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Abstract: Multistage sampling of family data is a common design in the field of

genetic epidemiology, but appropriate methodologies for analyzing data collected

under this design are still lacking. We propose here a statistical approach based

on the composite likelihood framework. The composite likelihood is a weighted

product of individual likelihoods corresponding to the sampling strata, where the

weights are the inverse sampling probabilities of the families in each stratum. Our

approach is developed for time-to-event data and can handle missing genetic covari-

ates by using an Expectation-Maximization algorithm. A robust variance estimator

is employed to account for the dependence of individuals within families. Our sim-

ulation studies have demonstrated the good properties of our approach in terms

of consistency and efficiency of the genetic relative risk estimate in the presence

of missing genotypes and under different multistage sampling designs. Finally, an

application to a familial study of early-onset breast cancer shows the interest of our

approach. While it confirms the important effect of the genes BRCA1 and BRCA2

in these families, it also shows that incorrect inference can be made about this effect

if the sampling design is not properly taken into account.
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1. Introduction

The concept of multistage sampling is not new in epidemiology and genetic
epidemiology; it has been used for example to investigate the association between
a rare disease and a rare exposure (White (1982)). In familial genetic studies,
multistage sampling permits the allocation of resources to families that are the
most informative for a given objective while allowing population-based inference
using a design-corrected estimator (Whittemore and Halpern (1997)). Typically,
in the first stage, a simple random sample is drawn from the population and
then stratified according to some easily measured covariates. In the subsequent
stages a random subset of previously selected units is sampled for more detailed
observation, with a unit’s sampling probability determined by its covariates as
observed in the previous stages. While multistage designs can be quite efficient in
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certain situations, they also raise numerous statistical challenges. A first difficulty
with multistage design is the estimation of the parameters of interest when the
sampling design is not ignorable. A second problem, that often occurs when
collecting family data, is to deal with missing genetic covariates and correlated
observations within families (or clusters).

The objective of this paper is to estimate a regression coefficient associ-
ated with a known gene mutation when the outcome is the time to an event
and the sampling design is not ignorable. A composite likelihood approach for
time-to-event data is proposed to provide a design-corrected estimator of the
gene mutation effect (Sections 3 and 4). In family studies, mutation status is
often missing for some of the family members. To infer the mutation status in
these individuals, we used an Expectation-Maximizaion (EM) algorithm where
the missing mutation statuses are estimated from their conditional expectation
given the observed ages of onset (or censored times) and mutation statuses of
other family members. Moreover, a robust variance estimator is proposed to
account for the dependence of individuals within families (Section 5). Our simu-
lation study investigates the properties of our proposed EM composite likelihood
approach in the presence of missing genotype data, and under different multistage
sampling strategies (Section 6). In Section 7, we illustrate our approach through
an application to a familial study of early-onset breast cancer. A two-stage de-
sign was used to sample the families and our goal is to estimate the effect of gene
mutations in two genes (BRCA1 and BRCA2) on time to breast cancer. Finally,
we investigate an optimal sampling strategy based on the results obtained from
our application (Section 8) and conclude with possible extensions of this work.

2. The Multistage Sampling Design

Our goal is to estimate a parameter θ in the probability density function of
a random vector of observations y. We assume that the sample space of y can be
divided into K disjoint strata, S1, . . . , SK , and that the sampling units in each
stratum provide different amount of information about θ. An efficient design
could therefore consist in the two stages:

• Stage 1: draw a random sample y1, . . . , yN from the population and only
observe the stratum to which each yi belongs; let the sample be S1

k , k =
1, . . . ,K.

• Stage 2: for each stratum S1
k with sample size Nk, draw a random subsample

of size nk independently with probability pk = P (y ∈ S2
k |y ∈ S1

k), where pk

represents the probability that a unit from the stratum k of the first stage
is selected in the second stage and all units in each stratum are sampled
with the same sampling probability. Observe the y values of the observations
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sampled in the second stage, and denote the sample from the second stage by
S2 = ∪K

k=1S
2
k .

The two-stage design can be generalized to involve more stages. The first two
stages would be similar to those of the two-stage design, except that at Stage
2 we do not observe the y directly but rather the finer substrata they belong
to, and a random sample is drawn from these substrata. This process can be
repeated several times until the last stage in which the y are observed directly.
In practice, however, there could be some loss in efficiency in adding too many
stages and designs with more than three stages are relatively rare, at least in the
field of genetic epidemiology (Whittemore and Halpern (1997)).

A variant of this two-stage design consists of collecting family data in Stage
2. For example, case patients (and sometime population controls) are selected
in the first stage and asked about the prevalence of a disease outcome in their
family and, in the second stage, case patients with or without particular char-
acteristics are subsampled with different sampling probabilities and are used to
obtain extended-family histories. The sampling probability assigned to each fam-
ily could depend on the case patient’s (i.e. the proband’s) genetic risk, age, and
ethnicity and are computed according to some optimality criteria for a particular
question of interest (Whittemore and Halpern (1997)).

Considering that our primary sampling units are families with several indi-
viduals, we denote by nk the number of families sampled in stratum k at Stage 2,
Nk the total number of families in stratum k, and S2

kf a family f (f = 1, ..., nk)
in stratum k sampled from Stage 2. Thus the total sample S2 at Stage 2 can
be expressed as S2 = ∪K

k=1S
2
k = ∪K

k=1 ∪nk
f=1 S2

kf . Assuming that a stratum is
identified for all the primary sampling units, the full likelihood under a variety of
sampling schemes has been shown to be (Lawless, Kalbfleisch, and Wild (1999))

LF (y; θ) =
K∏

k=1

{ nk∏
f=1

Lkf (y; θ)
}

wk(θ)Nk−nk ,

where
Lkf (y; θ) =

∏
i∈S2

kf

f(yi; θ)

is the likelihood of family f in stratum k, i is an individual in this family, and

wk(θ) =
∫

S2
k

Lkf (y; θ)dy

is the sampling probability for the families in stratum k.
Several estimation methods have been proposed to estimate the parame-

ter θ without having to compute the full likelihood LF , and it has been shown
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that some gain in efficiency can be obtained by including information about the
stratum sizes (Lawless, Kalbfleisch, and Wild (1999)). However, in certain situa-
tions it might be difficult to compute the stratum-specific sampling probabilities
wk(θ), and the likelihood method can be sensitive to the misspecification of these
probabilities. Alternatively, some weighted pseudo-likelihood methods have been
proposed for problems involving response-selective observations (Kalbfleisch and
Lawless (1988); Whittemore and Halpern (1997)) and missing data (Little and
Rubin (1987)). The rationale of the weighted pseudo-likelihood approach is to
consider only the completely observed units and weight their contribution in-
versely proportional to their probability of selection (Wild (1991); Whittemore
and Halpern (1997)) to give the following log weighted pseudo-likelihood function

`W (y; θ) =
K∑

k=1

p̃−1
k

nk∑
f=1

log{Lkf (y; θ)},

where p̃k is the estimated sampling probability for family f in stratum k and as-
sumed the same for all the families in this stratum. For basic stratified sampling,
the use of p̃k = nk/Nk provides an unbiased estimation of the parameter θ. For
variable probability sampling, the use of p̃k = pk leads to an unbiased estimator,
but taking p̃k = nk/Nk can yield more efficient estimates (Lawless, Kalbfleisch,
and Wild (1999)).

3. A Composite Likelihood Formulation

The weighted pseudo-likelihood described above can be thought of as a com-
posite likelihood based on independent contributions of each family to the like-
lihood. Composite likelihood has been proposed for estimation involving com-
plex likelihood functions and is obtained by removing some terms in the com-
plex full likelihood with the objective that the removed part is not very infor-
mative for estimating the parameter of interest, and the resulting loss of effi-
ciency remains acceptable (Lindsay (1988)). If we consider a parametric statis-
tical model f(y; θ), y ∈ Y ⊆ Rn, θ ∈ Θ ⊆ Rd, and a set of measurable events
{Ak; k = 1, ...,K}, then a composite likelihood is the weighted product of the
likelihoods corresponding to each single event. The log composite likelihood has
the general form

`C(y; θ) =
K∑

k=1

wk`k(y; θ)

where, in the context of multistage design, the events correspond to the sampling
in the different strata, `k(y; θ) =

∑nk
f=1

∑
i∈S2

kf
log{f(yi; θ)}, and wk = p̃−1

k .
This formulation allows one to use the asymptotic theory developed for the

maximum composite likelihood estimator. In particular, the observations do not
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need to be independent, as originally assumed for weighted pseudo-likelihood
(Wild (1991)), and when they are correlated (i.e. individuals within a family
in our context), a robust variance estimator can be used instead of the naive
variance estimator. The maximum composite likelihood estimator, θ̂, is obtained
by maximizing the log composite likelihood, `C(y; θ), or by solving the composite
score equations U(θ) = 0 with

U(θ) =
K∑

k=1

wkUk(θ) =
K∑

k=1

wk
∂`k(y; θ)

∂θ
.

3.1. Robust variance estimator

As noted in Lindsay (1988) or Varin (2008), the maximum composite like-
lihood estimator θ̂ is consistent and asymptotically normally distributed. The
limiting normal distribution has mean θ and variance matrix

H(θ)−1J(θ)H(θ)−1 ,

where

H(θ) = E

{
∂U(θ)

∂θ

}
and J(θ) = Var {U(θ)} . (3.1)

An empirical estimator for H(θ) arises by dropping the expectation and replacing
the unknown θ with its estimator θ̂,

Ĥ(θ) =
K∑

k=1

wk
∂Uk(θ)

∂θ
|θ=θ̂ ,

and, as we have J(θ) = Var {U(θ)} = E
[
U(θ)U(θ)>

]
, an empirical estimator

for J(θ) at θ̂ is obtained as

Ĵ(θ) =
1
K

K∑
k=1

w2
kUk(θ̂)Uk(θ̂)> .

3.2. Correction for ascertainment

In family-based multistage designs, it is often that some strata are not sam-
pled at all, such as families of unaffected individuals (e.g. control proband) or
families with affected individuals (e.g. case proband) above or below a certain
age at onset, the proband being the individual from whom the family is ascer-
tained. As an example, we consider in our application (see Section 7) a study that
enrolled only case probands under 40 years old. A correction for ascertainment
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should be applied by computing a conditional likelihood where the conditioning
corresponds to the event Af that the proband in family f selected in stage 1
meets certain criteria (Choi, Kopciuk, and Briollais (2008)). We then express
Lf (y; θ) as the product of conditional probabilities of family members observed
for family f given the covariates x and the proband having the event Af as

Lf (y; θ) =
∏

i∈S2
kf

P (yi|xi)
P (yp ∈ Af |xp)

, (3.2)

where index p represents the proband. We give more details about the family-
specific composite likelihood in the next section when the response is the time
to an event.

4. Application To Time to Event Data

In the following we are interested in modeling a time-to-event response, for
example time to cancer, from our two-stage sampling design where we use family
data at the second stage. In this context, design-based estimators have been
proposed for the Cox’s proportional hazard (PH) model (Cox (1972)) by Binder
(1992) and Lin (2000), and recently extended by Boudreau and Lawless (2006)
to stratified and clustered survival data. Boudreau and Lawless (2006) used
a weighted estimating function to obtain a consistent estimator of the regres-
sion parameters, denoted by β. A partial likelihood approach is used when the
sampling design is non-ignorable since the standard likelihood function may not
yield a consistent estimator of β. An additional difficulty in our context is the
correction for ascertainment described above. Because we need to compute a
conditional likelihood to take into account the ascertainment of the families,
we found that it would be challenging to do so in the Cox PH model setting.
Instead, we develop a design-based composite likelihood estimation using a para-
metric model for the ages at onset data. We denote by Ti and xi, respectively,
the time of onset and the vector of covariates for individual i in family f and
stratum k sampled in Stage 2 of the design (i ∈ S2

kf ). We assume that T follows
the Weibull model that has the survival and hazard functions

S(t|x) = e−{λ(t−t0)}ρex>β
,

h(t|x) = λρ{λ(t − t0)}ρ−1ex>β ,

where t0 is the minimum time (age) at which an event can occur, x is a vector of
the covariates of interest, β is a corresponding vector of regression parameters,
and λ and ρ are the scale and shape parameters of the Weibull distribution,
respectively. Hereafter x represents the gene mutation status (with individuals
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carrying the mutation coded 1 and non-carriers coded 0) with β a corresponding
regression parameter.

Consider a response time yi ≥ 0 corresponding to the age at onset ti if indi-
vidual i is affected, or the current age ai otherwise. The likelihood contribution
for an individual i in family f and stratum k follows from (3.2) with

f(yi | xi) = h(ti|xi)δiS(ti|xi)
{

1 − S(ti|xi)
h(ti|xi)S(ti|xi)

}νi

, (4.1)

and P (yp ∈ Af |xp) = 1−S(ap|xp), where δi indicates the affection status, νi = 1
if the age of onset is not reported for affected individual i but only his/her current
age (age at examination) is known, 0 otherwise, and ap and xp denote the age of
examination and mutation status of the proband, respectively.
The log composite likelihood for a family f is

`f (y; θ) =
∑

i∈S2
kf

(δi − νi) log
[
λρ{λ(ti − t0)}ρ−1

]
+

∑
i∈S2

kf

(δi − νi)xiβ

+
∑

i∈S2
kf

(νi − 1){λ(ti − t0)}ρexiβ

+
∑

i∈S2
kf

νi log
[
1 − e−{λ(ti−t0)}ρexiβ

]
− log

[
1 − e−{λ(ap−t0)}ρexpβ

]
. (4.2)

Estimating baseline risk parameters (λ, ρ) from mutation carrier families
might be problematic since noncarrier individuals in these families can exhibit
higher risk than in the general population (Begg (2002)). To circumvent this
problem, we adopted a two-stage estimation procedure where the baseline pa-
rameters are estimated in a first stage using mutation non-carrier families only,
and the β parameter is estimated in a second stage using both mutation carrier
and non-carrier families. Therefore, we considered the parameter β as the param-
eter of interest and the other parameters (λ, ρ) as nuisance parameters. Then,
we estimate the parameter β using a profile likelihood approach by inserting the
estimates of γ = (λ, ρ) into the log composite likelihood function in (4.2) as a
function of β only.

For fixed γ, we find the maximum composite likelihood estimate of β as β̂(γ).
Then, we fix β and estimate γ. By iterating these two steps until convergence, we
obtain maximum profile likelihood estimates β̂ and γ̂. To avoid computational
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complications, assuming that γ is fixed at γ̂, the maximum composite likelihood
estimator β̂ based on two-stage estimation procedure of the profile likelihood has
asymptotic properties of normal distribution with mean β and variance of a form,
H(β)−1J(β)H(β)−1, where H(β) and J(β) are estimated at β̂ for fixed γ̂,

Ĥ(β)=
K∑

k=1

wk

nk∑
f=1

∂Uf{β(γ̂)}
∂β

|β=β̂ and Ĵ(β)=
K∑

k=1

w2
k

nk∑
f=1

Uf{β̂(γ̂)}Uf{β̂(γ̂)}> .

Here, U{β(γ)} and ∂Uf{β(γ)}/∂β represent the first and second derivatives of
the profile log-likelihood with respect to β at a fixed value of γ, respectively;
detailed expressions are presented in Appendix I. The asymptotic normality of
the two-stage estimator was also shown in the context of correlated survival data
in Proposition 3.1 of Andersen (2005). As pointed out by an associate editor,
this variance estimator might underestimate the asymptotic variance; however,
our simulation studies showed little difference between this estimator and the
asymptotic variance estimator.

5. An EM Algorithm for Missing Genotype Covariates

Family data often include some missing information, in particular, miss-
ing genotypes. In our simulation study and data application (e.g. see Sections
6 and 7), we consider situations where mutation statuses are partially missing
in the family. In the presence of missing genotype information, we estimate
the disease risk associated with a known gene mutation in the families. Sup-
pose a vector of genetic covariates gf in family f consist of observed genotypes
gfo and missing genotypes gfm and a vector of time-of-onset responses yf (also
called“phenotypes” in genetics) with no missing data. To infer the unobserved
genotypes in the family, we implement an EM algorithm (Dempster, Laird, and
Rubin (1977)) to estimate the parameters in our composite likelihood approach.
The EM algorithm is an iterative procedure that computes the maximum like-
lihood estimates (MLEs) in the presence of missing data. At each iteration, it
takes two steps–the expectation and maximization steps. In our situation, the
expectation of the complete data (yf , gf ) is taken with respect to the conditional
distribution of missing genotypes gfm given observed data (yf , gfo), and current
estimates of θ and then the parameter estimates are updated by maximizing the
likelihood function using the estimate of missing data in the expectation step.
These steps iterate until convergence to obtain the MLEs, since the algorithm is
guaranteed to increase the likelihood at each iteration. The following details the
application of the EM algorithm for our proposed composite likelihood approach.
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E-step:
Let θ be the vector of unknown parameters and θ(j) denote their values at the end
of the jth iteration. The Q function is obtained as the conditional expectation
of the log-likelihood function given the observed information (yf , gfo) at θ(j),
f = 1, . . . , n:

Q(θ|θ(j)) =
K∑

k=1

wk

nk∑
f=1

Qf (θ|θ(j)),

Qf (θ|θ(j)) = Eθ(j) [`f (θ)|yf , gfo]

=
∑

i∈S2
kf

(δi − νi)(log[λρ{λ(ti − t0)}ρ−1] + βEθ(j) [gim|yf , gfo])

+
∑

i∈S2
kf

(νi − 1){λ(ti − t0)}ρEθ(j)

[
ex>

i β |yf , gfo

]
+

∑
i∈S2

kf

νiEθ(j)

[
log(1 − e−{λ(ti−t0)}ρexiβ

)|yf , gfo

]
− log(1 − e−{λ(ap−t0)}ρexpβ

).

Thus, the unobserved genotype gim for individual i in family f comes into the
complete data log-likelihood using the conditional expectation given its observed
responses and genotypes in the family, which can be expressed as

Eθ(j) [gim|yf , gfo]

= Pθ(j)(gim = 1|yf , gfo)

=
Pθ(j)(yf |gim = 1, gfo)P (gim = 1|gfo)

Pθ(j)(yf |gim = 1)P (gim = 1|gfo) + Pθ(j)(yf |gim = 0)P (gim = 0|gfo)
,

where P (gim|gfo) is the conditional probability of mutation carrier status of i

given the observed genotypes in family f , and obtained based on Mendelian
transmission probabilities for individuals with parents in the family or based on
the mutation frequency in the population for individuals without parents in the
family, and Pθ(j)(yf |gim, gfo) has the form given in (4.1). In addition,

Eθ(j) [h(gim)|yf , gfo] = h(gim = 1)Pθ(j)(gim = 1|yf , gfo)

+h(gim = 0)Pθ(j)(gim = 0|yf , gfo),

where h(x) is any function of x.

M-step: θ(j+1) is found by maximizing Q(θ|θ(j)) with respect to θ.
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The maximum composite likelihood estimates are obtained by iterating these
two steps until convergence to update at each iteration the parameter values that
maximize the expectation of the complete data log-likelihood.

5.1. Robust variance estimators for the EM algorithm

The variance estimator for composite likelihood should be modified for the
facts that missing genotypes have been estimated using the EM algorithm. The
observed information matrix in the EM algorithm was suggested by Louis (1982).
Let U(θ) and B(θ) denote the score vector and the negative of the associated
matrix of second derivatives for the complete data, respectively, and U∗(θ) and
B∗(θ) be the same vector and matrix for the incomplete data. Then the observed
information matrix can be expressed as

Io(θ) = Eθ[B(θ)|go, yo] − Eθ[U(θ)U>(θ)|go, yo] + U∗(θ)U∗>(θ), (5.1)

where go and yo denote the vectors of observed genotypes and responses from
data. At the maximum composite likelihood estimate of θ, because of the con-
vergence of the EM algorithm, U∗ is zero. Thus the observed information matrix
can be obtained as the first two terms on the right hand side of (5.1) that arise
from the complete data log-likelihood analysis. The first term is evaluated as

Eθ[B(θ)|go, yo] = Eθ

[
− ∂2`(θ)

∂θ∂θ>
|go, yo

]
.

We used the modified observed information matrix from the EM algorithm
to get the variance estimator for the composite likelihood,

Var(θ) = Io(θ)
−1J(θ)Io(θ)

−1,

where J(θ) is the expected information matrix which can be also written in terms
of the variance of the score vector for the conditional distribution given observed
data as

J(θ) = Var[U(θ)]

= Var[E{U(θ)|go, yo}] + E[Var{U(θ)|g0, yo}]
= Eθ[U(θ)U>(θ)|go, yo]

=
K∑

k=1

w2
k

nk∑
f=1

Eθ

[
Uf (θ)Uf (θ)>|go, yo

]
,

and Io is the observed information matrix obtained from the EM algorithm, which
can be expressed as Io(θ) = Eθ[B(θ)|go, yo] − J(θ).
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Thus, the robust variance of θ̂ can be estimated by

V̂ar(θ̂) = Io(θ̂)
−1

J(θ̂)Io(θ̂)
−1

.

Recall that this robust variance estimator can also account for familial corre-
lation since we did not model explicitly the dependency between family members
not due to the presence of a major gene.

5.2. Statistical properties

It has been recently shown that the EM algorithm for composite likelihood
retains the important theoretical properties of the classical full likelihood EM al-
gorithm (Gao and Song (2009)). These properties are (i) the proposed EM algo-
rithm for composite likelihood retains the ascent property (i.e. the log-likelihood
of the observed data is non-decreasing over the sequence of updated estimates
β(r)), (ii) it is a fixed point algorithm converging to a stationary point, and (iii)
the convergence rate of the new algorithm depends on the curvature of the com-
posite likelihood function surface. In addition, we prove in Appendix II that
the parameter estimator is consistent given our specific ascertainment-corrected
likelihood function for family data. Note that this consistency is different from
algorithmic convergence of EM algorithm proved by Gao and Song (2009).

6. Simulation Study

We performed Monte Carlo simulations to investigate the properties of our
novel EM composite likelihood approach, especially the bias and efficiency in the
presence of missing genotype information and under different multistage sampling
strategies. We considered a single stage sampling (no oversampling involved) and
two 2-stage sampling designs where high-risk (HR) families were oversampled
compared to low-risk (LR) families.

6.1. Family data generation

We generated families with three generations following the principle de-
scribed in Choi, Kopciuk, and Briollais (2008). In brief, family members’ ages
at examination were first generated using a normal distribution with mean age
65 for the first generation and 45 for the second generation, with variance fixed
at 2.5 years for both. The third generation had an average of 20 years difference
with variance 1 year from the second generation. To generate the genotypes,
the proband’s genotype of a major gene was determined conditional on her/his
affection status, assuming Hardy-Weinberg equilibrium (HWE) with fixed pop-
ulation allele frequencies. The proband was required to be affected by disease
before his/her age at examination. Given the proband’s genotypes, the genotypes
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of the other family members were then determined using HWE and Mendelian
transmission probabilities calculated with Bayes’ formula. Once we simulated
the age at examination and genotype information for all family members, the
time-to-onset of individual i was then simulated from the Cox’s PH model with
Weibull baseline,

h(ti|gi) = h0(ti) exp(βxi),

where xi indicates if the individual i is a carrier of disease mutation gene, and
the baseline hazard was assumed to follow the Weibull distribution with h0(t) =
λρ{λ(t − 20)}ρ−1.

The proband’s age at onset was generated conditioning on the fact that the
proband was affected before his(her) age at examination, ap. For the rest of
family members, their times to onset were generated unconditionally. We also
assumed the minimum age at onset was 20 years of age and the maximum age
for followup was 90 years of age. Finally, the affection status, δi, for individual
i was determined by comparing the age at onset, ti, and age at examination, ai:
δi = 1 if ti < ai, and 0 otherwise.

6.2. Simulation study design

Generating ages of onset data was based on a Weibull distribution with scale
(λ) and shape (ρ) parameters set at 3.4 and 0.01, which leads to a cumulative
risk of 9% in the non-carrier group by age 70. These parameters were close to
those observed in our data analysis (See Section 7 below). The β coefficient for
the major gene effect varied between 1 and 3, and the missing genotype rates
considered were 0%, 10%, 25% and 50%.

Three sampling designs were considered: a single stage design with no over-
sampling, which corresponds to a proportion of high-risk families of 15% (design
1), and two 2-stage sampling designs with oversampling of high-risk families
whose proportion was increased to 30% (design 2) and 50% (design 3), respec-
tively, where high risk families are defined as having two or more affected indi-
viduals. For each choice of log genetic relative risk (given by β), we fixed the
minor allele frequency of the major gene in order to have the same proportion of
high risk families. The allele frequency was set at 1%, 0.4%, 0.15%, 0.07%, and
0.03% for β=1, 1.5, 2, 2.5, and 3, respectively, corresponding to 15% of high risk
families in the one-stage design. For the sampling design with 30% and 50% of
high risk families, we sampled all high risk families with probability 1 and the
low risk families with probability 41% and 18%, respectively. For each parame-
ter combination, we performed runs of 500 simulations, each run including 1,000
families, and obtained the maximum composite likelihood estimates based on our
proposed EM composite likelihood approach.
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Table 1. Accuracy and precision of the EM composite likelihood estimation
of log relative risk (β) of the major gene effect subject to various missing
genotype rates in the a single stage design (no oversampling).

Allele True 0% Missing 10% Missing 25% Missing 50% Missing
Freq. β Bias SE1 MSE2 Bias SE MSE Bias SE MSE Bias SE MSE
1% 1.00 0.01 0.30 0.09 0.01 0.33 0.11 0.01 0.42 0.17 0.00 0.64 0.41
0.4% 1.50 0.01 0.31 0.10 0.00 0.34 0.12 -0.01 0.43 0.18 0.01 0.67 0.45
0.15% 2.00 0.02 0.34 0.11 0.01 0.37 0.14 0.02 0.46 0.21 0.03 0.68 0.46
0.07% 2.50 0.03 0.33 0.11 0.03 0.36 0.13 0.03 0.46 0.22 0.04 0.69 0.47
0.03% 3.00 0.03 0.34 0.12 0.03 0.38 0.14 0.04 0.47 0.23 0.05 0.87 0.75
1 robust standard error
2 mean square error

6.3. Simulation results

The results of our simulation study are summarized in Table 1 for the sin-
gle stage sampling and in Table 2 for the 2-stage sampling designs, where we
present the average bias, the robust standard error (SE), and the mean square
error (MSE) of the log relative risk (β) of the major gene for each simulated
scenario. For the 2-stage sampling designs, we also compare the design-corrected
and uncorrected estimates in terms of bias and precision in Table 2.

For the single stage sampling design, displayed in Table 1, the average bias
was negligible (absolute value less than 0.05) regardless of the gene effect and
missing rate considered; the magnitude of the bias was always much smaller
than the standard error. As we would expect, the precision of the parameter β

increased (standard error decreased) with the allele frequency and inversely with
the genetic effect and the proportion of missing data.

For the 2-stage sampling designs, shown in Table 2, our design-corrected
estimates outperformed the design-uncorrected estimates in accuracy. The mag-
nitudes of the bias for the design-corrected estimates were almost negligible while
the design-uncorrected estimates were subject to a severe bias and appeared to
overestimate β in most situations. The standard error of the design-corrected
estimate increased with the genetic risk effect except in a few cases correspond-
ing to a high rate of missing data and large β values. We also observed a trend
toward larger standard errors with higher proportion of missing genotypes in the
family, as expected, and this remained true for the various values of β and the
different sampling designs. This pattern of SEs was also reflected in the MSE
values. The MSE measures the tradeoff between bias and precision, defined as
Var(β̂) + Bias(β̂, β)2 where Bias(β̂, β) = β̂ − β. In most situations, the MSE
values increased with the missing rate of genotypes and the log genetic risk effect
(β). In terms of design efficiency, we noticed that both the MSE values and
SE estimates were slightly larger in design 3 (50% HR families) than in design
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Table 2. Comparison of the design-corrected and uncorrected estimates of log
relative risk (β) of the major gene effect subject to various missing genotype
rates in the multistage sampling designs.

HR True 0% Missing 10% Missing 25% Missing 50% Missing

families β Design Bias SE1 MSE2 Bias SE MSE Bias SE MSE Bias SE MSE

30% 1.00 Corr 0.01 0.23 0.05 0.02 0.26 0.07 0.02 0.34 0.11 0.03 0.57 0.33

1.00 Uncorr 0.69 0.21 0.73 0.23 0.81 0.28 0.92 0.40

1.50 Corr 0.02 0.25 0.06 0.02 0.28 0.08 0.01 0.37 0.14 0.02 0.65 0.43

1.50 Uncorr 0.63 0.21 0.64 0.23 0.68 0.28 0.76 0.39

2.00 Corr 0.04 0.28 0.08 0.04 0.32 0.10 0.03 0.42 0.18 0.04 0.80 0.65

2.00 Uncorr 0.55 0.22 0.56 0.24 0.58 0.29 0.61 0.40

2.50 Corr 0.02 0.29 0.08 0.03 0.32 0.10 0.04 0.42 0.18 0.04 0.81 0.66

2.50 Uncorr 0.41 0.21 0.41 0.23 0.42 0.27 0.44 0.38

3.00 Corr 0.07 0.30 0.09 0.05 0.33 0.11 0.08 0.41 0.17 0.04 0.66 0.44

3.00 Uncorr 0.31 0.22 0.30 0.23 0.30 0.28 0.29 0.38

50% 1.00 Corr 0.04 0.21 0.05 0.03 0.25 0.06 0.05 0.38 0.15 0.05 1.33 1.78

1.00 Uncorr 1.18 0.16 1.24 0.17 1.36 0.20 1.54 0.26

1.50 Corr 0.04 0.24 0.06 0.04 0.29 0.09 0.03 0.49 0.24 0.04 1.91 3.65

1.50 Uncorr 1.05 0.16 1.07 0.17 1.13 0.20 1.22 0.26

2.00 Corr 0.05 0.28 0.08 0.06 0.34 0.12 0.05 0.62 0.39 0.06 1.72 2.95

2.00 Uncorr 0.87 0.16 0.88 0.17 0.90 0.20 0.93 0.27

2.50 Corr 0.04 0.30 0.09 0.04 0.36 0.13 0.06 0.66 0.44 0.06 1.12 1.26

2.50 Uncorr 0.64 0.16 0.64 0.17 0.64 0.20 0.65 0.26

3.00 Corr 0.06 0.31 0.10 0.06 0.35 0.12 0.07 0.49 0.24 0.10 0.68 0.47

3.00 Uncorr 0.42 0.16 0.42 0.17 0.41 0.20 0.39 0.28
1 robust standard error
2 mean square error

Table 3. The asymptotic relative efficiency of the two multistage designs
compared to the single stage design for estimating log relative risk β

30% HR families 50% HR families
β 1 1.5 2 2.5 3 1 1.5 2 2.5 3

0% missing 1.75 1.59 1.46 1.31 1.32 2.09 1.72 1.44 1.21 1.19
10% missing 1.69 1.52 1.35 1.27 1.32 1.82 1.41 1.21 1.03 1.20
25% missing 1.52 1.32 1.20 1.22 1.35 1.21 0.76 0.55 0.50 0.93
50% missing 1.25 1.05 0.72 0.72 1.73 0.23 0.12 0.16 0.37 1.62

2 (30% HR families), especially when the samples involved a large amount of
missing genotypes.

Based on these results, we further studied the relative performance of our
three different designs based on their asymptotic relative efficiency (ARE). The
ARE of one design A1 to another A0 is given by the ratio of the inverse asymptotic
variances of the parameter β. Here, we evaluated the relative efficiencies of
designs 2 and 3 compared to design 1. Our results clearly indicated that the
ARE depended on the genetic model considered and the proportion of missing
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genotypes (Table 3). More specifically, with no missing genotype data, the two
2-stage sampling designs provided more efficiency than the single stage design.
Compared to each other, the relative efficiency of the 2-stage designs varied with
the value of β. For genetic models with β lower than 2.0, a balanced design
with 50% HR and 50% LR families was the best strategy; for β higher than 2.0,
sampling 30% of HR and 70% of LR families improved the accuracy of β̂. In the
presence of missing genotypes, the pattern of AREs became more complicated.
With 10% and 25% of missing genotype data, design 2 was almost always the most
efficient; with 50% missing genotype data, the general pattern became unclear.
This reflects the difficulty in making inference about β in that situation, as clearly
illustrated by the larger SEs.

7. Application to an Early-Onset Breast Cancer Study

We now show an application of our approach to a family study of early-onset
breast cancer among BRCA1/2 mutation carriers. The goal is to estimate the
genetic relative risk (GRR) associated with mutations in the BRCA1 and BRCA2
genes. The family data were collected from three population-based breast cancer
family registries (Ontario, Northern California, and Australia) as a part of the
NCI-funded Breast Cancer Family Registries (Breast CRF) initiatives (John et
al. (2004)). The Ontario and Northern California registries used a two-stage
sampling design while the Australian registry used a one-stage design. In the
first stage, affected probands were randomly selected from the cancer registries
and in the second stage, probands and their relatives were sampled with different
sampling probabilities depending on their family history, ethnic origin, and age.
The sampling criteria can be summarized into two categories: high risk and low
risk, and only the low risk families had sampling probabilities lower than one
(John et al. (2004)). In this study we focus only on the early breast cancer
families whose probands were affected before the age 40.

7.1 The data

A total of 1,505 early breast cancer families was identified by the three reg-
istries but only 974 of them with a known mutation status for either BRCA1 or
BRCA2 were used in our analyses. For BRCA1 analysis, we used 924 families
(including 98 mutation positive and 826 mutation negative families) after exclu-
sion of the BRCA2 positive families in order to remove any possible confounding
in the baseline risk estimation. This number breaks down into 334, 248, and 342
families from Australia, Ontario, and Northern California, respectively. Simi-
larly, 876 families were used for BRCA2 analysis (including 50 mutation positive
and 826 mutation negative families). This number breaks down into 321, 225,
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and 330 families from Australia, Ontario, and Northern California, respectively,
after exclusion of the BRCA1 positive families. The estimation of the baseline
survivor function was based on the 826 BRCA1 and BRCA2 negative families.

We recall that for basic stratified sampling or variable probability sampling,
the use of p̃k = nk/Nk provides an efficient estimation of the parameter of inter-
est θ. However, because we did not have a good estimate of Nk we used p̃k = pk,
where the pk were known and fixed by design. The Ontario and Northern Califor-
nia registries under-sampled the low-risk families, less informative in the study of
the segregation of BRCA1/2 mutations, and those families were assigned a sam-
pling probability lower than 1. All the high-risk families in these two registries
had sampling probabilities of 1, as did all families in the Australian registry.
The low-risk families consisted of 13 out of 248 families in the Ontario registry
with inclusion probability of 0.25, and 56 out of 342 families in the Northern
California registry, with sampling probabilities between 0.046 and 0.416. These
sampling probabilities were meant to achieve some optimality criteria regard-
ing the estimation of the genetic effect of interest (Siegmund, Whittemore, and
Thomas (1999); John et al. (2004)). The inverse sampling probabilities were used
as weights in the composite likelihood expression to compute a design-corrected
GRR.

7.2. The Statistical analyses

We compared the design-corrected and uncorrected estimates of the log GRR
associated with BRCA1 or BRCA2 mutations in the presence of missing geno-
types. For the design-corrected GRR estimates, the robust variance accounts for
the design effect and the use of family data. For the design-uncorrected GRR,
variance estimates were calculated based on both the naive variance estimator as-
suming independent observations and the robust variance estimator. The results
are summarized in Table 4.

The log GRRs of BRCA1 gene mutation associated with early onset breast
cancer were estimated at 1.92 and 1.76 with and without design correction, re-
spectively. The corresponding standard error estimates were 0.45 (robust SE)
with design correction and 1.14 (robust SE) and 0.23 (naive SE, based on the
second derivative of the pseudo loglikelihood) when no design correction was ap-
plied. The estimates of the log GRRs associated with BRCA2 were 1.90 and
1.77 with and without design correction and the corresponding robust standard
errors were 0.62 and 2.13, respectively, while the naive estimator was 0.24.

These results confirmed the important role of the genes BRCA1 and BRCA2
in early-onset breast cancer and gave an estimate of their effect size in a large
sample of families. From a methodological point of view, they also showed that
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Table 4. Estimates of the log genetic relative risk (GRR) and corresponding
standard error (SE) for BRCA1 and BRCA2 gene mutations associated with
early-onset breast cancer.

Sampling Design BRCA1 BRCA2
No Design Correction 1.76 1.77

Robust SE (1.14) (2.13)
Naive SE (0.23) (0.24)

Design Corrected 1.92 1.90
Robust SE (0.45) (0.62)

assuming an ignorable sampling design can lead to both biased estimates and
underestimation of the standard errors, as also shown in our simulations, and
therefore wrong hypothesis testing results. The naive SE estimator of the design-
uncorrected analysis in Table 4 clearly underestimated the robust SE of the
design-corrected analysis. Overall, we found that BRCA1 mutation appeared
to have slightly higher relative risk than BRCA2 for early-onset breast cancer
(β̂=1.92 for BRCA1, 1.90 for BRCA2). The robust variance estimates played
two important roles in our data analysis, first taking into account the sampling
design and second, the residual familial correlation not due to BRCA1/2 gene
mutations.

8. Design Optimality

To construct an optimal design we first determine some optimal weights for
each stratum and then decide the optimal sample sizes accordingly. The optimal
weighting problem was discussed by Lindsay (1988) who obtained optimal weights
in a way that maximizes the information over a class of estimating functions. Let
w be the vector of weights, S the vector of component scores, and U be the score
function based on the full likelihood. Then, the optimal weights satisfy

minwEβ(U − w>S)2,

and are given by
wopt = [Var(S)]−1E(US),

with E(US) = E(S2), where S2 denotes the vector whose elements are the
squared elements of S, and Var(S) is a block matrix where the size of each
block depends on the size of the stratum.

Consider the problem of determining the optimal weights for estimating the
GRR associated with BRCA1 mutations. As in our data setting, the optimal
weights were determined separately for the Ontario and Northern California reg-
istries, assuming that each registry used only two sampling strata (high-risk and
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low-risk families) with high-risk families sampled with probability 1. The Aus-
tralian registry, which used only a one-stage design, was not considered for this
problem. The optimal sampling weights for the strata in each registry are pro-
portional to the variance of the GRR estimate in each stratum (see the definition
of wopt above). The robust variances for the GRR estimates in high-risk and
low-risk families were 4.04 and 1.12, respectively, in the Ontario registry and
0.38 and 0.28 in the Northern California registry. As the sampling probabilities
are inversely proportional to these variances, the sampling probability of one for
the high-risk families leads to a sampling probability of the low-risk families of
0.28 in the Ontario registry and 0.72 in Northern California. For Ontario, this
was very close to the actual sampling probability but, for the Northern Califor-
nia registry, sampling more low-risk families could have increased the efficiency of
the BRCA1 GRR estimate. The reason could be that low-risk families contribute
to the estimation of the baseline survival function and, because it is correlated
with the GRR, they also contribute to the GRR efficiency (Choi, Kopciuk, and
Briollais (2008)).

9. Concluding Remarks

Our work shows the interest of the composite likelihood framework for ana-
lyzing data collected under a multistage sampling design. This is to our knowl-
edge the first such application. Using an appropriate weighting of individual
composite likelihoods corresponding to the different sampling strata allows one
to obtain consistent parameter estimates while the use of a robust variance es-
timator provides an advantageous way of accounting for the use of family data
and sampling design. To model time to onset data, we used a parametric model
which offers some flexibility in correcting for the ascertainment bias of the fam-
ilies, a well-known problem in genetic epidemiological studies (Choi, Kopciuk,
and Briollais (2008)). A discussion about optimal weights is also provided. Fi-
nally, the composite likelihood framework is extended through the use of an EM
algorithm to account for missing genetic covariates. The composite likelihood
methodology has also been used in family studies where the family likelihood is
decomposed into a product over pairs of relatives where each pair has a weight
that depends only on the family size (Andersen (2004)). The likelihood has the
form

`C(y; θ) =
n∑

j=1

wj

∑
(i,h)∈Gj

`ih(y; θ),

where Gj represents the set of possible pairs for family j, `ih(y; θ) is the log-
likelihood for a pair (i, h) in family j, and wj is a weight that depends on the
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family size. The log-likelihood for a pair of relatives can be specified with a
copula function for paired survival data (Andersen (2004); Choi and Matthews
(2005)). This approach could lead to more efficient estimation than our method
because it models directly the association between family members. In our case,
we do not explicitly model association within families but used a robust variance
estimator instead. Our method can be extended to include the estimation of
some additional residual familial correlations besides the effects of BRCA1 and
BRCA2. We have recently proposed various likelihood formulations using gamma
frailty models in the context of familial studies that could account for familial
residual correlations (Choi and Briollais (2010)). In particular, a pairwise likeli-
hood formulation that we proposed could be combined with Andersen’s pairwise
composite likelihood and lead to a more general framework to analyze family
data under a multistage design. We are also planning to expand our work to es-
timate the baseline hazard function parameters jointly with the genetic relative
risk parameters, so that cumulative risks associated with specific gene mutations
could be estimated under our approach.

Finally, our results confirm the important role of the genes BRCA1 and
BRCA2 in early-onset breast cancer families. Some additional results also showed
evidence for a possible additional major gene besides BRCA1 and BRCA2 in
these families, but these results need some further confirmation. Also we cannot
exclude that the cumulative risks associated with BRCA1 and BRCA2 modified
by other genetic or non-genetic risk factors, however these risk factors are still
not very well known (Antoniou and Chevenix-Trench (2010)). The emergence of
genome-wide association studies raises some hope that common genetic variants
could be identified as modifiers of BRCA1 and BRCA2 (Antoniou and Chevenix-
Trench (2010)) and statistical approaches such as the one proposed here could
help in this investigation when data are collected under a multistage design.
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Appendix I

The first and second derivatives of the profile log-likelihood, based on (4.2),
with respect to β at a fixed value of γ are respectively,

U{β(γ)} =
K∑

k=1

wk

nk∑
f=1

Uf{β(γ)} =
K∑

k=1

wk

nk∑
f=1

∂`f (y; θ)
∂β

,

where

Uf{β(γ)} =
∑

i∈S2
kf

(δi − νi)xi

+
∑

i∈S2
kf

(νi − 1){λ(ti − t0)}ρex>
i βxi

+
∑

i∈S2
kf

νi{λ(ti − t0)}ρex>
i βxie

−{λ(ti−t0)}ρex>i β

1 − e−{λ(ti−t0)}ρex>
i

β

−{λ(ap − t0)}ρex>
p βxpe

−{λ(ap−t0)}ρe
x>p β

1 − e−{λ(ap−t0)}ρex>p β
,

∂2`(β(γ))
∂β∂β> =

K∑
k=1

wk

nk∑
f=1

∂Uf{β(γ)}
∂β

,

∂Uf{β(γ)}
∂β

=
∑

i∈S2
kf

(νi − 1){λ(ti − t0)}ρex>
i βxix

>
i

+
∑

i∈S2
kf

νiA

[1 − e−{λ(ti−t0)}ρex>
i

β
]2

− B

[1 − e−{λ(ap−t0)}ρex>p β
]2

,

A = {λ(ti − t0)}ρ0xixi
>ex>

i βe−{λ(ti−t0)}ρex>i β

×

[1 − {λ(ti − t0)}ρex>
i β − e−{λ(ti−t0)}ρex>i β

],

B = {λ(ap − t0)}ρxpx
>
p ex>

p βe−{λ(ap−t0)}ρe
x>p β

×

[1 − {λ(ap − t0)}ρex>
p β − e−{λ(ap−t0)}ρe

x>p β

].
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Appendix II

We show that the score function of our proposed composite likelihood is un-
biased under the usual regularity conditions. Therefore, the maximum composite
likelihood estimator is still consistent for the true parameter.

We rewrite our log ascertainment-corrected likelihood function derived from
(3.2) into two parts for non-probands and probands. Let i index the non-probands
and p index the probands. Then the log composite likelihood function for the
observed data y can be written, assuming y’s are independent given genotypes
G, as

`(θ; y) =
∑

i

wi {δi log f(yi|Gi) + (1 − δi) log S(yi|Gi)} +
∑

p

wp log
{ f(ap|Gp)

F (ap|Gp)

}
,

where f(y|G), F (y|G), and S(y|G) are the density, cumulative density, and sur-
vivor functions of response time y given genotype G, respectively, w represents
the weight and ap represents the age at examination for proband as probands
were affected before their ages at examination.

We let U(θ; y) = ∂`(θ; y)/∂θ be the score statistic based on the observed
data y. In the presence of missing genotypes, the conditional expectation of the
score statistic is obtained given the observed data y, as

Eθ[U(θ; y)] = Eθ

[
∂

∂θ
`(θ; y)

]
=

∑
i

{
wiδiEθ

[
∂

∂θ
log f(yi|Gi)

]
+ wi(1 − δi)Eθ

[
∂

∂θ
log S(yi|Gi)

]}
+

∑
p

wp

{
Eθ

[
∂

∂θ
log f(ap|Gp)

]
− Eθ

[
∂

∂θ
log F (ap|Gp)

]}
.

We show that Eθ[U(θ; y)] = 0 at the composite MLE using the facts that

Eθ

[
∂

∂θ
log f(yi|Gi)

]
= 0,

Eθ

[
∂

∂θ
log f(Yi|Gi)|Yi > zi

]
=

∫ ∞

zi

∂
∂θf(yi|G)
f(yi|G)

f(yi|Gi)
S(zi|Gi)

dyi =
∂
∂θS(zi|Gi)
S(zi|Gi)

=
∂

∂θ
log S(zi|Gi),

Eθ

[
∂

∂θ
log S(zi|Gi)

]
= 0,

Eθ

[
∂

∂θ
log f(yp|Gp)|Yp < ap

]
=

∫ ap

∞

∂
∂θf(yp|Gp)
f(yp|Gp)

f(yp|Gp)
F (ap|Gp)

dyp =
∂
∂θF (ap|Gp)
F (ap|Gp)
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=
∂

∂θ
log F (ap|Gp),

Eθ

[
Eθ

[
∂

∂θ
log f(yp|Gp)|Yp <ap

]]
= Eθ

[
∂

∂θ
log F (ap|Gp)

]
,

Eθ

[
∂

∂θ
log f(yp|Gp)

]
= Eθ

[
∂

∂θ
log F (ap|Gp)

]
.

The results follow on interchanging the operations of expectation and dif-
ferentiation. It is assumed in the above that regularity conditions hold for this
interchange.
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