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Abstract: We propose a conditional composite likelihood based on conditional prob-

abilities of parts of the data given the rest for spatial lattice processes, in particular

for Potts models, which generalizes the pseudo-likelihood of Besag. Instead of using

conditional probabilities of single pixels given the rest (like Besag), we use condi-

tional probabilities of multiple pixels given the rest. We find that our maximum

composite likelihood estimates (MCLE) are more efficient than maximum pseudo-

likelihood estimates (MPLE) when the true parameter value of the Potts model

is the phase transition parameter value. Our MCLE are not as efficient as maxi-

mum likelihood estimates (MLE), but MCLE and MPLE can be calculated exactly,

whereas MLE cannot, only approximated by Markov chain Monte Carlo.

Key words and phrases: Conditional composite likelihood, exponential family, ising

model, maximum likelihood, peeling.

1. Introduction

Composite likelihood (Lindsay (1988)) is a generalization of the pseudo-
likelihood of Besag (1975, 1977), that was proposed as a method of parameter
estimation for models with complicated dependence structure for which the like-
lihood function could not be calculated exactly, or even approximated well in a
reasonable amount of time. Examples of such models are spatial lattice processes
(Besag (1975)), social network (exponential random graph) models (Strauss and
Ikeda (1990); van Duijn, Gile, and Handcock (2009)), spatial point processes
(Baddeley and Turner (2000), and references cited therein), and the DNA finger-
print model of Geyer and Thompson (1992). These models differ from the kind of
applications that have recently made composite likelihood popular (Varin, Reid,
and Firth (2011)) in that no marginal distributions, even univariate marginal dis-
tributions, can be calculated exactly or even approximated well in a reasonable
amount of time. Hence no marginal composite likelihood scheme is practicable,
but conditional composite likelihood schemes are practicable, at least for some
of these models.

Here we investigate conditional composite likelihood for spatial lattice pro-
cesses, in particular for Potts models (Potts (1952)), which generalize Ising mod-
els (Ising (1925)). These are models for random images like Figure 1, the random
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Figure 1. A realized sample from a four-color (white, light gray, dark gray,
and black) Potts model with θ = (0, 0, 0, 0, log(1 +

√
4))T .

variables being the colors of the pixels of the image (Ising models are two-color
Potts models). These models have the spatial Markov property that two sub-
sets xA and xB of the variables (two subregions of the image) are conditionally
independent given the rest of the variables so long as no pixel in A is adjacent
to any pixel in B. This means that the only subsets of interest are connected
ones, which we call windows, and we only consider rectangular windows. Then
the number of windows does not grow with the size of the windows, and this
makes conditional composite likelihood for moderately large window sizes com-
putationally feasible. (Some of the other models with complicated dependence
structure mentioned above have spatial Markov properties that may make con-
ditional composite likelihood feasible, but we do not investigate them here).

So how well does composite likelihood do in the context in which it originally
arose (as pseudo-likelihood of Besag)? We show here that composite likelihood
does improve Besag pseudo-likelihood, although it is still, in certain situations,
inferior to maximum likelihood approximated using Markov chain Monte Carlo
(MCMC). Inferiority of Besag pseudo-likelihood to maximum likelihood, in cer-
tain situations, has been demonstrated by others (Geyer and Thompson (1992);
van Duijn, Gile, and Handcock (2009); Geyer (1990)). In particular, Geyer (1990,
Chap.6) demonstrated that maximum pseudo-likelihood estimators (MPLE) oc-
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casionally overestimate the dependence parameters in Ising models so much that
data simulated at these MPLE bear no resemblance to the actual data.

Conditional composite likelihoods and Besag pseudo-likelihoods are exactly
computable for these models, unlike likelihoods, so maximum composite likeli-
hood estimators (MCLE) are much easier to compute than maximum likelihood
estimators (MLE). We compute MCLE on Potts models for different window
sizes, and measure their efficiency against the MPLE and MLE.

Composite likelihood approaches have been applied to problems with de-
pendent data: Lele (2006) applied marginal composite likelihoods to stochastic
population dynamics models with sampling error (these are multivariate nor-
mal models); Hjort and Varin (2008) applied conditional pseudo-likelihood and
marginal composite likelihood to finite-state space Markov chain models and
found that marginal composite likelihood performed almost as well as maximum
likelihood while conditional pseudo-likelihood performed poorly; and Mardia et
al. (2009) showed that for what they call closed exponential families, MCLE are
identical to MLE. However, the dependence structure for Potts models (as well
as the other models described in the first paragraph of this section) is so compli-
cated that a marginal composite likelihood approach is not possible as in the first
two papers. In addition, the model we consider is not a closed exponential family
in the sense of Mardia et al. (2009) and thus their results cannot be applied here.

2. Potts Model

An exponential family of distributions (Barndorff-Nielsen (1978); Geyer (2009))
on a discrete sample space X has log likelihood

`(θ) = 〈t(x), θ〉 − m(θ),

where t(x) is a vector of canonical statistics, θ a vector of canonical parameters,
and 〈 · , · 〉 denotes the bilinear form

〈t(x), θ〉 =
d∑

i=1

ti(x)θi.

So that the probability mass function sums to 1, the cumulant function m must
have the form

m(θ) = log

(∑
x∈X

h(x)e〈t(x),θ〉

)
, (2.1)

where h is a nonnegative function (for Potts models h is identically equal to
one and is omitted hereafter). In models with complicated dependence, the sum
in (2.1) may have no simple expression and can only be evaluated by explicitly
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doing the sum, which can be prohibitively expensive. It can be approximated
by MCMC (Geyer and Thompson (1992)), permitting MCMC approximations of
MLE.

Let L be a finite set on which a symmetric irreflexive relation ∼ is defined,
and let C be another finite set. Usually L is very large and a regular lattice,
and ∼ is the neighbor relation for the lattice. Usually C has only a few elements
called colors. A discrete spatial lattice process has, for each i in L, a random
element of C denoted xi. For the toroidal square lattice that we consider here,
variables xi and xj are neighbors with i ∼ j if they are adjacent to one another
horizontally or vertically, but not diagonally.

Let x be the random vector having components xi, i ∈ L. A Potts model is an
exponential family with canonical statistic vector, t(x), indexed by D = C ∪{∗},
where ∗ is an object not in C. For c ∈ C, tc(x) is the number of pixels having
color c, and t∗(x) is the number of neighboring pairs of variables xi and xj with
i ∼ j that have the same color. Then the components of t(x) can be expressed
as

tc(x) =
∑
i∈L

I(xi = c), c ∈ C,

t∗(x) =
1
2

∑
(i,j)∈L2

i∼j

I(xi = xj),

where I( · ) denotes the function taking logical expressions to the numbers zero
and one, false expressions to zero and true expressions to one.

As in any exponential family, increasing the value of one canonical parameter
leaving the others fixed increases the expected value of the corresponding canon-
ical statistic. Thus for c ∈ C, increasing the value of θc increases the expected
number of variables xi that have color c, and increasing the value of θ∗ increases
the expected number of pairs of variables xi and xj with i ∼ j that have the
same color.

The parametrization we are using here treats the colors symmetrically but
is not identifiable because of the constraint∑

c∈C

tc(x) = |L|,

where |L| denotes the cardinality of L (the number of random variables xi). This
implies that the direction δ = (1, 1, . . . , 1, 0) is a direction of constancy of the log
likelihood, which means θ and θ + sδ refer to the same distribution for all real s
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(Geyer (2009, Thm. 1)). This lack of identifiability causes no problems so long
as we are aware of it.

3. Composite Likelihood for Potts Models

It simplifies notation if we consider vectors to be the same as functions so xi

means the same thing as x(i): the ith component of the vector x is the same as
the function x evaluated at the “point” i. Thus the notation CL denotes the set
of all functions L → C, this being no different from the set of all vectors having
index set L and values in C.

For any A ⊂ L, let xA denote the vector-function x restricted to the set
A. We can think of it as the subvector {xi : i ∈ A }, but technically, being
a function, it knows its domain A as well as its values xi, i ∈ A, so it is not
“just” a subvector. If A and B are disjoint subsets of L, let xA ∪ xB denote the
function that is the union of the functions xA and xB, where now we are thinking
set-theoretically of a function as a set of argument-value pairs, so the value of
xA ∪ xB at the index point i ∈ A ∪ B is xA(i) if i ∈ A and is xB(i) if i ∈ B.

Let fA,θ denote the conditional probability mass function of a Potts model
for xA given the rest of the variables xL\A,

fA,θ(xA | xL\A) =
e〈t(xA∪xL\A),θ〉∑

y∈CA e〈t(y∪xL\A),θ〉 . (3.1)

Considering xA random and the rest fixed, (3.1) is the likelihood of an exponential
family (not the original family but a conditional family derived from it), and has
all the properties of such. If A is a family of subsets of L, then

`A(θ) =
∑
A∈A

log fA,θ(xA | xL\A) (3.2)

is a composite log likelihood (CLL) (Lindsay (1988)) that inherits some properties
of a log likelihood. In particular, (3.2) is concave, the maximizer is unique if
it exists modulo the non-identifiability described at the end of the preceding
section, and partial derivatives of (3.2) set equal to zero are unbiased estimating
equations. If A is the set of all singletons A = { {i} : i ∈ L }, then (3.2) is log
Besag pseudo-likelihood.

In addition to calculating and comparing MCLE and MLE, we wish to com-
pare their efficiencies. Calculating asymptotic efficiencies, however, presents some
issues. The derivatives of (3.2) are

∇`A(θ) =
∑
A∈A

sA(θ), (3.3a)

∇2`A(θ) = −
∑
A∈A

Var θ{t(x) | xL\A}, (3.3b)
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where sA(θ) = t(x)−Eθ{t(x) | xL\A}. The asymptotic variance of the composite
likelihood estimator is given by the Godambe-Huber-White sandwich estimator,
W (θ)−1V (θ)W (θ)−1, where

V (θ) = Var θ{∇`A(θ)} (3.4a)

=
∑
A∈A

∑
B∈A

Cov θ

[
sA(θ), sB(θ)

]
, (3.4b)

W (θ) = −Eθ{∇2`A(θ)} (3.4c)

=
∑
A∈A

Eθ

[
Var θ{t(x) | xL\A}

]
. (3.4d)

The unconditional expectations and covariances here cannot be calculated exactly
but can be estimated by MCMC. The conditional expectations and covariances
here can be calculated exactly if the set A is small enough so that the explicit sum
with |C||A| terms that appears in the denominator of the conditional probability
mass function (3.1) can be computed.

The asymptotic efficiency of the MLE, of course, is inverse Fisher information
J(θ)−1, where

J(θ) = Var θ{t(x)}, (3.5)

and can be estimated by MCMC.
In spatial applications, however, such as the one we consider, the size of the

lattice is typically fixed and so it is unclear if asymptotic efficiency is truly rele-
vant. In fact, it is doubtful that the distribution for the MLE for the lattice sizes
we consider will look normally distributed. Combined with the computational
limitations described above, we compare empirical standard errors for MCLE
and MLE, and also include asymptotic standard errors for MLE for reference.

4. Simulation and Results

In order to deal with the non-identifiability of the symmetric parametrization
used above we fix one of the color parameters, say the first, at zero, which is the
same as dropping this parameter from the parameter vector. Set

g(A) =
∑

y∈CA

e〈t(y∪xL\A),θ〉. (4.1a)

We can then express (3.2) as

`A(θ) =
∑
A∈A

〈t(xA ∪ xL\A), θ〉 −
∑
A∈A

log(g(A)). (4.1b)
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However, (4.1a) overflows for all but the most modestly sized images, ren-
dering direct computation of (4.1b) impossible. We correct this by fixing a base
case ξA ∈ CA for each A ∈ A and rewrite (3.1) as

fA,θ(xA | xL\A) =
e〈t(xA∪xL\A),θ〉

g(A)
=

e〈t(xA∪xL\A)−t(ξA∪xL\A),θ〉

g′(A)
, (4.2)

where
g′(A) =

∑
y∈CA

e〈t(y∪xL\A)−t(ξA∪xL\A),θ〉, (4.3a)

so that

`A(θ) =
∑
A∈A

〈t(xA ∪ xL\A) − t(ξA ∪ xL\A), θ〉 −
∑
A∈A

log(g′(A)). (4.3b)

The latter is computationally tractable, all terms in (4.3a) and (4.3b) being
calculated without overflow.

This alternate way of expressing the CLL may look more familiar for those
accustomed to the logistic regression expression for Besag pseudo-likelihood. In
the case where each A is a singleton and C has only two colors, so each CA has
just two elements, denoted ξA and ηA, (4.3a) becomes

g′(A) = 1 + e〈t(ηA∪xL\A)−t(ξA∪xL\A),θ〉, (4.4a)

and (4.3b) becomes

`A(θ) =
∑
A∈A

log

(
e〈t(xA∪xL\A)−t(ξA∪xL\A),θ〉

1 + e〈t(ηA∪xL\A)−t(ξA∪xL\A),θ〉

)
=

∑
A∈A

yA log pA + (1 − yA) log(1 − pA),
(4.4b)

where

yA =

{
1, xA = ηA,

0, xA = ξA,

pA = logit−1(ωA) =
eωA

1 + eωA
,

ωA = 〈t(ηA ∪ xL\A) − t(ξA ∪ xL\A), θ〉,

and this has the form of log likelihood for logistic regression. The general CLL
(4.3b) does not have this form.

The code used to calculate the CLL (4.3b) is available in the R package potts
(Geyer and Johnson (2010)) available from CRAN. All Potts model simulations
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used the MCMC code in this package, which uses the Swendsen-Wang algorithm
(Swendsen and Wang (1987); Wang and Swendsen (1990)).

There is no theoretical need to do so, but in order to simplify computation
we restrict A such that all A ∈ A have the same shape and size. We simulated
samples from Potts models on two different square lattice sizes, 32 × 32 and
100 × 100, and with two, three, or four colors. Each time we used for the true
value of the parameter

θ = (θ1, . . . , θk, θ∗)T = (0, . . . , 0, log(1 +
√

|C|))T .

We chose this value for θ because it corresponds to the phase transition in the
lattice (Potts (1952)); see Figure 1 for a sample image from this model at this
parameter value. Since θc = 0 for all c ∈ C, there is no preference for one color
over the others, though it may appear so in Figure 1. All images that result from
permuting colors are equally likely and the marginal distribution of any single
pixel has all colors equally likely. Geyer (1990, Chap. 6) showed this parameter
value to be particularly difficult to estimate by maximum pseudo-likelihood for
Ising models, and we believe this is the most difficult for composite likelihood
too. Maximum pseudo-likelihood and maximum composite likelihood should
have greater efficiency at other parameter values. We are especially interested in
the estimates for the ∗-component, which is hardest to estimate.

For each realization, we calculated MCLE using several of the following dif-
ferent sizes and shapes of elements of A. Due to memory and time constraints,
we did not use all methods on each image.

Let N denote total number of pixels in the image. The models were

• MPLE. A was the collection of all singletons in L, and |A| = N .

• Two. Each A ∈ A was two horizontally adjacent pixels, with no elements of
A overlapping, and |A| = N/2.

• Two Overlapping. Each A ∈ A was two horizontally adjacent pixels, and
|A| = N .

• Four. Each A ∈ A was a two by two section of the image, with no overlap
between different A’s, and |A| = N/4.

• Four Overlapping. Each A ∈ A was a two by two section of the image, and
|A| = N .

• Nine. Each A ∈ A was a three by three section of the image, with no overlap
between different A’s, except where necessary at the edge of the image. We
did not use images with rows and columns as multiples of 3, so we used the
minimum overlap possible while still having each pixel in the image in at least
one element of A, and |A| = dnrow/3edncol/3e.
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• Nine Overlapping. Each A ∈ A was a three by three section of the image, and
|A| = N .

• Sixteen. Each A ∈ A was a four by four section of the image, with no overlap
between different A’s, and |A| = N/16.

We refer to our MCLE for θ as θ̃, and the MLE for θ as θ̂. Figure 2 shows the
resulting distributions for the ∗-component of the estimators on the four color
32×32 and 100×100 lattices for MPLE, MCLE (Two and Four non-overlapping
models only) and MLE. The distributions for MPLE and MCLE look symmetric
and show little bias, with variability that decreases for larger window sizes. This
decreasing trend is more evident on the larger 100 × 100 lattice, where the vari-
ability of all estimators is substantially reduced. The MLE exhibits noticeably
smaller variability than the MCLE on both lattices, but a conspicuous amount
of bias and skewness. The bias and skewness are dramatically reduced for the
larger 100×100 lattice but nonetheless present, suggesting comparisons of MCLE
should be done to the empirical MLE rather than the asymptotic MLE. The bias
and skewness for the MLE are not present for the other components of θ (not
shown). MLE were approximated here using 10 iterations of Newton-Raphson
starting at the true value for θ, using 10,000 MCMC samples per iteration to
approximate ∇`(θ) and ∇2`(θ).

We explore the efficiency of the MCLE by window size further. Figures 3,
and 4 and Tables 1, 2, 3, 4, and 5 clearly show a downward trend in the empirical
standard error of the ∗-component of the estimators as the window size increases,
with overlapping windows slightly outperforming non-overlapping windows of the
same size. The standard errors of the ∗-component decreased by about 10% in
most cases when going from the MPLE to MCLE Two. Subsequent decreases in
standard error varied from 6-10% with each increase in window size (of course,
increases in window size are not regular). The MCLE Sixteen model on the two-
color 100×100 lattice had a standard error that was about 7/10 of the MPLE, a
notable improvement, but still 1.75 times that of the empirical MLE (Table 1).
The MCLE performed better relative to the MLE on the smaller 32×32 two-color
lattice, getting as low as 1.4 times the MLE standard error for the Nine Overlap
model (Table 3).

Not surprisingly, the best standard error in the plots is for the asymptotic
MLE. This is equal to inverse Fisher Information, the inverse of (3.5), estimated
here using 1,000 MCMC samples of t(x) that were spaced 500 iterations of the
Swendsen-Wang algorithm apart. This spacing was empirically determined so
that samples were nearly uncorrelated. The empirical MLE performed much
closer to this on the larger 100 × 100 lattice compared to the 32 × 32 lattice.

The overall performance of the different estimators was measured here by the

empirical root mean square error, RMSE(θ̃) =
√

(1/n)
∑n

i=1(θ̃i − θ)T (θ̃i − θ),
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Figure 2. Boxplot of the ∗-component of estimators for a 4-color image, on
32 × 32 lattice (left) and 100 × 100 (right). Estimators are MPLE, MCLE
(Two and Four), and MLE. The mean of the estimator is plotted with an
asterisk and the true value of θ∗, log(1+

√
4) = 1.0986, is shown by horizontal

line.

Table 1. 2 color, 100 × 100 image. se: standard error for ∗-component of θ̃
and θ̂, RMSE: root mean square error of θ̃ and θ̂, n: number of simulations.

MPLE Two Four Nine Sixteen MLE
se 0.0192 0.0173 0.0160 0.0147 0.0137 0.0078

RMSE 0.0322 0.0279 0.0242 0.0222 0.0198 0.0106
n 946 946 946 946 944 931

where θ̃i is the estimator from observation i out of n samples. Although the
standard errors for MLE were much lower than for MCLE, this was not the case
with RMSE. This is of course due to the bias in the distribution of the MLE on
the 32×32 lattice, which is not present in the distribution of the MCLE (Figures
2). With the reduced bias on the 100×100 lattice, the MLE handily outperforms
the best MCLE with respect to RMSE by about a factor of two (Tables 1 and
2).
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Figure 3. Standard errors of ∗-component for estimators with different win-
dow sizes on 100× 100 Potts images. TwoO: Two overlapping, FourO: Four
overlapping. Values for standard errors are the same as se values in Tables 1
and 2.

Table 2. 4 color, 100 × 100 image. se: standard error for ∗-component
of estimator, RMSE: root mean square error of estimator, n: number of
simulations.

MPLE Two Four MLE
se 0.0166 0.0149 0.0134 0.0052

RMSE 0.0571 0.0506 0.0441 0.0206
n 1893 1893 1893 750

Table 3. 2 color, 32 × 32 image. se: standard error for ∗-component of
estimator, RMSE: root mean square error of estimator, n: number of simu-
lations.

MPLE Two Two Four Four Nine Nine MLE
overlap overlap overlap

se 0.0680 0.0638 0.0610 0.0591 0.0547 0.0550 0.0505 0.0359
RMSE 0.1367 0.1252 0.1166 0.1146 0.1007 0.1014 0.0906 0.0823

n 1135 1135 1135 1135 1135 1135 1135 1000
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Figure 4. Standard errors of ∗-component for estimators with different win-
dow sizes on 32 × 32 Potts images. TwoO: Two overlapping, FourO: Four
overlapping, NineO: Nine overlapping. Values for standard errors are the
same as se values in Tables 3, 4, and 5.

Table 4. 3 color, 32 × 32 image. se: standard error for ∗-component of
estimator, RMSE: root mean square error of estimator, n: number of simu-
lations.

MPLE Two Two Four Four Nine Nine MLE
overlap overlap overlap

se 0.0647 0.0593 0.0571 0.0556 0.0501 0.0489 0.0478 0.0296
RMSE 0.1770 0.1589 0.1535 0.1467 0.1339 0.1340 0.1223 0.1205

n 364 364 364 364 364 94 93 1000

5. Discussion

Since maximizing the CLL when the window A is chosen to be nearly the
entire lattice is almost the same as finding the MLE, we anticipated more accurate
estimates for larger size windows. Our choice of window size, however, was
restricted by our computing resources; computing MCLE for a three by three
window (our “Nine” model) for the four color 100 × 100 lattice requires more
memory than our computers had available (but see the Appendix for another
approach).
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Table 5. 4 color, 32 × 32 image. se: standard error for ∗-component of
estimator, RMSE: root mean square error of estimator, n: number of simu-
lations.

MPLE Two Two Four Four MLE
overlap overlap

se 0.0619 0.0555 0.0546 0.0521 0.0489 0.0278
RMSE 0.2265 0.2103 0.2064 0.1999 0.1910 0.1769

n 234 233 233 232 232 991

Our primary interest was in the efficiency of MCLE for different size win-
dows. Since using non-overlapping instead of overlapping windows consumes far
less computing resources, we focused on obtaining results for non-overlapping
windows for all the lattices we considered. We were also able to produce results
for overlapping windows in cases where the demand on computing resources were
not overly burdensome.

Figures 3 and 4 show a clear downward trend in the standard error of the
∗-component of the estimators. This trend holds for the estimators of the other
components of θ (results not shown).

The exact nature of the trend is not clear, though we believe that that the
standard errors must approach that of the MLE when the window is nearly the
entire lattice (if this could be done, which it cannot for large lattices). For each
component d ∈ C ∪ {∗} of the MCLE, we have the conjecture

Var (θ̃d)

Var (θ̂d)
∝ N

|A|
,

where N is the total number of pixels in the lattice. We do not have any strong
reason for this conjecture other than intuition and studying graphs such as Fig-
ures 3 and 4. Further investigation is needed to determine the nature of the
trend.

Like many problems, MCLE computation suffers from a memory and speed
trade off. We chose to cache as much of the calculation as possible to increase
speed. Our method creates a list of arrays, storing all the values of t(y ∪ xL\A)
for all y ∈ CA for all A ∈ A. This requires a list of length |A|, each element is
an array of size |C||A|× |C|. Our implementation prefers transparent correctness
over computational efficiency. Runtimes for typical runs with 2 or 4 colors on
100 × 100 and 32 × 32 images are reported in Table 6. Surprisingly, computa-
tion of the estimators for slightly larger non-overlapping window sizes (1× 2 and
2×2 windows for the two color Potts models) is quicker than computation of the
MPLE. This is due to the reduced size of A; for example, the non-overlapping
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Table 6. Runtimes (in seconds) including creating the cache and optimizing
the CLL. Times are from a 2GHz computer, using a non-parallelized version.

Colors Size MPLE Two Two Four Four Nine Nine Sixteen
ovrlp ovrlp ovrlp

2 100 × 100 121 67 142 59 264 531 5,133 40,629
4 100 × 100 219 187 515 977 4,034
2 32 × 32 10 6 12 5 24 50 461 3,851
4 32 × 32 17 12 47 34 365

1 × 2-window composite likelihood model has exactly half the number of com-
ponents as the pseudo-likelihood model. Since each component is very simple,
computations are still quite fast, and with fewer components, the overall com-
putation time is less. The speed advantage disappears as |C| increases, as the
number of calculations required per component grows exponentially with |C|.

We recommend using as large a window size as one’s patience and computing
resources allow. In terms of efficiency, window size selection seems to clearly fol-
low the guideline “bigger is better”. The tradeoff, of course, is longer (sometimes
substantially longer) runtimes, which may not be worth the diminishing gains in
efficiency. For example, in the two color 100 × 100 lattice, the Nine non-overlap
estimator has a standard error of 0.0147 and a non-parallelized runtime of just
under 9 minutes. To get to the lower standard error of 0.0137 associated with the
Sixteen non-overlap model, one would have to wait for nearly 11.5 hours. Is 11.5
hours too long? Many of us may say yes, but this becomes a rather subjective
discussion involving the value one places on computing time and the importance
of the accuracy of the results.

Two possible ways to improve computing speed are parallel computing and
implementing a peeling algorithm.

When calculating the CLL, computation for each window A ∈ A can be
done with no influence on computations for other windows. This makes the
CLL easily parallizable. We were able to use the mclapply function from the
multicore package (Urbanek (2009)) for R. This required almost no alteration
of the existing code, and using 8 cores for processing achieved a five-fold speedup.
However, this approach does not increase the computational feasibility of larger
window sizes. To enable MCLE calculations on large window sizes we would need
to spread A across multiple computers.

A peeling algorithm (Cannings, Thompson, and Skolnick (1978); Lauritzen
and Spiegelhalter (1988)) could be implemented to efficiently calculate the com-
posite likelihood in slices. For more detail, see the Appendix. In addition to
making feasible computations of MCLE for larger size windows than we have
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done here, this method could also be used to calculate conditional expectations
and covariances. These in turn could be used to calculate asymptotic variances
which could be compared more directly to that of the MLE than the empiri-
cal variances that we have computed here. Peeling code is, however, tricky and
difficult to write and validate.

The composite likelihood approach adds an interesting new perspective to
the parameter estimation discussion for exponential families with complex de-
pendencies. While MCLE show a far larger standard error than the MLE, for
problems where MCMC methods are difficult to implement, the composite like-
lihood approach with even moderate window size is a marked improvement over
the pseudo-likelihood approach.
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Appendix

The peeling algorithm (Cannings, Thompson, and Skolnick (1978); Lauritzen
and Spiegelhalter (1988)) can be used to efficiently evaluate all of the conditional
probabilities, expectations, variances, and covariances in (3.2), (3.3a), (3.3b),
(3.4b), and (3.4d).

Suppose we are given a family B of subsets of L and a family of functions
ϕB, B ∈ B, where ϕB is a function of the variables xB only, and suppose we wish
to evaluate

Q =
∑

x∈CL

∏
B∈B

ϕB(xB)

(where, as above, L is the whole lattice and xB denotes the restriction of the
function x to the set B). The peeling algorithm does this efficiently by summing
out one variable at a time. Fix i ∈ L, and define

B∗ =
∪

{B ∈ B : i ∈ B }
\
{i},

ϕB∗(xB∗) =
∑

y∈C{i}

∏
B∈B
i∈B

ϕB(y ∪ xB\{i}).

Now define

Bnew = {B ∈ B : i /∈ B } ∪ {B∗},
Lnew = L \ {i}.
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Then
Q =

∑
x∈CLnew

∏
B∈Bnew

ϕB(xB).

Thus we have a problem of the same abstract form. To give a name to the
functions ϕB we call them potentials. Then the peeling algorithm can be phrased
in words as follows. To evaluate the sum of a product of potentials, sum out
one variable at a time. Each sum yields a problem of the same form (sum of
a product of potentials). After each step we have one fewer variable and one
new potential (ϕB∗ above) involving all the variables that were neighbors of the
variable summed out.

In order to carry out the peeling algorithm we must be able to represent each
ϕB∗, which is a function with finite domain and range, so it can be tabulated,
taking space |C||B∗|. Depending on the “peeling sequence,” which is the order
in which the variables are summed out, the size of the maximal such table may
grow too large for feasible computation or may stay reasonably small. The peeling
algorithm works in practice only for “good” peeling sequences. For Potts models,
the optimal peeling sequence for a rectangular region A =

∪
B starts in one corner

and proceeds along rows, starting at the beginning of the next row when one row
is finished. Then the size of B∗ is never larger than twice the number of pixels
in a row.

All of the summations that seem to have |C||A| terms in in (3.2), (3.3a),
(3.3b), (3.4b), and (3.4d) can thus be done in O(|C|r) time and space, when A

is rectangular and r is the number of rows or columns, whichever is smaller.
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