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Abstract: We investigate the properties of the composite likelihood (CL) method

for (T × NT ) GARCH panels. The defining feature of a GARCH panel with time-

series length T is that, while nuisance parameters are allowed to vary across NT

series, other parameters of interest are assumed to be common. CL pools informa-

tion across the panel instead of using information available in a single series only.

Simulations and empirical analysis illustrate that when T is reasonably large CL

performs well. However, due to the presence of nuisance parameters, CL is subject

to the “incidental parameter” problem for small T.
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1. Introduction

This study focuses on the application of the composite likelihood (CL) method
to GARCH panels. A GARCH panel is a collection of financial time series that
are characterised by time-varying volatility. The defining feature of a GARCH
panel is that, while nuisance parameters are allowed to vary across series, other
parameters of interest are assumed to be common for all series.

The origins of the composite likelihood method go back to at least Lindsay
(1988). See Varin (2008) and Varin, Reid and Firth (2011) for a review. The
method has recently been introduced to financial econometrics by Engle, Shep-
hard, and Sheppard (2008) as a basis for pooling information across not only
time, but also cross-section. In GARCH panels, this amounts to estimating the
parameters of interest for all assets simultaneously, instead of individually. This
is important since the common quasi-maximum likelihood estimator (QMLE) for
the GARCH model delivers poor results in samples of a few hundred observa-
tions. This study illustrates that CL is capable of delivering satisfactory results
in such samples by pooling information across series, though it too suffers from
error introduced by nuisance parameter estimates. This “incidental parameter”
problem has been mentioned in the financial econometrics literature by Engle
and Sheppard (2001), Engle, Shephard, and Sheppard (2008), and Engle (2009).
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An important point in favour of CL is that QMLE-based estimation of
GARCH, while satisfactory in samples with thousands of observations, is unre-
liable in small samples. For example, using a sample of 100 or 250 observations,
the fitted GARCH is unlikely to adequately model the conditional heteroskedas-
ticity in data. On the other hand, CL is potentially able to produce a reasonable
conditional heteroskedasticity structure, even when the number of observations
is very small, since it uses information contained in the whole panel. Although
assets in the panel are correlated to some degree, it is implausible that all assets
are perfectly correlated. Hence, a panel of asset prices contains at least as much
information as a single asset does.

Forecasters often have to use a short time series or a small-T panel. A recent
structural break in data is one cause. Assuming the break occurred a year ago
(corresponding to the availability of around 250 daily observations following the
break), parameters estimated using QMLE most likely suffer from substantial
bias which, in turn, leads to poor forecasting performance. On the other hand,
CL has the potential to work well in this scenario. Another application where
CL can be useful is monthly hedge fund data, which consists of monthly returns
on thousands of funds and hence, is a short, wide panel.

The relevant large sample theory underlying the method used here has al-
ready been developed by Engle, Shephard, and Sheppard (2008), who looked
at large dimensional time-varying covariances. They employed CL to produce
a computationally feasible estimator, with the CL constructed by averaging the
log-likelihoods for submodels built using bivariate time series. Our study devel-
ops the GARCH panel structure using the theoretical foundations provided by
Engle, Shephard, and Sheppard (2008), and employs Monte Carlo and empirical
analysis to examine its properties.

Our Monte Carlo simulations demonstrate that CL is capable of modelling
conditional heteroskedasticity correctly using previously infeasible sample sizes.
Furthermore, forecast comparisons using stock-market data from S&P100 reveal
that, even when the parameters of interest are likely to vary across the panel, CL
performs well against QMLE in small-T panels. Nevertheless, as the sample size
increases, information pooling loses its attractiveness, as QMLE performs well
enough in long time series.

The structure of the paper is as follows. In Section 2 we introduce the
GARCH panel model and the analysis by composite likelihood. In Section 3 we
report results from various simulation experiments. Section 4 then provides an
empirical illustration of these methods, and Section 5 draws some conclusions.
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2. The GARCH Panel

GARCH models are frequently used in financial econometrics. Reviews of
the literature include Bollerslev, Engle and Nelson (1994), Bauwens, Laurent
and Rombouts (2006), and Silvennoinen and Teräsvirta (2009) The focus in this
paper is on a GARCH panel. The (T × N) GARCH panel is a collection of N

financial time series that are assumed to have GARCH dynamics and to share a
common set of parameters, θ = (α, β), while the nuisance parameters, {γi}N

i=1,
are allowed to be asset-dependent (in the rest of the paper we will use {·i} as a
shorthand for {·i}N

i=1). Our focus is on fitting a very large number of univariate
GARCH models; for example, this would be needed for the first step of fitting
a Dynamic Conditional Correlation model by Engle (2002). For simplicity of
exposition we assume each time series is of length T , although in practice this is
of course not necessary.

Formally, we have a panel of asset returns with T observations for each of
the NT assets. Throughout, it is assumed that the number of series in the cross-
section can potentially increase with the number of observations and so NT has
the subscript T . This includes cases where there are more assets than time-series
observations. Moreover, asset returns are assumed to display conditional het-
eroskedasticity over time and cross-sectional dependence, where yit is the return
on asset i at time t, i = 1, . . . , NT and t = 1, . . . , T . We write,

yit = µit + εit, µit = E[yit|Ft−1], (2.1)

E [εit|Ft−1] = 0 and Var [yit|Ft−1] = Var [εit|Ft−1] ≡ σ2
it, (2.2)

where Ft−1 is the historical information set at time t−1. As the analysis focuses
on conditional variance, it is assumed that µit = 0. The GARCH panel is based
on the GARCH(1,1) specification given by

σ2
it = γi(1−α−β)+αε2

i,t−1+βσ2
i,t−1, where γi > 0, α, β ∈ [0, 1), α+β < 1.

(2.3)
Here, α and β constitute the parameters of interest, while {γi} are treated as
nuisance parameters that are not of direct interest but, nevertheless, have to be

estimated in order to obtain θ̂ =
(
α̂, β̂

)′
. It can be shown that this specification,

often called variance-tracking, implies that

E(y2
it) = γi, (2.4)

enabling the use of method of moments (MM) to estimate γi. Here we make

the ad-hoc choice of setting σ2
i0 = bT−1/2c

∑bT−1/2c
t=1 y2

it. Finally {γ∗
i }, α∗, and β∗

are defined as the true parameter values for {γi}, α and β, respectively, while
γ∗
(NT ) ≡

(
γ∗
1 , . . . , γ∗

NT

)
.
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This panel structure has many similarities with the autoregressive panels
commonly used in economics and statistics. Reviews of that literature include
Arellano and Honore (2001) and Diggle, Liang and Zeger (1994). We know of
only Engle and Mezrich (1996) and Bauwens and Rombouts (2007) as previous
studies on GARCH panels.

Conventionally, estimation of θ can be conducted individually for each asset,
using QMLE. However, this only utilises information available in a single time
series. What is preferable in this situation (where all assets share a common θ)
is to estimate θ by pooling all information available in the panel. This is made
possible by CL.

2.1. Estimation procedure

Let f(yit|Ft−1; θ, γi) be the conditional density for yit. The joint density spec-
ification for all asset returns at time t is given by f(y1t, . . . , yNT t|Ft−1), which we
do not model, noting that knowledge of all of the NT submodels does not deliver
knowledge of f(y1t, . . . , yNT t|Ft−1) (the conditional copula is entirely unspecified)
unless the individual components are conditionally independent.

This model is indexed by some common parameters θ and individual effects
γi. This type of assumption appeared first in the influential work of Neyman
and Scott (1948). Recent papers on the analysis of this setup include Barndorff-
Nielsen (1996), Lancaster (2000), and Sartori (2003). In those papers, stochastic
independence is assumed over i and t. Then the maximum likelihood estimator
of θ is typically inconsistent for finite T as N → ∞ and needs, when T increases,
N = o(T 1/2) for standard distributional results to hold with rate of convergence√

NT (see Sartori (2003)). In our time series situation we are content to allow
T to be large, while the important cross-sectional dependence implied by CL
amongst the individual quasi likelihoods reduces the rate of convergence to

√
T ,

not
√

NT . Under those circumstances the m-composite likelihood estimator is
consistent and has a simple limit theory however N relates to T (see Engle,
Shephard, and Sheppard (2008) for details). In our framework we have both
time-series and cross-sectional dependence in the yit|Ft−1.

Define ψi ≡ (θ′, γi)
′ and ψ(NT ) = (θ′, γ′

(NT ))
′. Then, the normal-density com-

posite likelihood function is given by

CL(ψ(NT ); y) =
1
T

T∑
t=1

{
1

NT

NT∑
i=1

log f(yit|Ft−1; ψi)

}
=

1
T

l(ψ(NT ); y), (2.5)

where
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l(ψ(NT ); y) =
T∑

t=1

lt(ψ(NT ); yt|Ft−1), and

lt(ψ(NT ); yt|Ft−1) =
NT∑
i=1

log f(yit|Ft−1; ψi).

Estimation of ψ(NT ) is based on a two-step estimation procedure. First, {γi}
are estimated using method of moments estimation based on (2.4) to obtain {γ̂i},
then substituted for {γi} in (2.3), and θ is estimated using (2.5). A detailed expo-
sition of the theory for two-step estimation is provided by Newey and McFadden
(1994). There NT is fixed so despite similarities in estimation approach, standard
results do not apply to the current case.

Formally, using (2.4),

mNT
(yt, γ(NT )) =

 y2
1t − γ1

...
y2

NT t − γNT

 , implying E(mNT
(yt, γ

∗
(NT ))) = 0. (2.6)

Equation (2.6) gives the population moment condition for the nuisance parame-
ters. For θ, the score function for the normal-density composite-likelihood func-
tion is

g(yt, θ, γ(NT )) =
∂

∂θ

1
NT

(
−1

2

NT∑
i=1

log σ2
it −

1
2

NT∑
i=1

ε2
it

σ2
it

)
. (2.7)

For (2.6) and (2.7), respective sample moment conditions are given by

1
T

T∑
t=1

mNT
(yt, γ̂(NT )) = 0, and

1
T

T∑
t=1

g(yt, γ̂(NT ), θ̂) = 0, (2.8)

where γ̂(NT ) and θ̂ are appropriate estimators for γ∗
(NT ) and θ∗ ≡ (α∗, β∗). Stack-

ing (2.6) and (2.7), the population and sample moment conditions are given by

E
[
g̃(yt, θ

∗, γ∗
(NT ))

]
= E

[
mNT

(yt, γ
∗
(NT ))

g(yt, θ
∗, γ∗

(NT ))

]
= 0,

and
1
T

T∑
t=1

g̃t,T (yt, θ̂, γ̂(NT )) = 0.
([NT +2]×1)

We note that (2.8) is the first order condition for the simple optimization
problem

θ̂ = argmax
θ

1
T

T∑
t=1

1
NT

NT∑
i=1

log f(yit|Ft−1, θ, γ̂i). (2.9)
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Equation (2.9) is based on an m-profile composite likelihood function, formed by
ignoring the potential dependence in the data across individuals; it is an m-profile
version as we have plugged the moment based estimator of γi into the composite
likelihood. This provides a statistically inefficient estimator for θ as it ignores
dependence over individuals, employs a moment based estimator to remove γi,

and the submodels for yit|Ft−1 may really be just quasi-likelihoods and not true
likelihoods.

In this setting, there are NT moment conditions coming from the nuisance
parameters and two moment conditions coming from the score vector. An impor-
tant observation is that for each asset in the panel, there is a nuisance parameter
estimation.

2.2. Large sample distribution

If we ignore the estimation of the nuisance parameters, then this is just a
time-series extension of the analysis of Cox and Reid (2004). In that case, the
score for the t-th observation is given by

st,N =
1
N

N∑
i=1

∂ log f (yit|Ft−1,i; θ)
∂θ

,

which is a triangular array martingale difference sequence. We assume that it
obeys a central limit theorem,

1
T

√
T

T∑
t=1

st,N
d→ N(0, I), where I = p lim

[
1
T

T∑
t=1

Var (st,N |Ft−1,N )

]
.

Here N can increase with T , but we assume that I is positive definite. The latter
assumption is not trivial, for example, it would not be expected if the data are
i.i.d. in the cross section. More formally, we assume that if N increases the cross
sectional average st,N does not obey a law of large numbers.

Based on the normal limit, it follows that

√
T

(
θ̂ − θ

)
d→ N(0,J −1IJ −1), (2.10)

where

J = p lim
1
T

T∑
t=1

E
[
∂st,N

∂θ′

∣∣∣Ft−1,N

]
,

assuming that J > 0. Notice that J is approximately the average of Hessians of
a randomly chosen submodel at a random time ∂2 log f(yit; ψ)/∂θ∂θ′, and that
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the CLT is only for θ̂, it makes no statement about the γi. To account for the
nuisance parameters, a modified estimator for the score covariance is required:

zt,N =
1
N

N∑
i=1

{
∂ log f (yit|Ft−1,i; ψ)

∂θ
+

[
T∑

t=1

∂2 log f (yit|Ft−1,i; ψ)
∂θ ∂γi

] (
y2

it − γi

)}
,

1
T

√
T

T∑
t=1

zt,N
d→ N(0, Ĩ), where Ĩ = p lim

[
1
T

T∑
t=1

Var (zt,N |Ft−1,N )

]
.

Here, zt,N is different from st,N in that it contains a correction term given by[
T∑

t=1

∂2 log f (yit|Ft−1,i; ψ)
∂θ ∂γi

] (
y2

it − γi

)
.

The first term accounts for the influence of estimating γi on estimating θ. As such,
if θ and γi are orthogonal, then there is no such influence and the correction term
disappears. The second term can be related to estimation of γi by the method
of moments. If the data provide an accurate estimate of γi, then this term is
small, making the correction term small as well. The correction term may also
be small, even when the data yield a very inaccurate estimate of γi, if γi and θ
are nearly orthogonal.

An important point of (2.10) is that the rate of convergence of the estimator
is not improved by having a cross-section. Instead the cross-section influences
the size of I, but its impact is limited. For a more detailed exposition of the
related large sample theory, see Engle, Shephard, and Sheppard (2008).

In practice, to make inference we need estimators for Ĩ and J . An estimator
for J can be obtained by evaluating the Hessian at sample observations. Ĩ on
the other hand requires the use of a HAC estimator. Examples of such estimators
are provided by Newey and West (1987) and Andrews (1991).

3. Simulation Analysis

3.1. The setting

The asset panel was generated using the specification described in (2.1)−(2.3).
For most stock returns annual volatility is in the range 15% and 60%, so we took
γi

i.i.d.∼ U [0.02, 0.05]. This is suggested by σD =
√

σA/252, where σD and σA are
daily and annual volatility, respectively. For an annual volatility of 15%, daily
volatility according to this method is 0.0244, while for 60% the daily volatility
is 0.0488. For each series the γi were used as the initial values for the con-
ditional variances, hi,0. Cross-sectional dependence was generated by a single-
factor model where

εit = ρiut +
√

1 − ρ2
i τit, τit, ut

i.i.d.∼ N(0, 1), (3.1)
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implying

E (εit|ρi) = 0, Var
[(

εit

εjt

)∣∣∣∣ ρi, ρj

]
=

[
1 ρiρj

ρiρj 1

]
∀ i 6= j and ∀t,

and Cov(εit, εjs|ρi, ρj) = 0 for all t 6= s and all i, j.
The choice of the ρi in a way that ensures neither perfect correlation nor

independence can be done in various ways. A restrictive option is to assume that
the ρi are equal. Engle, Shephard, and Sheppard (2008) considered a truncated
normal distribution to generate the ρi, where truncation occurs at 0.1 and 0.9.
Our study used ρi ∼ U [0.5, 0.9] for all i, ensuring that the lowest and highest
correlation between two assets were 0.25 and 0.81, respectively. Lastly, α and
β were chosen from three alternatives that cover the range of parameter values
found in asset data:[

α

β

]
∈

{
θ(1), θ(2), θ(3)

}
=

{[
0.02
0.97

]
,

[
0.05
0.93

]
,

[
0.10
0.80

]}
. (3.2)

3.2. The results

All results are based on 2,500 replications. Average biases of estimates and
their Monte Carlo standard deviations (MCSD) are amongst obvious criteria for
comparison. To investigate whether the theoretical large sample properties of
CL hold in finite samples, asymptotic standard deviation (ASD) and root mean
squared error (RMSE) statistics are also provided:

MCSD : σ̄κ̂ =

√
1
Z

∑Z

z=1

(
κ̂z −

1
Z

∑Z

z=1
κ̂z

)2

,

ASD : σ̂κ̂ =
1
Z

√∑Z

z=1
σ̂2

κ̂,z,

RMSE : Rκ̂ =

√
1
Z

∑Z

z=1
(κ̂z − κ)2,

where Z is the number of replications, α̂z and β̂z are the estimates for replica-
tion z, z = 1, . . . , Z, and κ̂z ∈{α̂z, β̂z}. σ̂2

κ̂,z is the estimated asymptotic variance
for κ̂z. ASD serves as an average measure of the asymptotic standard deviation
across all replications. In addition, coverage rates of sample confidence interval
statistics (CI) are provided as a further measure of the finite sample performance
of the asymptotic distribution for the CL based upon σ̂2

κ̂,z. All results are calcu-
lated for 95% confidence intervals.

Tables 1 and 2 present the results for the three parameter values in (3.2),
where T =2,000. Tables 3 and 4 look at the implications of varying T where
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Table 1. Monte Carlo simulation results for fixed T using the three parameter
sets given in (3.2): average biases for α̂ and β̂ in percentages and Monte Carlo
standard deviations (σ̄α̂ and σ̄β̂). T = 2, 000 in all cases, while NT gives the
number of series in the cross-section. Based on 2, 500 replications.

θ = (0.02, 0.97) (0.05, 0.93) (0.10, 0.80) (0.02, 0.97) (0.05, 0.93) (0.10, 0.80)

Bias% MCSD

NT α̂ β̂ α̂ β̂ α̂ β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂

1 3.30 -0.81 0.15 -0.49 0.16 -1.20 0.007 0.019 0.010 0.017 0.020 0.050

10 0.42 -0.29 -0.08 -0.21 -0.40 -0.29 0.002 0.005 0.004 0.006 0.008 0.017

50 0.17 -0.26 -0.12 -0.19 -0.32 -0.28 0.002 0.003 0.003 0.005 0.006 0.013

100 0.08 -0.25 -0.19 -0.18 -0.29 -0.27 0.002 0.003 0.003 0.004 0.005 0.012

Table 2. Monte Carlo simulation results: Monte Carlo standard deviation
(σ̄α̂ and σ̄β̂), asymptotic standard deviation (σ̂α̂ and σ̂β̂), root mean squared
error (Rα̂ and Rβ̂) and sample confidence interval (CI) statistics. T = 2, 000
in all cases, while NT gives the number of series in the cross-section. Based
on 2, 500 replications.

NT σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ Rα̂ Rβ̂ CIα̂ CI β̂

α = 0.02 β = 0.97
1 0.007 0.019 0.030 0.107 0.007 0.021 0.922 0.928

10 0.002 0.005 0.002 0.005 0.002 0.005 0.936 0.948
50 0.002 0.003 0.002 0.003 0.002 0.004 0.938 0.937

100 0.002 0.003 0.002 0.003 0.002 0.004 0.943 0.941
α = 0.05 β = 0.93

1 0.010 0.017 1.710 12.900 0.010 0.018 0.933 0.945
10 0.004 0.006 0.004 0.006 0.004 0.007 0.938 0.952
50 0.003 0.005 0.003 0.005 0.003 0.005 0.941 0.937

100 0.003 0.004 0.003 0.004 0.003 0.005 0.946 0.943
α = 0.10 β = 0.80

1 0.020 0.050 0.020 0.052 0.020 0.051 0.933 0.924
10 0.008 0.017 0.008 0.017 0.008 0.018 0.954 0.944
50 0.006 0.013 0.006 0.013 0.006 0.013 0.968 0.954

100 0.005 0.012 0.006 0.012 0.005 0.012 0.970 0.954

T ∈ {100, 250, 500, 1,000, 2,000} (this second analysis is conducted for θ(2) only,
due to space restrictions). In all cases, results for NT = 1 are also provided,
which corresponds to using QMLE instead of CL.

Simulation results presented in Table 1 show that when T = 2, 000, CL
generally leads to low average bias across all parameter values, with the highest
average bias being 0.42% for α̂ and -0.29% for β̂. In contrast, the average bias due
to QMLE reaches levels as high as 3.3% for α̂ and -1.2% for β̂. An interesting
observation is that, when β̂ is concerned, there is a general tendency for the
average bias to initially decrease and then plateau as NT increases. For example,
for θ(1) = (0.02, 0.97), the change in bias when NT increases from 50 to 100 is
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Table 3. Monte Carlo simulation results for θ = (0.05, 0.93): average biases
for α̂ and β̂ in percentages and Monte Carlo standard deviations (σ̄α̂ and σ̄β̂).
T and NT give the number of observations in each time series and the number
of series in the cross-section, respectively. Based on 2, 500 replications.

NT = 1 (QMLE) NT = 10 NT = 50 NT = 100

Bias%

T α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
100 1.410 -15.900 -23.600 -15.200 -26.700 -16.200 -27.200 -16.500
250 11.300 -10.600 -1.380 -3.500 -3.460 -2.710 -3.610 -2.610
500 5.340 -4.570 -0.157 -1.150 -0.650 -0.976 -0.695 -0.955

1,000 2.370 -1.530 -0.004 -0.484 -0.221 -0.406 -0.306 -0.393
2,000 0.534 -0.561 -0.076 -0.225 -0.050 -0.185 -0.082 -0.181

MCSD

T σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂

100 0.069 0.227 0.030 0.169 0.023 0.163 0.022 0.160
250 0.043 0.186 0.014 0.052 0.010 0.028 0.010 0.021
500 0.026 0.109 0.009 0.016 0.006 0.011 0.006 0.010

1,000 0.016 0.042 0.006 0.010 0.004 0.007 0.004 0.007
2,000 0.010 0.019 0.004 0.006 0.003 0.004 0.003 0.004

0.01%. Moreover, taking NT = 1 as a reference, when the panel size increases
to NT = 10 the change in bias is 0.52%, while when the size is increased to
NT = 100, bias is reduced by 0.56%. This shows that the speed of decline falls
with NT . These results also suggest that there are substantial gains in shifting
from time series (QMLE) to a panel (CL) structure, in terms of both the average
bias and sample standard deviation.

Sample standard deviations (MCSD) are also generally low and decrease
with NT . This is not surprising as an increase in NT implies that there is more
information to use. Moreover, the decrease in MCSDs is not large enough to
imply that the speed of convergence in finite samples is

√
TNT as opposed to

√
T .

Similar to the previous discussion for average bias, sample standard deviations
exhibit a pattern of convergence to some non-zero limit. Therefore, increasing
NT beyond 100 does not lead to substantial decreases in MCSD. These results are
all in accordance with the asymptotic theory in Engle, Shephard, and Sheppard
(2008).

Table 2 presents further results for the same simulation exercise. The MCSD
and ASD statistics for both α̂ and β̂ are generally very close to each other, im-
plying that the simulation results are in line with the relevant asymptotic theory.
The RMSE statistics confirm the earlier observation of a non-vanishing bias as
NT → ∞, since in some cases there is a slight difference between MCSD and
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Table 4. Monte Carlo simulation results for θ = (0.05, 0.93): Monte Carlo
standard deviation (σ̄α̂ and σ̄β̂), asymptotic standard deviation (σ̂α̂ and σ̂β̂),
root mean squared error (Rα̂ and Rβ̂) and sample confidence interval (CI)
statistics. T and NT give the number of observations in each time series
and the number of series in the cross-section, respectively. Based on 2,500
replications.

T σ̄α̂ σ̄
β̂

σ̂α̂ σ̂
β̂

Rα̂ R
β̂

CIα̂ CI
β̂

σ̄α̂ σ̄
β̂

σ̂α̂ σ̂
β̂

Rα̂ R
β̂

CIα̂ CI
β̂

NT = 1 (QMLE) NT = 10

100 0.069 0.227 0.111 2.250 0.069 0.272 0.551 0.863 0.030 0.169 0.072 1.670 0.032 0.220 0.791 0.832

250 0.043 0.186 0.187 7.750 0.043 0.210 0.842 0.866 0.014 0.052 0.017 0.129 0.014 0.061 0.911 0.920

500 0.026 0.109 0.028 0.143 0.026 0.117 0.889 0.905 0.009 0.016 0.009 0.018 0.009 0.019 0.931 0.937

1,000 0.016 0.042 0.018 0.057 0.016 0.044 0.909 0.916 0.006 0.010 0.006 0.010 0.006 0.011 0.934 0.945

2,000 0.010 0.019 0.011 0.021 0.010 0.019 0.923 0.932 0.004 0.006 0.004 0.006 0.004 0.007 0.940 0.948

NT = 50 NT = 100

100 0.023 0.163 0.283 5.150 0.026 0.222 0.786 0.759 0.022 0.160 0.078 5.810 0.026 0.222 0.769 0.718

250 0.010 0.028 0.010 0.026 0.010 0.037 0.912 0.897 0.010 0.021 0.010 0.026 0.010 0.032 0.908 0.877

500 0.006 0.011 0.006 0.011 0.006 0.014 0.930 0.926 0.006 0.010 0.006 0.011 0.006 0.014 0.934 0.926

1,000 0.004 0.007 0.004 0.007 0.004 0.008 0.933 0.936 0.004 0.007 0.004 0.007 0.004 0.007 0.932 0.938

2,000 0.003 0.004 0.003 0.005 0.003 0.005 0.942 0.952 0.003 0.004 0.003 0.004 0.003 0.004 0.947 0.950

RMSE that suggests some very small bias. As for QMLE, although MCSD and
RMSE values are close to each other, ASD is very high for θ(1) and, especially,
θ(2). This is another point in favour of using the panel structure instead of focus-
ing on the series individually. Also, CI statistics are very satisfactory, ranging
between 92% and 97% across all cases.

Now, we turn to the implications of varying both the number of assets and
the observations per asset by using NT ∈ {1, 10, 50, 100} and T ∈ { 100, 250,
500, 1,000, 2,000}. Table 3 shows that average bias decreases with T . This is not
unanticipated as fitted GARCH usually models the conditional heteroskedasticity
dynamics much better when longer time series are used. Unsurprisingly, both σ̄α

and σ̄β decrease with T . Clearly, having a larger number of observations for each
series delivers less biased and more efficient estimators.

Table 4 reveals that CL performs well when there are around at least 500
observations in the time series. However, in the remaining cases the large sample
theory gives poor finite sample results, as reflected in the discrepancy between
MCSD and ASD. The sample confidence interval statistics agree with these re-
sults. As T decreases, sample confidence intervals move further away from 95%
and become more conservative. Similarly, the discrepancy between the RMSE
and MCSD statistics, especially for β̂, increases as T decreases, pointing to a
negative correlation between average bias and sample size.

Comparing CL to QMLE, QMLE’s relative performance is very poor, espe-
cially when average bias is concerned (except when T = 100, which is due to
the optimisation routine’s sensitivity to the starting values of the algorithm).
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Clearly, CL is preferable to QMLE, in the hypothetical situation that all series
share a common set of parameters of interest. The general message of the simu-
lation results so far is that CL performs well when T ≥ 500. The reason for CL’s
biases in small-T panels is discussed next.

3.3. Nuisance parameters and estimation error

As stressed previously, CL pools all information available in the panel to
form a single likelihood function. Therefore, one would intuitively expect CL to
be successful even when T is small but there are indications of significant bias
when T < 250. Is this caused by the estimation of the γi for each model?

Figure 1 presents sampling distributions of the estimators of θ using (i)
the method of moments estimator for the nuisance parameter (CL1), and (ii)
the true value of the nuisance parameter (CL2) which corresponds to infeasible
estimation of the nuisance parameter. The sample distribution graphs reveal why
CL performs worse when T is very small: sample distributions are not centered
around α and β, and there is high dispersion. Some improvement can be observed
as T increases to 250. However, β̂ is prone to exhibit some mild bias even when T

is high. In accordance with observations in the previous simulation study, while
average bias decreases with T , an increase in NT (for a given T ) leads to higher
precision. However, here, high precision is not always a desirable property. In a
slightly counter-intuitive way, although higher NT increases estimator precision,
it also make a biased estimator more precise, causing more harm than good. As
such, having a larger number of assets is very useful when T is very large, ensuring
that the estimator is both unbiased and more efficient in the sense of having
a smaller asymptotic standard deviation. It must be noted that increasing NT

beyond a certain number of assets does not lead to any improvement in efficiency.
Looking at the sample distributions of estimators without nuisance param-

eter estimation (CL2), it is encouraging that for both α̂ and β̂ the peak of the
sample distributions is always either on or very close to the real parameter value,
even when T = 100. Similar to the previous simulations, larger T decreases bias
while larger NT leads to higher precision. Clearly, nuisance parameter estimation
undermines the statistical properties of the GARCH panel model greatly when T

is small. As suggested by the Associate Editor, using empirical Bayes methods in
order to improve the estimation of these parameters could be beneficial, given the
simulation results (see, for example, Lindsay (1985) and Liang and Tsou (1992)).
Dealing with the incidental parameter problem is already the subject of another
ongoing project and therefore, we do not focus on this issue further in this study.

It is also interesting that when QMLE is used (NT = 1), even when the true
nuisance parameter is known, the estimators still perform poorly. While nuisance
parameter estimation leads to a significant bias, using true nuisance parameter
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Figure 1. Sample distribution graphs for α̂ (left) and β̂. α = 0.05, β = 0.93,
based on 2,500 replications. CL1 gives the sample distribution for the case
with nuisance parameter estimation, whereas CL2 is the sample distribution
for the case where nuisance parameter estimation is by-passed. Values of
α̂ and β̂ are given in the horizontal axis, while respective frequencies are
given in the vertical axis. Vertical lines are drawn at the true value of each
parameter.

causes very high dispersion. However, remembering that the real issue with
QMLE is that T is too small to adequately model conditional volatility, it is
obvious that knowledge of the true value of the nuisance parameter does not
help.

4. Empirical Analysis

In this section, in addition to CL and QMLE, we consider the MacGyver
(MG) method introduced by Engle (2009). This is another information pooling
method based on “blending” already available estimates of a parameter to obtain
a new estimate of that parameter.

Let {θ̂k}K
k=1 be K different estimates of θ. These may be obtained by using

different methods, models, or data sets. For the case at hand, NT estimates of



320 CAVIT PAKEL, NEIL SHEPHARD AND KEVIN SHEPPARD

θ can be obtained by employing QMLE for each asset in the panel individually.
These estimates are then combined using a “blend function”, b (·), to obtain a
final estimate of θ, θ̂MG = b

(
{θ̂k}K

k=1

)
. Engle (2009) suggests that three obvious

blend functions are the mean, median, and the mean of a trimmed set when the
highest and lowest 5% of the estimates are eliminated. The latter two blending
functions serve the purpose of discarding outliers that could otherwise introduce
bias. In this study, median is used as the blend function (MG-Median).

For the GARCH panel, θ̂i is estimated using two-step estimation: in the first
step, γ̂i is obtained in the same way as for CL; in the second step, θ̂i is estimated
using

θ̂i = argmax
θ∈Θ

1
T

T∑
t=1

log f(yit|Ft−1; θ, γ̂i), i = 1, . . . , NT .

It must be noted that there are several practical issues related to this method.
First, when the sample size is not large enough, optimisation may fail and sim-
ply yield the initial values used for optimisation as the parameter estimates (the
optimisation procedure used for this study starts at pre-specified starting values
and searches for an optimum. If optimisation fails to find an optimum, then the
starting values are given as the parameter estimates). Following Engle (2009),
such cases are discarded and not used in the blend function. Furthermore, when
using the GARCH specification, if α̂ is equal to zero, then β̂ is not identified
and has no interpretation, no matter what its value. Consequently, this study
also analyses the implications of ignoring θ̂ = (α̂, β̂) when α̂ is less than 0.0025.
These issues do not occur rarely. In a simulation analysis not presented here, for
2,500 replications of a GARCH process with 100 observations in each replication,
in more than 1,400 replications estimators failed to converge while around 100
replications produced α̂ = 0. This particular choice of the cut-off value and the
elimination of non-converging cases reflect the ad-hoc nature of MG. Neverthe-
less, the aim of MG is not to have a set of very good estimates, but rather to find
a blend function that yields a good estimate out of a large pool of estimates.

Considering that both CL and MG are based on “pooling” information, an
obvious comparison of interest is that of CL against MG. MG can be considered as
a step between CL and QMLE: similar to CL, it is based on pooling information,
while estimation essentially employs QMLE and not CL.

Another intriguing analysis is the comparison of the information pooling
methods to QMLE, as the assumption that all assets share a common set of
parameters of interest is not necessary for QMLE. CL and MG, on the other
hand, crucially rely on this assumption that is likely to be violated. As far as
empirical performance is concerned, what is also relevant is whether the gains
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from using CL and MG are worth making this restrictive assumption, even when
there may be no apparent reason for it to hold.

Several points have to be mentioned. First of all, neither information pooling
method is likely to explain the data perfectly, even in large-T panels. To start
with, there is no guarantee that some or all of the data follows a GARCH process,
although this model has been found to be very successful in practice. Moreover,
the assumption of a common set of parameters for all assets is not likely to hold.
Be that as it may, the question remains: despite these issues, can the CL and
MG methods attain better forecasting performance through their data-pooling
mechanism?

In light of these points, the questions of interest are whether pooling infor-
mation in an asset panel can improve forecasting performance in samples of any
size, and whether CL can have an advantage over the other methods, especially
in small-T samples where QMLE is expected to perform poorly. The analysis is
conducted using stock-market data from S&P100. A recent procedure due to Gi-
acomini and White (2006) that allows comparison of different methods (such as
the CL and MG methods), as opposed to different models (such as the GARCH
and TARCH models), is used to test equal predictive ability and choose between
methods.

4.1. Methodology

In the analysis, two competing τ -period ahead forecasts obtained at time t,
Ŷ1,t+τ and Ŷ2,t+τ , for a variable of interest, Yt+τ , are under scrutiny. Accuracy of
forecasts are measured using loss functions. “Loss”, in the forecast comparison
sense, occurs due to the distance between the forecast and the true value of the
variable of interest. Formally, the loss due to Ŷt+τ is defined as

Lt+τ

(
Yt+τ , Ŷt+τ

)
. (4.1)

Examples of loss functions used in the literature are many. See Patton (2008)
for a more detailed study of implications of using different loss functions. A
prominent example, used here, is the loss function

QLIKE : Lt+τ (Yt+τ , Ŷt+τ ) = log Ŷt+τ +
Yt+τ

Ŷt+τ

.

A suitable testing framework is due to Giacomini and White (2006) (GW).
Unlike the widely used Diebold-Mariano-West (DMW) framework due to Diebold
and Mariano (1995) and West (1996), the GW test allows for the comparison of
two different methods as opposed to two different models. The Null Hypothesis
is

H0 : E
[
Lt+τ (Yt+τ , ft(β̂1t)) − Lt+τ (Yt+τ , gt(β̂2t))|Gt

]
= 0, (4.2)
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where Gt is an information set at time t and ft(·) and gt(·) are two (not necessarily
different) forecasting models. β̂1t and β̂2t are estimates of parameters of interest
obtained by using two different methods. As evident in (4.2), the GW test allows
for a conditional, as well as an unconditional approach. The latter compares
the average performance of two forecasting methods while the former analyses
whether past information can be used to predict which method will provide a
better forecast for a particular date.

An important feature of volatility is that it is a latent variable and is never
observed, even ex-post. Therefore, a proxy should be used for forecast compari-
son. In this study the squared return, y2

it, is used as proxy, which is a common
choice. It must however be noted that there is now a growing literature sug-
gesting that squared returns may lead to a wrong ranking of forecasts. Instead,
realised volatility is recommended as a better proxy. Very briefly, realised volatil-
ity is the sum of squared high-frequency intra-daily returns. It was formalised
from an econometric viewpoint by Andersen et al. (2001) and Barndorff-Nielsen
and Shephard (2002). See Andersen and Benzoni (2009) for a recent survey.
This is important for the choice of the loss function. Hansen and Lunde (2006)
show that the use of noisy proxies such as y2

it may lead to inconsistent ranking of
volatility models, whereby the empirical ranking may not be the same as the true
ranking. Patton (2008) extends this analysis and focuses on loss functions that
are robust to the choice of the volatility proxy, in the sense that the empirical
ranking implied by those loss functions are the same independent of which proxy
is used. He provides a family of homogeneous and robust loss functions that
contains QLIKE, as well. Furthermore, Patton and Sheppard (2009) provide
a Monte Carlo analysis to compare the power of different loss functions from
this family under the DMW framework using realised volatility as the proxy.
Their results indicate that the QLIKE function has the best power performance.
Motivated by these results, we employ QLIKE only, due to space restrictions.

4.2. Empirical results

The empirical analysis is based on the daily returns for 94 stocks from
S&P100 for the period between 3 March 2000 to 12 January 2008 which pro-
vides 2,200 observations on each stock. Data for six firms has been discarded as
the stocks for these firms were not traded in part of the period considered in the
analysis. These firms are Covidien, Google, Kraft Foods, Mastercard, NYSE Eu-
ronext and Philip Morris International. Data were obtained from DataStream.
The analysis considers one-step ahead forecasts. To cover a variety of cases, dif-
ferent in-sample sizes, m, are considered (in-sample corresponds to the part of
data which is used for estimation of the parameters. Then, n = T −m, where T

is the total sample size, gives the size of the out-of-sample which is the portion
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of the sample that is being forecast). Three different comparisons are analysed:
CL vs MG-Median, CL vs QMLE and MG-Median vs QMLE.

A “test function” is required for the conditional GW test. We employ a test
function which consists of a constant and the previous period’s loss-difference,
namely, ht = (1, ∆Lm,t−1+τ )

′ (this is the same test function used by Giacomini
and White (2006)). It must be mentioned that the choice of a test function could
perhaps be a separate research topic as Giacomini and White (2006) explicitly
mention both the importance of choosing an appropriate test function and the
possible issues due to choosing an irrelevant one). Possible time-independent
difference in the predictive abilities of the two methods at any point in time is
reflected by the constant. Past comparisons of methods can also give an idea
about their relative future performances since a method that has been superior
in the past is more likely to be so in the future, as well. This is reflected by the
past loss difference.

The level of significance for all tests is equal to 5%. Starting values of α

and β for optimisation (ā and b̄, respectively) are generated randomly using
ā + b̄ ∼ U(0.5, 0.99) and ā/(ā + b̄) ∼ U(0.01, 0.3). Lastly, all tests are conducted
on an asset-by-asset basis; that is, comparison of predictive ability is conducted
for each asset individually, using estimators obtained by the three methods. It
is an interesting idea to integrate the GW test into a pooling framework, where
a single test for the whole panel is conducted; this is left for future research.

Table 5 presents results of the conditional and unconditional tests, where
the pool of estimates used to calculate the MG estimator (referred to as Md
henceforth, as median is used as the blend function) contain cases where α̂ ≈ 0.

As mentioned previously, we consider an estimate of α approximately equal to 0 if
α̂ < 0.0025. One might argue that the researcher would not hesitate to eliminate
such cases from the pool, as they imply that β̂ is not identified. However, it must
be remembered that for more complex models, identification conditions will not
be as straight-forward as in our case. In other words, the Md method has the
additional difficulty that the researcher has to characterise cases where a given
estimate should be eliminated from the pool. Therefore, to reflect this issue and
the ad-hoc nature of MG, this analysis does not eliminate θ̂ where α̂ ≈ 0 from
the pool. Results for the situation where such cases are eliminated are presented
in Table 6, in order to illustrate the effect of the elimination procedure.

Table 5 reveals that both conditional and unconditional approaches exhibit
similar patterns. Comparing CL and Md, it is evident that whenever their pre-
dictive abilities can be distinguished, the GW test decides in favour of CL almost
all the time. Results for the same comparison in Table 6 show that excluding
cases where α̂ ≈ 0 from the pool leads to a decrease in the number of rejections
of equal predictive ability. More importantly, in this case, Md is clearly superior
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to CL when m = 250. Clearly, excluding problematic estimates does help Md
to achieve better performance. Neither CL nor QMLE enjoy such a luxury as
neither is based on a pool of estimates. Without much doubt, when m is as
small as 250 both CL and QMLE perform poorly in estimating the parameters
of interest. However, by eliminating the very worst estimates, Md attains better
performance. A parallel improvement in Md’s performance against QMLE can
be observed, as well. Nevertheless, it must be noted that this advantage of MG
crucially depends on the ability to characterise “problematic” cases, which will
be more difficult when using complex models.

Another observation for the comparison between CL and Md is that the
highest number of rejections of equal predictive ability are achieved for m ∈
{500, 750} , while the number of rejections fall (one could claim, abruptly) when
m = 1, 000. There are two messages here. First, it can be argued that as the
in-sample size increases, both methods start to perform equally well, and hence,
it is more difficult to distinguish between them. Second, although it is now more
difficult to distinguish between the two methods, CL still is preferred to Md (see
T =2,200 and m = 1,000).

CL’s performance against QMLE is more ambiguous. Rejections in favour
of CL in percentages increase as m decreases. When m is small, QMLE is not
expected to perform well as the number of observations is not large enough to suc-
cessfully fit conditional volatility. CL, on the other hand, utilises cross-sectional
information, as well, which would explain its higher success rate when m is small.
However, as m increases, CL’s relative superiority over QMLE deteriorates, as
QMLE has more data to estimate the parameters of interest. The advantage of
using either pooling method is the ability to base estimation on a larger number
of observations. However, both CL and MG have an important cost, which is
assuming that parameters of interest are common to all series. CL has an addi-
tional cost, as it will suffer from the incidental parameter issue when m is small.
Interestingly enough, when m is small, CL does not seem to be badly affected by
the incidental parameter issue as it still performs well against QMLE. In other
words, in this particular exercise, the benefits of using the panel structure out-
weigh the damage dealt by the incidental parameter issue and the likely violation
of a restrictive assumption. It is very encouraging that, even when QMLE is ex-
pected to work well (when, for example, m = 1, 000), CL is still preferred to
QMLE more than 50% of the time.

The performance of MG against QMLE is relatively worse compared to that
of CL against QMLE, especially as m decreases. Comparison of Tables 5 and 6
reveals the remarkable effect of removing θ̂ = (α̂, β̂) when α̂ ≈ 0 from the pool.
This leads to a dramatic improvement in Md’s performance against QMLE at
small in-sample sizes. However, it is interesting that even when such cases are
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Table 5. Unconditional and conditional Giacomini-White test results at 5%
level of significance. Based on one-step ahead forecasts obtained by using
the GARCH panel (CL), MacGyver with median as the blend function (Md)
and the Quasi Maximum Likelihood (QMLE) methods. Cases where the
estimates are close to the starting values for optimisation have been excluded
from the pool of estimates used by Md, while cases where α̂ < 0.0025 have
been retained in the pool. Based on daily returns for 94 stocks from S&P100.
T gives the total sample size while m gives the in-sample size, implying that
the out-of-sample size is equal to T −m. For each of the three comparisons,
Rej gives the number of cases (out of a total of 94) where equal predictive
ability is rejected. Columns 4, 6 and 8 show the percentage of these rejections
in favour of CL, CL and Md, respectively. For example, when comparing CL
and QMLE at T = 2, 200 and m = 500, in 24 out of 94 tests of unconditional
predictive ability, the hypothesis of equal predictive ability is rejected, where
75% of these rejections are in favour of CL.

Unconditional
CL vs Md CL vs QMLE Md vs QMLE

T m Rej CL (%) Rej CL (%) Rej Md (%)
2,200 1,000 17 94.12 26 57.69 25 48.00
2,200 750 36 100.00 29 62.07 27 44.44
2,200 500 37 100.00 24 75.00 16 31.25
2,200 250 26 96.15 21 80.95 18 61.11

Conditional
CL vs Md CL vs QMLE Md vs QMLE

T m Rej CL (%) Rej CL (%) Rej Md (%)
2,200 1,000 21 95.24 27 51.85 26 42.31
2,200 750 40 95.00 30 60.00 25 32.00
2,200 500 37 100.00 24 62.50 20 40.00
2,200 250 30 100.00 19 84.21 13 53.85

not eliminated, Md is still doing well against QMLE at m = 250. At first sight,
it might seem strange that an estimator based on a pool of QMLE estimates,
which are expected to be very poor when m = 250, performs distinctively better
than QMLE. However, this is not surprising: the sample distributions of QMLE
estimates at each point in time are so dispersed that although the estimates are
individually very poor in general, their median still delivers a reasonable value,
instead of α̂ = 0.

We finally note that our analysis of 1-week and 2-week ahead forecasts, avail-
able upon request, exhibit a similar pattern.

In conclusion, empirical analysis results suggest that CL delivers better fore-
casting performance than MG at all in-sample sizes, while it stands out as a
good alternative to QMLE even when m is large. Although it can be argued that
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Table 6. Unconditional and conditional Giacomini-White test results at 5%
level of significance. Cases where α̂ < 0.0025 and the estimates are close
to the starting values for optimisation have been excluded from the pool of
estimates used by Md. See Table 5 for more details.

Unconditional
CL vs Md Md vs QMLE

T m Rej CL (%) Rej Md (%)
2,200 1,000 15 93.33 24 45.83
2,200 750 28 100.00 27 48.15
2,200 500 12 91.67 15 60.00
2,200 250 16 6.25 17 94.12

Conditional
CL vs Md Md vs QMLE

T m Rej CL (%) Rej Md (%)
2,200 1,000 17 82.35 25 40.00
2,200 750 32 93.75 26 38.46
2,200 500 14 78.57 18 61.11
2,200 250 13 15.38 15 86.67

MG is not decisively beaten by QMLE either, it is clear that CL’s performance
against QMLE is superior to that of MG. This is an important result. Both
pooling methods are based on the assumption that parameters of interest are
common to all assets. This is almost certainly violated here. However, despite
that, forecast analysis results suggest that CL still has something to offer. This
can be explained by the pooling mechanism of CL which is based on utilising both
temporal and cross-sectional information to obtain a single estimate. MG, on the
other hand, is still based on information in the time-series only and, therefore,
uses observations in a piece-wise fashion, rather than combining all observations
in a single pseudo-likelihood function. Nevertheless, it must be noted that a
better understanding of the empirical performance of CL requires a complete
analysis which is beyond the scope of this study.

5. Conclusion

This paper studied the theoretical and empirical properties of the composite
likelihood (CL) method on the special case of GARCH panels. The MacGyver
(MG) method has also been included in the empirical analysis as it is the only
known alternative information pooling method.

Simulation and empirical analyses reveal that using the panel structure and
CL instead of employing QMLE on a single series delivers better results. Both
methods suffer from the incidental parameter problem when T is small, but the
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CL is much more accurate. These observations are very encouraging as they
imply that CL can successfully estimate conditional volatility using panels where
T is as low as 250. Furthermore, forecast comparison analysis demonstrates that
even when the assets are likely to be characterised by different parameter sets,
CL performs well against QMLE and is not beaten decisively by QMLE even
when the sample size is large.
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