let
corr(Yr, Ys)=ρ, for r, s=1, . . . , q, r 6=s. Following Cox and Reid (2004), the non
-calibrated pairwise loglikelihood p`(ρ)=log PL(ρ)=

∑q
i=1

∑
j>ilog f(yi, yj ; ρ) is

p`(ρ)=−nq(q−1)
4

log(1−ρ2)− q − 1 + ρ

2(1 − ρ2)
SSW − (q − 1)(1 − ρ)

2(1 − ρ2)
SSB

q
, (3.1)

where SSW =
∑n

i=1

∑q
r=1(y

(i)
r −ȳ(i))2, SSB =

∑n
i=1 ȳ(i)2, and ȳ(i) =

∑q
r=1 y

(i)
r /q.
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Figure 1. Comparison of the posterior distributions based on the full like-
lihood (π), the non-calibrated pairwise likelihood (πPL), and the calibrated
pairwise likelihood (πPLc), for a simulated sample with n = 30, q = 10, and
ρ = 0.5.

The associated score function is

s(ρ) =
nq(q − 1)ρ
2(1 − ρ2)

− 1 + ρ2 + 2(q − 1)ρ
2(1 − ρ2)2

SSW +
(q − 1)(1 − ρ)2

2(1 − ρ2)2
SSB

q
,

and the asymptotic variance of the maximum pairwise likelihood estimator ρ̂p is
V (ρ̂p) = 2(1− ρ)2c(q, ρ)/(nq(q− 1)(1 + ρ2)2), where c(q, ρ) = (1− ρ)2(3ρ2 + 1) +
qρ(−3ρ3 + 8ρ2 − 3ρ + 2) + q2ρ2(1 − ρ)2.

In this example it is of interest to compare three different posterior distribu-
tions: the posterior π(ρ|y) ∝ π(ρ) L(ρ) based on the full likelihood; the posterior
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πPL(ρ|y) ∝ π(ρ) PL(ρ) based on the non-calibrated pairwise likelihood as pro-
posed in Smith and Stephenson (2009); the posterior πPLc(ρ|y) ∝ π(ρ) PLc(ρ)
based on the calibrated pairwise likelihood PLc(ρ) =

∏q
i=1

∏
j>i f(yi, yj ; ρ)1/λ̃,

with λ̃ = J(ρ̂p)/H(ρ̂p). Samples from these posterior distributions can be ob-
tained by straightforward MCMC simulations.

The comparison between the three posterior distributions is illustrated in
Figure 1, for a sample of size n = 30, with ρ = 0.5, q = 10, and assuming a
uniform prior in (0, 1) for ρ. It is clearly seen that the variability of πPL(ρ|y) is
small with respect to the variability of π(ρ|y), as noted by Smith and Stephenson
(2009), while πPLc(ρ|y) implies a greater variability than both. The difference
in variability between πPLc(ρ|y) and π(ρ|y) is not surprising in view of the fact
that a misspecified likelihood is used. This can be interpreted analogously to the
loss of efficiency of the pairwise maximum likelihood estimator with respect to
the maximum likelihood estimator. In this respect consider, as in Cox and Reid
(2004), the ratio between the asymptotic variance of the maximum likelihood
estimator ρ̂ to that of ρ̂p, as a function of ρ ∈ (0, 1), for a range of values of
q. The inspection of such ratios, reported in Figure 2 (the continuous lines in
each panel) for q = 3, 5, 8, 10, reveals that the loss of efficiency is, for fixed q, a u-
shaped function of ρ with a minimum at ρ = 0.5 (corresponding to the maximum
loss of efficiency) while, for a fixed value of ρ, a greater loss of efficiency occurs
for a higher q. A similar feature is seen when comparing the variance of π(ρ|y) to
that of πPLc(ρ|y). This was done by performing a series of experiments: in each
experiment we simulated 800 samples of size 30 from a q-variate equicorrelated
normal distribution with standard margins. For each sample we obtained the
posterior distributions for ρ using the full likelihood and the calibrated pairwise
likelihood, and calculated the ratio between their variances. The experiment was
repeated for q = 3, 5, 8, 10, and for ρ = 0.1, 0.2, . . . , 0.9. The results are depicted
in Figure 2 (where each panel contains results for a value of q as ρ varies), where
each boxplot represents the distribution of the ratio of the variance of π(ρ|y) to
the variance of πPLc(ρ|y) across the 800 simulated samples for fixed ρ and q.
The behaviour of the ratio of the posterior variances agrees with the findings in
Cox and Reid (2004): in the Bayesian setting also, the loss of information, as
measured by the variance ratio, is greater when q is higher and has a u-shaped
behaviour with respect to ρ.

The results on the simulated example illustrate the need for using the cali-
brated pairwise likelihood rather than the non-calibrated pairwise likelihood to
perform Bayesian inference. The variability of πPL(ρ|y), in fact, is substantially
lower than that of π(ρ|y), thus it would lead to a falsely precise inference. By con-
trast, the variability of πPLc(ρ|y) is greater than that of π(ρ|y) to a degree that
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q = 3 q = 5

q = 8 q = 10

Figure 2. Ratio of the variance of π(ρ|y) to the variance of πPLc
(ρ|y). Lines

are the ratio of asymptotic variance of ρ̂ to ρ̂p.

can be justified by the model misspecification (which leads to a loss of efficiency
in frequentist inference).

4. Multivariate Extremes: A Simulation Study and an Application

We discuss two examples, both in the field of multivariate extreme values
and, in particular, in the context of the multivariate extreme value distributions
(MEVD). The first example employs simulated data from the logistic distribution,
a sub-family of the MEVD for which the full likelihood is available, thus making
possible the comparison between the posterior distributions π(θ|y) and πPLc(θ|y).
The second example illustrates an application to a data set for which πPLc(θ|y)
is used, since a sub-family of the MEVD, for which the full likelihood is not
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available, is employed.
There are two basic approaches to dealing with multivariate extremes of a

random vector: one can either model the exceedances of a suitable threshold or
one can model the componentwise block maxima (see Beirlant et al. (2004)) for
a recent review). The classical approach to model maxima is founded on a limit
result analogous to the generalized extreme value theorem (Pickands (1981)). It
states that if Xn is an independent and identically distributed random sequence
from the random vector X in Rq

+, then the limit distribution function of suitably
normalized componentwise maxima Y (n) = max

j=1,...,n
Xi,j (i = 1, . . . , q), belongs to

the MEVD family:

G(y) = exp

{∫
Sq

max
=1,...,q

(
uj

yj

)
dH(u)

}
, (4.1)

where H is a positive finite measure on the unit simplex in (q − 1) dimensions,
denoted by Sq, satisfying the constraints

∫
Sq

ujdH(u) = 1, j = 1, . . . , q. The
density h associated to the measure H is called the spectral density and charach-
terizes MEVD. Although this is a limit result, it is customary in applications to
employ (4.1) as a model for the maxima of finite sequences of random variables
like, for example, monthly maxima of concentrations of pollutants.

Contrary to what happens in the univariate case, it is not possible to de-
scribe parametrically the whole family of MEVD. Non-parametric estimation has
been proposed in the literature (see, e.g., Beirlant et al. (2004)), but it is difficult
to implement when, as is common in the field of extremes, few observations are
available. To avoid these drawbacks, a number of parametric subfamilies of the
MEVD have been proposed. Nonetheless, even after restricting to one of these
families of distributions, likelihood inference is not an obvious task since the cal-
culation of the multivariate density, which is needed for the full likelihood, can
be tedious or practically infeasible. Finally, we note that to deal with multivari-
ate extremes, other strategies have been proposed based on models outside of
the MEVD family. For instance, Heffernan and Tawn (2004) suggest modelling
extremes in one variable conditional on other variables, while Boldi and Davison
(2007) build a family of multivariate models by defining the spectral density as a
mixture of Dirichlet distributions (with appropriate restrictions) and show that
the class of densities which is obtained is dense in the class of spectral densities
associated to MEVD. We do not further discuss these proposals; we consider the
issue of estimating the parameter of a distribution within the MEVD family, for
which the use of an alternative likelihood is relevant.

The simplest sub-family of the MEVD is the logistic, with distribution func-
tion G(y; α) = exp

{(∑q
j=1 y

−1/α
j

)α}
, where yj ≥ 0, j = 1, . . . , q, and α ∈ (0, 1].
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The parameter α represents the strength of the dependence between the variables.
We employ the routines included in the R package evd (Stephenson (2003)) to
simulate from the logistic distribution and to compute the full likelihood L(α)
and the bivariate densities needed for the calculation of PL(α) and PLc(α). We
simulated samples for a range of values of q and α and, for each of them, we
compared the posterior distributions π(α|y), πPL(α|y), and πPLc(α|y), assuming
a uniform prior in (0,1) for α. In Figure 3 we show the comparison for a selection
of values for α and q, i.e., with weak and strong dependence structure and with
a different dimension of the random vector to be modeled. Note that, as in the
example of Section 3. πPL(α|y) implies less variability than π(α|y) in all the
scenarios considered, but particularly when q = 10, while πPLc(α|y) is closer to
π(α|y).

The logistic distribution entails a symmetric dependence structure modeled
by a single parameter and does not allow for different degrees of dependence
between the variables. This restriction is of course unrealistic and, in view of
this, the scope of application of the logistic distribution is rather limited. Other
sub-families of the MEVD have been proposed which do not share this limitation.
An interesting example is the Coles and Tawn (CT) distribution (Coles and Tawn
(1991)). The CT distribution is characterized by the spectral density

h(u) =
Γ(1 +

∑
i αi)

(
∑

i αiui)
d+1

d∏
j=1

αj

Γ(αj)

(
αjuj∑
i αiui

)αj−1

,

with q positive parameters αj , j = 1, . . . , q. If q = 2, the bivariate distribution
function is

G(y1, y2; α1, α2) = exp
{

1
y1

(
1 − Γ(α1 + α2 + 1)

Γ(α1 + 1)Γ(α2)

∫ v

0
wα1(1 − w)α2−1dw

)
+

1
y2

Γ(α1 + α2 + 1)
Γ(α1)Γ(α2 + 1)

∫ v

0
wα1−1(1 − w)α2dw

}
, (4.2)

with v = α1y1/(α1y1 + α2y2). When d > 2, it is impractical to write the closed
form expression for the multivariate density and applications are rather limited;
one exception is Coles and Tawn (1994).

Using the composite likelihood approach, we can exploit an interesting prop-
erty of the CT distribution. If (Y1, . . . , Yq) is distributed as a CT with parame-
ters (α1, . . . , αq), then (Yi, Yj) is distributed as a bivariate CT with parameters
(αi, αj), for each i 6= j. The parameter (αi, αj) is related to extremal dependence:
it is greater the higher the values of the pair, while independence is approached
as at least one of the two parameters approaches 0.

To illustrate the use of the posterior distribution (2.4), we employ the CT
distribution in a typical application of extreme value theory: the concentration
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q = 3, α = 0.8 q = 3, α = 0.1

q = 10, α = 0.8 q = 10, α = 0.1

Figure 3. Comparisons of the posterior distributions based on the full like-
lihood (π), the non-calibrated pairwise likelihood (πPL), and the calibrated
pairwise likelihood (πPLc).

of atmospheric pollutants. We consider daily concentrations of five pollutants:
NO, NO2, O3, SO2, and PM10, measured in Leeds city centre from January
1993 to February 2009 (Source: UK National Air Quality Data Archive). Since
the behaviour of the concentrations of the pollutants under consideration dif-
fers between seasons, winter months only (November, December, January, and
February) are considered. For these months, the monthly maxima of the con-
centrations are computed for each pollutant, yielding a sample of 66 months,
which reduce to 57 due to missing values (we keep observations only for those
months for which data for all pollutants are available). Margins are standardized
to unit-Fréchet distributions based on the parametric fitting of a generalized ex-
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Figure 4. Margins of the posterior distribution πPLc(α|y) for the parameter
of the CT distribution given the monthly maxima of pollutant concentrations
in Leeds city centre.

treme value model to each pollutant time series, employing, when necessary, a
time varying location parameter to eliminate any time trend. The standardized
observations are then modeled according to a five-dimensional CT distribution
with parameter α = (αNO,αNO2 , αO3 , αSO2 , αPM10) (named after each variable).
A flat proper prior implying independence among the αi is assumed and a poste-
rior distribution is obtained using a pairwise likelihood derived from the bivariate
model (4.2), since the full likelihood L(α) is not available in a closed form. The
margins of the corresponding posterior distribution πPLc(α|y) are depicted in
Figure 4. It is worth noting that, although we justify our approach based on
asymptotic properties of πPLc(α|y), in applications one can obtain asymmetric
densities as for αNO in Figure 4 (as also underlined in Smith and Stephenson
(2009)).

Extremes of pollutant concentrations in Leeds city centre were also analyzed
by Boldi and Davison (2007) and Heffernan and Tawn (2004), although with a
different model and referring to a different time period. Nonetheless, we remark
that the results are broadly consistent in revealing that NO, NO2, and PM10
show a stronger extremal dependence than the other two pollutants.

5. Final Remarks

In this paper, the suitability of Bayesian inference with composite marginal
likelihoods is investigated. It is argued that the use of composite likelihoods with
unit weights may lead, due to model misspecification, to an unreasonable infer-
ence. In particular, the posterior variability may not reflect the uncertainty on
the parameter just, like the variability of the composite maximum likelihood es-
timator is not reflected by the shape of the composite likelihood. For this reason
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the proposed posterior distribution involves a calibrated composite likelihood,
i.e., a composite likelihood with a particular choice of the weights. The proposed
adjustment alleviates inefficiency of composite likelihood methods and approxi-
mates the usual asymptotic behavior of the resultant posterior distribution. In
the literature, other adjustments to the composite likelihood ratio statistic have
been proposed; see for a review Varin, Reid and Firth (2009, Sec. 2.3). Here
we focused on the simplest one based on first order moment matching, but an
investigation of different adjustments could be of interest.

The example and simulation results presented in this paper show that
πPLa (θ|y) can be exploited to perform Bayesian inference in complex models.
In all the examples standard choices for the prior distribution have been made,
in order to allow, when possible, the comparison between πPLa(θ|y) and the full
posterior distribution (2.1). One might resort to different elicitations of the prior
distribution π(θ); this is an intriguing prospect when referring to default priors,
such as Jeffreys’ type or matching priors; see, for instance, Ventura, Cabras, and
Racugno (2010).
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