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Abstract: The Lasso is an attractive approach to variable selection in sparse, high-

dimensional regression models. Much work has been done to study the selection

and estimation properties of the Lasso in the context of least squares regression.

However, the least squares based method is sensitive to outliers. An alternative

to the least squares method is the least absolute deviations (LAD) method which

is robust to outliers in the responses. In this paper, we study the selection and

estimation properties of the Lasso in LAD regression. We provide sufficient con-

ditions under which the LAD-Lasso is estimation or selection consistent in sparse,

high-dimensional settings. We use simulation studies to evaluate the performance

of the LAD-Lasso, and compare the proposed method with the LS-Lasso in a range

of generating models.
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1. Introduction

Consider a linear regression model

yi =
p∑

j=1

xijβj + εi, i = 1, . . . , n, (1.1)

where yi is the response variable, xij ’s are covariates or design variables, and εi

is the error term. Let β = (β1, . . . , βp)′. The LAD-Lasso estimator is the value
β̂n that minimizes the criterion

Ln(β) =
n∑

i=1

|yi −
p∑

j=1

xijβj | + λn

p∑
j=1

|βj |, (1.2)

where λn is a penalty parameter. We are interested in the statistical properties
of β̂n in sparse, high-dimensional settings. We provide conditions under which
β̂n is estimation consistent and/or variable-selection consistent.

High-dimensional data arise in many important applications. For example, in
studies involving microarray gene expression data, the total number of covariates
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p is much larger than sample size n, but the number of important covariates
is typically smaller than n. Penalized methods have emerged as effective in
analyzing such data. A popular approach is the Lasso (Tibshirani (1996)) that
uses the `1 penalty (Chen and Donoho (1995)). This method was proposed in the
context of least squares (LS) regression and likelihood estimation in generalized
linear models, but it is conceptually straightforward to apply the `1 penalty to
other models, such as LAD regression.

LAD regression is an interesting and robust alternative to the LS method,
which is known to be sensitive to outliers. There is a large body of literature
on the theoretical properties of and computational methods for the LAD es-
timators (see e.g., Bassett and Koenker (1978); Koenker and Bassett (1978);
Pollard (1991); Portnoy and Koenker (1997)). These studies have focused on the
“small p, large n” settings. Several studies have investigated the properties of
M-estimators with a divergent number of covariates (Huber (1981) and Portnoy
(1984, 1985)). In particular, Portnoy (1984, 1985) studied both the consistency
and the asymptotic normality of a class of M-estimators under certain conditions
on the growth rate of p as a function n. However, Portnoy did not consider
penalized regression or selection of variables in sparse models.

Recently there has been much work on least squares (LS) regression with
the Lasso. Many interesting results have been obtained regarding to its variable
selection, estimation, and prediction properties in both “small p, large n” and
“large p, small n” settings. Examples include Knight and Fu (2000); Greenshtein
and Ritov (2004); Leng, Lin, and Wahba (2006); Meinshausen and Bühlmann
(2006); Zhao and Yu (2006); Meinshausen and Yu (2009); van de Geer (2008);
and Zhang and Huang (2008), among others. In particular, van de Geer (2008)
studied the Lasso in high-dimensional generalized linear models. She obtained
results on the `1 error of the Lasso estimator by focusing on prediction error.
Zhang and Huang (2008) introduced a sparse Riesz condition on the correlation
of designed covariates. They showed that the LS-Lasso selects a model of the
right order of dimensionality, controls the bias of the selected model at a level
determined by the contributions of small regression coefficients and threshold
bias, and selects all coefficients of greater order than the bias of the selected
model. An important aspect of the results of Zhang and Huang (2008) is that the
logarithm of the number of variables can be of the same order as the sample size
under certain conditions. Zhao and Yu (2006) showed that the irrepresentable
condition is sufficient and almost necessary for the LS-Lasso to possess the model
selection consistency property.

The aforementioned work significantly advanced our understanding of the
Lasso in high-dimensional settings. However, those results are obtained in the
context of least squares (LS) regression and, in particular, make use of the nice
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properties of a least squares loss function, e.g., the convenient geometry associ-
ated with the `2 norm and the characterization of the whole path of the LS-Lasso
estimator developed in the least angle regression (LARS) algorithm. It is more
difficult to deal with the LAD loss function since it is not differentiable at zero,
and there is no simple geometry associated with it. Even in the standard fixed
dimensional settings, rigorous analysis of the (non-penalized) LAD estimator is
quite involved.

The remainder of this paper is organized as follows. In Section 2, we study
the asymptotic properties of the LAD-Lasso estimator in high-dimensional set-
tings. In Section 3, we present an almost sufficient and necessary condition un-
der which the LAD-Lasso estimator is model selection consistent. In Section 4,
we consider the computation and tuning parameter selection of the LAD-Lasso.
Simulation studies are reported in Section 5. The discussion and proofs of main
results are given in Section 6 and 7, respectively.

2. Asymptotic Properties of the LAD-Lasso

In this section, we study the estimation consistency of the LAD-Lasso esti-
mator in both fixed p and large p cases.

Take β0 = (β01, . . . , β0p)′ as the true model in (1.1). Let A1 = {j : β0j 6=
0, 1 ≤ j ≤ p}. We can rearrange the covariates such that β0 = (β′

10, β
′
20)

′, where
β10 = (β0j , j ∈ A1)′ consists of all important covariates, and β20 = 0 consists
of all 0 elements. Let xj = (x1j , . . . , xnj)′ and xi = (xi1, . . . , xip)′, designed
matrix Xn = (x1, . . . ,xp). Covariates are assumed fixed. We make the following
assumptions.

(A1) The εi’s are independent and identical distributed with median 0 and a
continuous, positive density f in a neighborhood of 0.

(A2) With Σn ≡ n−1X′
nXn, there exists a positive definite matrix Σ such that

Σn → Σ. If τ1n and τ2n are the minimum and maximum eigenvalues of Σn,
there exist constants 0 < τ1 < τ2 < ∞ such that τ1 ≤ τ1n ≤ τ2n ≤ τ2 for all
n.

Condition (A1) is standard in the LAD regression literature, and covers very gen-
eral error distributions without assuming the existence of moments. For instance,
(A1) covers the t, double exponential and Cauchy distributions. (A2) is a com-
mon condition in linear regression that ensures identifiability of the regression
parameters.

Theorem 1.Let β̂n be the LAD-Lasso estimator corresponding to a sequence λn

in (1.2). If (A1) and (A2) hold, then β̂n has the following asymptotic properties.
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• (Consistency) If λn = o(n), then β̂n →P β0.

• (Asymptotic distribution) If λn/
√

n → λ0 ≥ 0, then β̂n has the limiting
distribution √

n(β̂n − β0) →d arg min(V (u)),

where

V (u) = −2u′W+f(0)u′Σu+λ0

p∑
j=1

[ujsign(β0j)I(β0j 6= 0)+|uj |I(β0j = 0)].

Here W is a random vector with a N(0,Σ/4) distribution.

Theorem 1 can be proved using an approach similar to that of Knight and
Fu (2000), who studied the asymptotic properties of the LS-Lasso estimator for
fixed p. We omit the proof.

Theorem 1 indicates that the right rate of growth for λn is
√

n. If λn/
√

n →
0, then asymptotically, the LAD-Lasso behaves like the non-penalized LAD es-
timator: it is asymptotically normal with root-n rate of convergence, but does
not perform variable selection. If λn/

√
n → ∞, then the LAD-Lasso can be

quite biased and does not have a proper asymptotic distribution at the root-n
rate. When λn/

√
n → λ0 with 0 < λ0 < ∞, the asymptotic distribution of the

LAD-Lasso exists but is in general not normal; it puts positive probability at
zero when β0j = 0, which reflects the fact that the LAD-Lasso estimates may
take exact zero values and does variable selection.

Theorem 1 provides some insight into the behavior of the LAD-Lasso when p

is fixed. However, it is not applicable when p diverges with n. Here the problem
is more difficult. Indeed, when p > n, the model is in general not identifiable. To
ensure identifiability of the model and consistency of the LAD-Lasso estimator,
assumptions on the sparsity of the model and other regularity conditions are
needed.

Let A be any subset of {1, . . . , p} and XA = (xj , j ∈ A). We sometimes write
pn = p to indicate that p can diverge with n. For any positive integer m ≤ pn,
let

cmin(m) = min
|A|=m

min
‖ν‖2=1

1
n

ν ′X′
AXAν and cmax(m) = max

|A|=m
max

‖ν‖2=1

1
n

ν ′X′
AXAν.

We make the following assumptions.

(B1) (Random errors) (A1) holds.

(B2) There is a positive constant b0, such that |xij | < b0 for all i and j, and∑n
i=1 x2

ij = n for all j.
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(B3) (Sparse model) There is a positive M1 such that |A1| ≤ M1n
2/λ2

n.

(B4) There exist constants 0 < c∗ < c∗ < ∞ such that, for any sufficiently large
n,

(a) 0 < cmin(min{n, pn}) ≤ cmax(min{n, pn}) < c∗ < ∞;

(b) cmin(dn) > c∗ for dn ≤ Mn2/λ2
n, where M is a positive constant.

(B2) assumes that the covariates are bounded. (B3) restricts the number of
nonzero coefficients in the true model. Although pn À n, the number of true
important covariates is bounded at some rate. (B4) assumes that the eigenvalues
of the correlation matrix are bounded and that the eigenvalues of any submatrix
of the correlation matrix with dimension O(n2/λ2

n) are bounded away from zero.

Theorem 2.If λ4
n/n3 = O(1) and (B1)−(B4) hold, then

‖β̂n − β0‖2
2 = O

(
λ2

n|A1|n−2c−2
∗ f−1(0)

)
+ OP

(
dn log(2pn)n−1c−2

∗ f−1(0)
)
, (2.1)

where dn = 2(M1 + 5c∗/4)(n2/λ2
n), and A1, M1, c∗, and c∗ are defined in (B3)

and (B4).

The theorem states that the LAD-Lasso estimator is consistent for properly
selected values of λn, even when pn increases almost exponentially with n as long
as log(pn) = O(nα) for some 0 < α < 1. It also makes it clear that there is a
trade-off between bias and variance in the selection of the tuning parameter λn:
the first term on the right side of (2.1) is the bias of the LAD-Lasso estimator,
and the second term is the variance; a smaller λn means smaller bias but larger
variance. The proof of Theorem 2 is given in Section 7.

3. Model Selection Consistency of the LAD-Lasso

The estimation consistency result in Section 2 does not imply that the LAD-
Lasso estimator is model selection consistent. In this section, we assume the
irrepresentable condition for the LAD-Lasso estimator and generalize the model
selection consistency of the LS-Lasso to the LAD-Lasso in both fixed p and p À n

cases. Let X1n = (xj , j ∈ A1) and s1n = (sj , j ∈ A1)′, where sj = sign(β0j).
Let Σn

11 = n−1X′
1nX1n, the correlation matrix resulting from all the important

covariates, and Σn
11 is invertible. Zhao and Yu (2006) introduced the following

irrepresentable conditions.

Definition 1. If there exists a constant 0 < δ < 1, such that

|n−1x′
jX1n(Σn

11)−1s1n| ≤ 1 − δ

for ∀ j /∈ A1, then the covariates satisfy the strong irrepresentable condition.
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Definition 2. If |n−1x′
jX11(Σn

11)−1s1n| < 1 for ∀ j /∈ A1, the covariates satisfy
the weak irrepresentable condition.

Following Zhao and Yu (2006), we define the sign consistency of the LAD-Lasso
estimator as follows.

Definition 3. A LAD-Lasso estimator is strongly sign consistent if there exists
a sequence of λn such that limn→∞ P(β̂n(λn) =s β0) = 1, where β̂n(λn) =s β0

means that β̂n(λn) and β0 have the same sign component-wisely.

Definition 4. If limn→∞ P(∃ λ > 0, β̂n(λ) =s β0) = 1, the LAD-Lasso estima-
tor is general sign consistent.

We note that variable selection consistency only requires all zeros in β0 to be
matched, not the signs. So sign consistency defined here is stronger than the
usual variable selection consistency. We evaluate the model selection properties
of the LAD-Lasso by investigating sign consistency.

Theorem 3.Let p be fixed. Suppose that (A1), (A2), and the strong irrepre-
sentable condition are satisfied. We have P(β̂n(λn) =s β0) = 1 for λn = O(nπ2),
where (1 + π1)/2 < π2 < 1 for some 0 < π1 < 1.

For fixed p, Theorem 3 provides sufficient conditions under which the LAD-
Lasso is strongly sign consistent. In particular, under those conditions, the LAD-
Lasso can distinguish zero coefficients from nonzero coefficients with probability
converging to one.

Theorem 4.For fixed p, under (A1) and (A2), the LAD-Lasso cannot be general
sign consistent if the weak irrepresentable condition fails.

The proof of this result is similar to the proof in Zhao and Yu (2006). How-
ever, the non-differentiability of the absolute value function at zero requires care-
ful attention, and we omit the proof. By Theorems 3 and 4, the irrepresentable
condition is almost sufficient and necessary for sign consistency of the LAD-Lasso.

When p À n, the assumptions and regularity conditions in (A2) are inap-
propriate since Σn may not converge as n grows. In this case, some structural
conditions on the model are required.

(C1) (A1) holds.

(C2) (B2) holds.

(C3) If bn1 = minj∈A1 |β0j |, then
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(a) there exists 0 ≤ c1 < 1/2 such that |A1| = O(nc1);

(b) there exist positive constants M0 and c2 > c1 such that n(1−c2)/2bn1 ≥
M0.

(C4) There exist constants c∗ and c∗ such that, for any mn = O(nc1), we have

0 < c∗ < cmin(mn) < cmax(mn) ≤ cmax(n) < c∗ < ∞.

In (C3), (a) assumes that the number of nonzero coefficients increases with n at
a slower rate than root n; (b) assumes that the true nonzero coefficients cannot
be too small. (C4) assumes that the correlation matrix satisfies the sparse Riesz
condition on the rank of O(|A1|).

Theorem 5.Suppose (C1)−(C4) and the strong irrepresentable condition are
satisfied. The LAD-Lasso is strong sign consistent even if pn = O (exp{nc3})
for c3 < min{c2 − c1, 1 − 2c1, 1/2}. In particular, if λn = O(n(1+c4)/2) with
c3 < c4 < min{c2 − c1, 1 − 2c1, 1/2}, then P(β̂n(λn) =s β0) → 1 as n → ∞.

This theorem investigates the model selection property of the LAD-Lasso in
high-dimensional settings where p may grow with n at an almost exponential
rate. In addition to the usual regularity conditions, the keys for the LAD-Lasso
estimator to be selection consistent are the sparsity of the model, the sparse
Riesz condition, and the strong irrepresentable condition. The sparsity condition
restricts the growth rate of the number of important covariates in the true model;
the sparse Riesz condition ensures identifiability of the nonzero coefficients.

4. Computation of the LAD-Lasso

In this section, we describe an approach to computing the LAD-Lasso esti-
mator and discuss how to choose the tuning parameter.

For any given λn, we consider an augmented data set {(y∗i , x∗
i1, · · ·x∗

ip)},
1 ≤ i ≤ n + p. Here {(y∗i , x∗

i1, · · ·x∗
ip)} = {(yi, xi1, · · ·xip)}, 1 ≤ i ≤ n and

{(y∗i , x∗
i1, · · ·x∗

ip)} = {(0, λne′i−n)}, n + 1 ≤ i ≤ n + p, and ei is a p-dimensional
unit vector with ith element equal to 1. We can rewrite Ln(β) as

n∑
i=1

|yi −
p∑

j=1

xijβj | + λn

p∑
j=1

|βj | =
n+p∑
i=1

∣∣∣y∗i −
p∑

j=1

x∗
ijβj

∣∣∣.
Thus, we can compute the penalized estimator using any method for solving
standard `1 minimization problem. For instance, if p is not very large, the
QUANTREG package can be used to find β̂n(λn). For large p, Wu and Lange
(2008) proposed a very fast and efficient greedy descent algorithm.
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The Akaike Information Criterion (AIC, Akaike (1973)) and the Bayesian
Information Criterion (BIC, Schwarz (1978)) are two criteria to choose the pre-
diction optimal `1 regularization parameter. If we assume that model errors are
double exponentially and independently distributed, then AIC and BIC scores
can be calculated using AIC = n log(RSA/n) + df , and BIC = n log(RSA/n) +
df log(n)/2, where RSA =

∑n
i=1 |yi − β̂

′
nxi|, and df is degrees of freedom of the

model. Zou, Hastie, and Tibshirani (2007) proved that the number of nonzero
coefficients in a LS-Lasso estimate is an unbiased estimate of degrees of free-
dom for the LS-Lasso. Similarly, we estimate degrees of freedom of the selected
LAD-Lasso model by

d̂f = d̂f(λn) = the size of the {j : β̂nj(λn) 6= 0, 1 ≤ j ≤ p}.

We choose the optimal λn by minimizing either the AIC score or the BIC score.
Our simulation studies suggest that the BIC works well when the objective of
the analysis is to select important variables, even when p is larger than n. The
AIC tends to choose more variables in the generating model in order to achieve
a better prediction performance. In general, AIC-type criteria are better suited
if the purpose of the analysis is to minimize the difference between the true
distribution and the estimate from a candidate model, and the BIC-type criteria
are appropriate if the purpose is to uncover the model structure, but none of
these criteria can achieve both goals (Shao (1997) and Yang (2005)).

5. Simulation Studies

In this section, we use six simulated examples to evaluate the finite sample
performance of the LAD-Lasso in high-dimensional settings. In each example,
the data was simulated from a linear regression model

yi =
p∑

j=1

xijβj + εi, i = 1, . . . , n.

In order to have a design matrix that satisfies the strong irrepresentable condition,
we generated the covariates from the multivariate normal distribution and set the
correlation between xi and xj to be 0.5|i−j|.

Example 1.We generated εi’s from N(0, 1). The true regression coefficients were
β0j = 2 for 96 ≤ j ≤ 100, and 0 otherwise. Thus the number of true nonzero
coefficients was q = 5.

Example 2.The same as Example 1, except that εi ∼ dbexp(0, 1/
√

2), a double
exponential distribution with the location and scale parameters 0 and 1/

√
2,

respectively. Notice that the εi’s in Examples 1 and 2 have the same variance.
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Example 3.The same as Example 1, except that εi has a standard Cauchy
distribution.

We first investigated the performance of the LAD-Lasso in the cases where
p < n, p = n, and p > n with p = 200 and n = 500, 200, and 100, respectively.
Then we fixed the sample size n to be 200 and increased the number of coefficients
from p = 1, 000 to 2, 000 and then to 5, 000. In each case, we generated 1, 000
datasets. Out of 1, 000 iterations, we first computed the average number of total
estimated nonzero coefficients (TN), correctly estimated nonzero number (CN),
and incorrectly estimated nonzero number (IN). The ratio of correctly fitted
models (CFR), the ratio of over-fitted models (OFR) and the ratio of under-fitted
models (UFR) were also computed. Similar to Wang, Li and Jiang (2007), we
evaluated the prediction accuracies of the LAD-Lasso using the mean and median
of the mean absolute prediction error (MAPE). In each iteration, we generated
1000 testing data sets. The mean and median of MAPE were calculated from
those testing datasets. In order to compare the efficiency of LAD-Lasso and the
LS-Lasso, we applied the BIC to both methods, since AIC tends to obtain slightly
lower MAPE by over-fitting the model.

The robustness property of the LAD-Lasso can be observed from the simula-
tion results listed in Table 1−3. Table 1 shows that the LS-Lasso worked better
for normal cases than it did for the double exponential cases. Both Table 1 and 2
show that the LAD-Lasso performed better than the LS-Lasso did. The advan-
tage margins of the LAD-Lasso became more obvious when the model error was
more heavy-tailed. Table 3 lists the results for the Cauchy random error, which
does not have a finite moment. The LS-Lasso failed to detect the correct model
in most of the replications. However, the LAD-Lasso still performed well in this
case.

6. Concluding Remarks

We have investigated the theoretical properties of the LAD-Lasso for esti-
mation and model selection in the cases when p is fixed, possibly larger than
n. The computation of the LAD-Lasso can be carried out using existing pro-
grams because both the loss and penalty functions use the `1 norm. In the
high-dimensional setting with p > n, in addition to the standard assumptions
for LAD regression, conditions on model sparsity and the design matrix struc-
ture are needed for the estimation and selection consistency of the LAD-Lasso.
We also assumed that the penalty parameter was fixed at a certain growth rate.
An important question is whether results obtained in this paper still hold when
the penalty parameter is selected using a data-driven criterion, such as the AIC
or BIC. This is a challenging and unsolved problem, even for the LS-Lasso, in
high-dimensional settings, and deserves further investigation.
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Table 1. Results for Example 1. εi ∼ N(0, 12).

Model n p TN1 (CN2 , IN3) CFR4 (OFR5 , UFR6) Median (Mean)7

LAD-Lasso 200, 5, 000 5.772 (5.000, 0.772) 48.7% (51.3%, 0%) 1.855 (1.877)
LS-Lasso 6.752 (5.000, 1.752) 30.0% (70.0%, 0%) 1.778 (1.779)
LAD-Lasso 200, 2, 000 5.733 (5.000, 0.733) 48.4% (51.6%, 0%) 1.851 (1.848)
LS-Lasso 6.754 (5.000, 1.754) 31.7% (68.3%, 0%) 1.747 (1.749)
LAD-Lasso 200, 1, 000 5.562 (5.000, 0.562) 61.4% (38.6%, 0%) 1.780 (1.788)
LS-Lasso 6.483 (5.000, 1.483) 33.1% (66.9%, 0%) 1.724 (1.721)
LAD-Lasso 500, 200 5.103 (5.000, 0.103) 91.1% ( 8.9%, 0%) 1.680 (1.681)
LS-Lasso 6.063 (5.000, 1.063) 59.1% (40.9%, 0%) 1.647 (1.648)
LAD-Lasso 200, 200 5.337 (5.000, 0.337) 73.2% (26.8%, 0%) 1.760 (1.768)
LS-Lasso 6.355 (5.000, 1.355) 35.2% (64.8%, 0%) 1.684 (1.691)
LAD-Lasso 100, 200 5.872 (5.000, 1.872) 44.1% (55.9%, 0%) 2.076 (2.097)
LS-Lasso 8.061 (5.000, 3.061) 14.2% (85.8%, 0%) 1.811 (1.817)

1The total estimated nonzero coefficients on average.
2 The correctly estimated nonzero number on average.
3 The incorrectly estimated nonzero number on average.
4The ratio of correctly fitted models.
5 The ratio of over-fitted models.
6The ratio of under-fitted models.
7The median (mean) of the mean absolute prediction error.

Table 2. Results for Example 2. εi ∼ dbexp(0, 1/
√

2).

Model n p TN1 (CN2 , IN3) CFR4 (OFR5 , UFR6) Median (Mean)7

LAD-Lasso 200, 5, 000 5.822 (5.000, 0.822) 54.7% (45.3%, 0%) 1.653 (1.647)
LS-Lasso 6.882 (5.000, 1.882) 28.1% (71.9%, 0%) 1.662 (1.667)
LAD-Lasso 200, 2, 000 5.718 (5.000, 0.718) 48.4% (51.6%, 0%) 1.612 (1.616)
LS-Lasso 6.641 (5.000, 1.641) 28.3% (71.3%, 0%) 1.627 (1.628)
LAD-Lasso 200, 1, 000 5.678 (5.000, 0.678) 53.4% (46.6%, 0%) 1.548 (1.558)
LS-Lasso 6.513 (5.000, 1.513) 33.7% (66.3%, 0%) 1.589 (1.593)
LAD-Lasso 500, 200 5.156 (5.000, 0.156) 87.9% (12.1%, 0%) 1.464 (1.465)
LS-Lasso 6.333 (5.000, 1.333) 48.9% (51.1%, 0%) 1.489 (1.490)
LAD-Lasso 200, 200 5.157 (5.000, 0.157) 86.1% (13.9%, 0%) 1.563 (1.563)
LS-Lasso 6.090 (5.000, 1.090) 44.2% (55.8%, 0%) 1.563 (1.560)
LAD-Lasso 100, 200 5.695 (5.000, 0.695) 43.5% (56.5%, 0%) 1.883 (1.900)
LS-Lasso 8.024 (5.000, 3.024) 15.3% (84.7%, 0%) 1.739 (1.725)

1The total estimated nonzero coefficients on average.
2 The correctly estimated nonzero number on average.
3 The incorrectly estimated nonzero number on average.
4The ratio of correctly fitted models.
5 The ratio of over-fitted models.
6The ratio of under-fitted models.
7The median (mean) of the mean absolute prediction error.
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Table 3. Results for Example 3. εi ∼ Cauchy(0, 1).

Model n p TN1 (CN2, IN3) CFR4 (OFR5, UFR6) Median (Mean)7

LAD-Lasso 200, 5, 000 5.272 (4.911, 0.361) 67.1% (24.3%, 4.0%) 2.997 (43.216)
LS-Lasso 172.262 (1.442, 170.820) 0 % (1.0%, 2.0%) 10.232 (65.668)
LAD-Lasso 200, 2, 000 5.108 (4.827, 0.281) 61.4% (23.6%, 13.0%) 2.972 (24.137)
LS-Lasso 166.787 (1.464, 165.323) 0 % (3.1%, 2.2%) 11.187 (42.856)
LAD-Lasso 200, 1, 000 5.000 (4.906, 0.094) 82.4% (9.6%, 8.0%) 2.691 (13.735)
LS-Lasso 151.333 (1.821, 149.512) 0 % (2.0%, 3.0%) 6.894 (22.994)
LAD-Lasso 500, 200 5.015 (5.000, 0.015) 98.9% (1.1%, 0 %) 2.202 (44.305)
LS-Lasso 55.176 (2.866, 52.310) 0 % (9.2%, 4.5%) 54.094 (104.723)
LAD-Lasso 200, 200 5.071 (5.000, 0.071) 93.1% (6.9%, 0 %) 2.526 (22.311)
LS-Lasso 62.866 (2.822, 60.044) 2.0% (16.6%, 7.1%) 151.826 (233.993)
LAD-Lasso 100, 200 4.728 (4.424, 0.304) 39.1% (3.0%, 33.9%) 3.098 (21.692)
LS-Lasso 60.882 (2.042, 58.840) 0.9% (10.5%, 3.1%) 9.346 (33.770)
1The total estimated nonzero coefficients on average.
2 The correctly estimated nonzero number on average.
3 The incorrectly estimated nonzero number on average.
4The ratio of correctly fitted models.
5 The ratio of over-fitted models.
6The ratio of under-fitted models.
7The median (mean) of the mean absolute prediction error.

Much work on penalized LS regression has been done under the assumption
of Gaussian errors. The study of the LAD-Lasso provides us a robust sparse
solution by relaxing the sub-Gaussian assumption. We hope that this paper help
facilitate future studies of other penalized LAD methods.

7. Proofs

In this section, we provide the proofs of results in Section 2 and 3. Through-
out the proofs, more properties of the LAD-Lasso are investigated. For instance,
given the sparse Riesz condition, the number of nonzero elements in a LAD-Lasso
estimator is bounded at a certain rate, even though p grows with n very quickly.

The proof of the estimation consistency of β̂n is divided into three steps.

Step 1. We approximate Ln(β) by

Mn(β) ≡ f(0)(β − β0)
′X′X(β − β0) − η′X(β − β0) + λn

pn∑
j=1

|βj |,

where η = (η1, . . . , ηn)′ and ηi = sign(εi). Let

Ri,n(β) ≡
∣∣εi − (β − β0)

′xi
∣∣ − |εi| + ηi(β − β0)

′xi,
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and ξin(β) ≡ Ri,n(β) − EεRi,n(β). Then

|Ln(β) − ‖y − Xnβ0‖1 − Mn(β)| = o
(
‖X(β − β0)‖2

2

)
+

∣∣∣ n∑
i=1

ξin(β)
∣∣∣. (7.1)

Step 2. We study the rate consistency of β̃n ≡ arg min{Mn(β)}. In fact, β̃n is
the LS-Lasso estimator of the new regression model

zi =
√

f(0)
pn∑

j=1

xijβj + (2
√

f(0))−1ηi, 1 ≤ i ≤ n. (7.2)

Step 3. We bound the `2 distance between β̂n and β̃n.

Lemma 1.Concentration Theorem (Bousquet (2002)). Let Z1, . . . , Zn be in-
dependent random variables with values in some space Z. Let Υ be a class of
real-valued functions on Z, satisfying, for some positive constants ιn and κn,
‖υ‖∞ ≤ ιn, ∀ υ ∈ Υ, and n−1

∑n
i=1 Var(υ(Zi)) ≤ κ2

n, ∀ υ ∈ Υ. If Z =
supυ∈Υ

∣∣n−1
∑n

i=1 υ(Zi) − E(υ(Zi))
∣∣ , then

P
(
Z ≥ E(Z) + z

√
2(κ2

n + ιnE(Z)) +
z2ιn
3

)
≤ exp{−nz2}, for z > 0.

Lemma 2. Symmetrization Theorem (van der Vaart and Wellner (1996)).
Let the Zi’s be a sequence of independent random variables with values in space
Z. Let the µi’s be a Rademacher sequence independent of the Zi’s. Let Υ be a
class of real-valued functions on Z. Then

E
(

sup
υ∈Υ

∣∣∣ n∑
i=1

υ(Zi) − E(υ(Zi))
∣∣∣) ≤ 2E

(
sup
υ∈Υ

∣∣∣ n∑
i=1

µiυ(Zi)
∣∣∣).

Lemma 3. Contraction Theorem (Ledoux and Talagrand (1991)). Let z1, . . .,
zn be non-random elements in some space Z. Let υi : R → R be any Lips-
chitz function and the µi’s be a Rademacher sequence. Then for any function
f∗ : Z → R,

E
(

sup
f∈F

∣∣∣ n∑
i=1

µi[υi(f(zi)) − υi(f∗(zi))]
∣∣∣) ≤ 2E

(
sup
f∈F

∣∣∣ n∑
i=1

µi[f(zi) − f∗(zi)]
∣∣∣).

Lemma 4.(van de Geer (2008)). Let Z1, . . . , Zn be independent random variables
with values in Z and υ1, . . . , υm be real-valued functions on Z, such that, for
k = 1, . . . ,m,

E(υk(Zi)) = 0, ∀ i; ‖υk‖∞ ≤ ιn; n−1
n∑

i=1

E(υ2
k(Zi)) ≤ κ2

n.
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Then

E
(

max
1≤k≤m

∣∣∣n−1
n∑

i=1

υk(Zi)
∣∣∣) ≤

√
2κ2

n log(2m)
n

+
ιn log(2m)

n
.

These results are our main tools. We first bound the number of nonzero elements
of a LAD-Lasso estimate at some rate, and this is used to calculate the rate of
convergence. Let A2 and A3 consist of all nonzero elements in the LS-Lasso
estimate β̃n of (7.2) and LAD-Lasso estimator β̂n of (1.1) for the same λn.
Thus, A2 = A2(λn) ≡ {j : β̃nj = β̃nj(λn) 6= 0, 1 ≤ j ≤ pn} and A3 = A3(λn) ≡
{j : β̂nj = β̂nj(λn) 6= 0, 1 ≤ j ≤ pn}. If B = B(λn) ≡ A1 ∪ A2 ∪ A3 =
{j : β0j 6= 0 or β̃nj 6= 0 or β̂nj 6= 0, 1 ≤ j ≤ pn}, then βB ≡ (βj , j ∈ B)′,
βB0 ≡ (β0j , j ∈ B)′, β̂B ≡ (β̂nj , j ∈ B)′, and β̃B ≡ (β̃nj , j ∈ B)′. Similarly
xi

B ≡ (xij , j ∈ B)′, XB ≡ (xj , j ∈ B).

Lemma 5. Under conditions (B1)−(B4), with probability converging to 1, we
have

|A2| ≤
(cmax(|A2|)

4

)(n2

λ2
n

)
≤ (

cmax(min{n, pn})
4

)
(n2

λ2
n

)
,

|A3| ≤ cmax(|A3|)
(n2

λ2
n

)
≤ cmax(min{n, pn})

(n2

λ2
n

)
.

Thus |B| ≤ (M1 + 5cmax(min{n, pn})/4) (n2/λ2
n), where M1 is the constant in

(B3) and | · | is the cardinal value function.

Proof. Let σ2
z ≡ Var(zi) = (4f(0))−1 at (7.2). The first inequality follows from

the study of the LS-Lasso in Meinshausen and Yu (2009). By the Karush-Kuhn-
Tucker condition, a necessary and sufficient condition for β̂n to be a LAD-Lasso
estimator is x′

jsign(y − Xnβ̂n) = λnsign(β̂nj) if β̂nj 6= 0,∣∣∣x′
jsign(y − Xnβ̂n)

∣∣∣ < λn if β̂nj = 0.

Then we have

|A3|λ2
n =

∑
j∈A3

(
x′

jsign(y − Xnβ̂n)
)2

≤ n2cmax(|A3|) ≤ n2cmax(min{n, pn}).

Thus we have the second inequality.

Lemma 6. Under conditions (B1)−(B4),

‖β̃n − β0‖2
2 ≤ O

(
λ2

n|A1|n−2c−2
∗ f−1(0)

)
+ OP

(
d1n log pnn−1c−2

∗ f−1(0)
)
,

where d1n = (M1 + c∗/4)(n2/λ2
n).
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Proof. Notice that (2
√

f(0))−1ηi has a sub-Gaussian distribution with constant
(
√

2f(0))−1. Thus Lemma 6 is the direct result of the rate consistency of the
LS-Lasso in Meinshausen and Yu (2009).

Lemma 7.Let

Z(δ) ≡ sup
βB∈S0

δ

n−1
∣∣∣ n∑

i=1

Ri,n(βB) − Eε(Ri,n(βB))
∣∣∣ for ∀δ > 0,

where S0
δ ≡ {βB ∈ R|B|, ‖βB − βB0‖2 ≤ δ}. Then under (B1) and (B2),

EεZ(δ) ≤ 8δan, (7.3)

where an =
√

|B|
(√

2n−1 log(2|B|) + b0n
−1 log(2|B|)

)
, and

P
(
Z(δ) ≥ 8δan + z

√
2(κ2

n + 8δanιn) +
z2ιn
3

)
≤ exp{−nz2}, ∀ z > 0, (7.4)

where κ2
n = 4c∗δ2 and ιn = 4δb0

√
|B|.

Proof. Let fβB
(xi

B) = (βB − βB0)′xi
B, i = 1, . . . , n, and υi(t) = υ(εi, t) =∫ t

0 [I(0 < εi ≤ s)]ds, i = 1, . . . , n. Then we have fβB0
(xi

B) = 0, |υi(t) − υi(t̃)| ≤
|t − t̃|, ∀ t, t̃ ∈ R, and

Ri,n(βB) = 2
∫ (βB−βB0)′xi

B

0
[I(0 < εi ≤ s)]ds = 2υi

(
fβB

(xi
B)

)
.

If µ1, . . . , µn be a Rademacher sequence independent of y1, . . . , yn, then we have

EεZ(δ) = Eε sup
βB∈S0

δ

n−1
∣∣∣ n∑

i=1

[Ri,n(βB) − Eε(Ri,n(βB))
∣∣∣

≤ 4Eε sup
βB∈S0

δ

n−1
∣∣∣ n∑

i=1

µi

[
υi(fβB

(xi
B)) − υi

(
fβB0

(xi
B)

)] ∣∣∣
≤ 8Eε sup

βB∈S0
δ

n−1
∣∣∣ n∑

i=1

µi

[
fβB

(xi
B) − fβB0

(xi
B)

] ∣∣∣, (7.5)

where the first and second inequalities are obtained from Lemmas 2 and 3. Fur-
thermore,

n−1
∣∣∣ n∑

i=1

µi

[
fβB

(xi
B) − fβB0

(xi
B)

] ∣∣∣
≤ max

j∈B
n−1

∣∣∣ n∑
i=1

µixij

∣∣∣√|B|‖βB − βB0‖2, (7.6)
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and, with probability 1,

max
j

|x′
jµ| < b0 < ∞; n−1

n∑
i=1

E(xijµi)2 = n−1
n∑

i=1

x2
ij = 1.

Then from Lemma 4 we obtain

Eε

(
max
j∈B

∣∣∣n−1
n∑

i=1

µixij

∣∣∣) ≤
√

2n−1 log(2|B|) + b0n
−1 log(2|B|). (7.7)

Combining (7.5)–(7.7),

Eε(Z(δ)) ≤ 8
√

|B|δ
(√

2n−1 log(2|B|) + b0n
−1 log(2|B|)

)
. (7.8)

Thus (7.3) holds. On space S0
δ , we have

max
1≤i≤n

|Ri,n(βB) − Eε(Ri,n(βB))| ≤ 4b0

√
|B|δ,

n−1
n∑

i=1

Var(Ri,n(βB) − Eε[Ri,n(βB)] ≤ 4n−1
n∑

i=1

((βB − βB0)
′xi

B)2 ≤ 4c∗δ2.

Let κ2
n = 4c∗δ2 and ιn = 4δb0

√
|B| in Lemma 1. Then for ∀ z > 0,

P
(
Z(δ) ≥ EZ(δ) + z

√
2(κ2

n + ιnEZ(δ)) +
z2ιn
3

)
≤ exp{−nz2}. (7.9)

Combining (7.8) and (7.9), we obtain (7.4).

Proof of Theorem 2. For any δ > 0, let Sd
δ = {βB ∈ R|B|, ‖βB − β̃B‖2 = δ}

and Sδ = {βB ∈ R|B|, ‖βB − β̃B‖2 ≤ δ}. Let

hn(δ) ≡ inf
βB∈Sd

δ

n−1Mn(βB) − n−1Mn(β̃B),

∆n(δ) ≡ sup
βB∈Sδ

n−1 |Ln(βB) − ‖y − XBβB0‖1 − Mn(βB)| .

From (7.1), (B4), and ‖βB − βB0‖2
2 ≤ 2‖βB − β̃B‖2

2 + 2‖β̃B − βB0‖2
2, we have

∆n(δ) ≤ oP (δ2c∗) + oP

(
sup

βB∈Sδ

‖β̃B − βB0‖2
2

)
+ sup

βB∈Sδ

∣∣∣ n∑
i=1

ξin(βB)
∣∣∣,

hn(δ) ≥ inf
βB∈Sd

δ

(f(0)/n)(βB − β̃B)′X′
BXB(βB − β̃B) ≥ δ2f(0)c∗ > 0.
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Let δ1 = δ/2 > 0. From the convex minimization theorem in Hjort and Pollard
(1993) we get

P
(
‖β̂B − β̃B‖2 > δ1

)
≤ P

(
∆n(δ1) >

hn(δ1)
2

)
≤ P

(
sup

βB∈S0
δ

∣∣∣n−1
n∑

i=1

ξin(βB)
∣∣∣ >

δ2
1f(0)c∗

4

)
+ P

(
‖β̃B − βB0‖2 > δ1

)
= P

(
Z(δ) >

δ2f(0)c∗
16

)
+ P

(
‖β̃B − βB0‖2 > δ1

)
.

From Lemma 7,

P
(
Z(δ) ≥ 8δan + z

√
2(κ2

n + ιn8δan) +
z2ι2n

3

)
≤ e−nz2

, ∀ z > 0,

where κ2
n = 4c∗δ2 and ιn = 4b0

√
|B|δ. As defined, dn = 2 (M1 + 5c∗/4) (n2/λ2

n).
Let δ = c1(dn log(2pn)n−1c−2

∗ f−1(0))−1/2 for some constant c1 > 0 and z =
c2n

−1/4(log(2pn))1/4 for some constant c2 > 0. Then

lim
n→∞

δan + z(c∗δ2 + 8
√

|B|b0anδ2)−1/2 +
z2

√
|B|δb0

6
≤ f(0)δ2c∗

128
,

for an =
√

|B|
(√

2n−1 log(2|B|) + b0n
−1 log(2|B|)

)
. Thus

lim
n→∞

P
(
‖β̂B − β̃B‖2 > δ1

)
≤ lim

n→∞
P

(
‖β̃B − βB0‖2 > δ1

)
.

From Lemma 6 and d1n < dn, we know that

‖β̃B − βB0‖2
2 ≤ O

(
λ2

n|A1|n−2c−2
∗ f−1(0)

)
+ OP

(
dn log(2pn)n−1c−2

∗ f−1(0)
)
.

Thus we have

‖β̂B2
− β̃B20‖2

2 ≤ O
(
λ2

n|A1|n−2c−2
∗ f−1(0)

)
+ OP

(
dn log(2pn)n−1c−2

∗ f−1(0)
)
.

Using the triangle inequality, the consistency of the LAD-Lasso can be obtained
by combining the above two inequalities with Lemma 6.

Let X2n ≡ (xj , j /∈ A1) and Σn
21 ≡ X′

2nX1n/n. The main results in Section
3 are established with the following lemmas.

Lemma 8.Let Hn(= (h1, . . . ,hn) = (hik)n×n) be symmetric and idempotent.
Let γ = (γ1, . . . , γn)′, where γi’s are independent and identical distributed, as-
sumed centered and bounded in probability. Then

Emax
j∈A

∣∣w′
jHnγ

∣∣ ≤ O
(√

n log(2|A|)
)

+ O (log(2|A|)) ,
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where wj = (w1j , . . . , wnj)′, j ∈ A, and maxi,j |wij | < b for some positive con-
stant b.

Proof. Let υj(γi) = w′
jhiγi =

∑n
k=1 wkjhkiγi. Without loss of generality, we

take P(γ ≤ 1) = 1. Then

|υj(γi)| ≤ |w′
jhi| =

√
|w′

jhih′
iwj | ≤ b with probability 1,

n−1
n∑

i=1

υ2
j (γi) ≤ n−1

n∑
i=1

w′
jhih′

iwj = n−1w′
jHwj ≤ b2.

From Lemma 4, n−1Emaxj∈A

∣∣∣w′
jHnγ

∣∣∣ ≤ √
2b2n−1 log(2|A|) + bn−1 log(2|A|).

Lemma 9. Let rij ≡ xij

[
sign(εi − (β̂n − β0)′xi) − sign(εi)

]
, ξij ≡ rij −Eεi [rij ],

h
(1)
nj ≡

∑n
i=1 ξij, and h

(2)
nj ≡

∑n
i=1 Eεi [rij ] + 2f(0)

∑n
i=1 xij(β̂n − β0)′xi, h(1)

1n =(
h

(1)
nj , j ∈ A1

)′
, h(2)

1n =
(
h

(2)
nj , j ∈ A1

)′
.

(i) Under (C1) and (C2),

Eε

(
max
j∈A1

|h(1)
nj |

)
≤ O

(√
n log(2|A1|)

)
+ O (log(2|A1|)) ,

Eε

(
max
j∈A1

n−1
∣∣∣x′

jX1n(Σn
11)−1h(1)

1n

∣∣∣) ≤ O
(√

n log(2|A1|)
)

+ O (log(2|A1|)) .

(ii) If λ4
n/n3 ≤ O(1) then under (C1), (C2), and (C4),

|h(2)
nj | ≤ O

(
λ2

n|A1|
n

)
+ OP (nc1 log pn) ,

|e′j(Σn
11)−1h(2)

1n | ≤ O

(
λ2

n|A1|3/2

n

)
+ OP

(
nc1 |A1|1/2 log pn

)
,

|x′
jX1(Σn

11)−1h(2)
1n | = O

(
λ2

n|A1|2

n1/2

)
+ OP

(
nc1+1/2|A1| log pn

)
.

(iii) If the γi’s are independent with zero mean and finite variance, then under
(C2) and (C4),

Eε max
j∈A1

∣∣e′j(Σn
11)−1X′

1nγ
∣∣ ≤ O(

√
n log(2|A1|)).
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Proof. Parts (i) and (ii) can be proved using Lemma 4. We prove (ii) be-
low. Following Phillips (1991), we define a (generalized) delta function δ(x) =
2d(sign(x))/dx. Thus we have

h
(2)
nj = OP

(
b0(β̂1n − β10)

′X′
1X1(β̂1n − β10)

)
.

By replacing dn = O(nc1) in the proof of Theorem 2,

‖β̂n − β0‖2
2 = O

(
λ2

n|A1|
n2

)
+ OP

(
nc1(log pn)

n

)
.

Thus for 1 ≤ j ≤ pn, |h(2)
nj | ≤ O

(
λ2

n|A1|/n
)

+ OP (nc1 log pn) . The two other
inequalities in (ii) can be obtained similarly.

The proof of Theorem 3is a simplified version of that of Theorem 5. Thus
we only prove Theorem 5.

Proof of Theorem 5. By the Karush-Kunh-Tucker condition, β̂n is a LAD-
Lasso estimate if and only if

n∑
i=1

xijsign(yi − β̂
′
nx

i) = λnsign(β̂nj) for β̂nj 6= 0,∣∣∣ n∑
i=1

xijsign(yi − β̂
′
nx

i)
∣∣∣ < λn for β̂nj = 0.

(7.10)

We can rewrite (7.10) as,

n∑
i=1

xijsign(εi) +
n∑

i=1

ξij +
n∑

i=1

Eεi [rij ] = λnsign(β̂nj) for β̂nj 6= 0,

∣∣∣ n∑
i=1

xijsign(εi) +
n∑

i=1

ξij +
n∑

i=1

Eεi [rij ]
∣∣∣ < λn for β̂nj = 0.

Let hnj ≡ h
(1)
nj + h

(2)
nj , h1n = (hnj , j ∈ A1)

′, and h2n = (hnj , j /∈ A1)
′ . Then

(7.10) is also equivalent to

n∑
i=1

xijsign(εi) − 2f(0)
n∑

i=1

xij(β̂n − β0)
′xi + hnj = λnsign(β̂nj), β̂nj 6= 0,

∣∣∣ n∑
i=1

xijsign(εi) − 2f(0)
n∑

i=1

xij(β̂n − β0)
′xi + hnj

∣∣∣ < λn, β̂nj = 0.

Let β̂1n and β10 satisfy

β̂1n = β10 +
(Σn

11)−1(X′
1nsign(ε) − λns1n + h1n)

2nf(0)
, (7.11)
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and β̂n = (β̂
′
1n,0′)′. Then Xnβ̂n = X1nβ̂1n and xj , j ∈ A1 are linearly inde-

pendent. From (7.11), β̂n =s β0 if β̂1n = s β10, and∣∣∣∣∣
n∑

i=1

xijsign(εi) − 2f(0)
n∑

i=1

xij(β̂n − β0)
′xi + hnj

∣∣∣∣∣ < λn, for β̂nj = 0.

Let Gn = In − X1n(Σn
11)−1X′

1n/n such that

x′
jsign(ε) − 2f(0)x′

jX1n(β̂1n − β10)

= x′
jGnsign(ε) +

x′
jX1n(Σn

11)−1λns1n

n
−

x′
jX1n(Σn

11)−1h1n

n
. (7.12)

If |sign(β0j)(β0j − β̂nj)| < |β0j | for j ∈ A1, then β̂1n = s β10. Thus from (7.12)
we have β̂n =s β0 if

∣∣∣e′j(Σn
11)−1X′

1nsign(ε) + λne′j(Σ
n
11)−1s1n + e′j(Σ

n
11)−1h1n

∣∣∣ ,

< |2nf(0)β0j |, j ∈ A1,∣∣∣∣x′
jGnsign(ε) +

x′
jX1n(Σn

11)−1λns1n

n − x′
jX1n(Σn

11)−1h1n

n + hnj

∣∣∣∣ < λn, j /∈ A1.

Then for any 0 < k1 < k1 + k2 < k1 + k2 + k3 < 1,

P{β̂n 6=s β0} ≤ P
{
|e′j(Σn

11)−1X′
1nsign(ε)| ≥ 2nf(0)|β0j |

3
for some j ∈ A1

}
+P

{
λn|e′j(Σn

11)−1s1n| ≥
2nf(0)|β0j |

3
for some j ∈ A1

}
+P

{
|e′j(Σn

11)−1h1n| ≥
2nf(0)|β0j |

3
for some j ∈ A1

}
+P{|x′

jGnsign(ε)| ≥ (1 − k1 − k2 − k3)λn for some j /∈ A1}

+P{(λn

n
)|x′

jX1n(Σn
11)−1s1n| ≥ k1λn for some j /∈ A1}

+P
{ |x′

jX1n(Σn
11)−1h1n|

n
≥ k2λn for some j /∈ A1

}
+P{|hnj | ≥ k3λn for some j /∈ A1}

= P{I1} + P{I2} + P{I3} + P{I4} + P{I5} + P{I6} + P{I7}.

In fact,

P{I1} ≤ P{max
j∈A1

∣∣e′j(Σn
11)−1X′

1nsign(ε)
∣∣ ≥ 2nf(0)bn1

3
}

≤
(

2nf(0)bn1

3

)−1

O(
√

n log(2|A1|)) = o(1),
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where the last inequality is obtained from (iii) in Lemma 9. P{I2} = o(1) since

λn(2nbn1f(0))−1 max
j∈A1

∣∣e′j(Σn
11)−1s1n

∣∣ ≤ λn(2nbn1f(0))−1c−1
∗ |A1|1/2 = o(1).

P{I3} = o(1) since

P{I3} ≤ P
{

max
j∈A1

∣∣∣e′j(Σn
11)−1h(1)

1n

∣∣∣ ≥ f(0)nbn1

3

}
+P

{
max
j∈A1

∣∣∣e′j(Σn
11)−1h(2)

1n

∣∣∣ ≥ f(0)nbn1

3

}
= P{I31} + P{I32},

P{I31} ≤ O

(
log(|A1|)
n1/2bn1

)
= o(1),

P{I32} ≤ O

(
λ2

n|A1|3/2

n2bn1

)
+ O

(
nc1 |A1|1/2(log pn)

nbn1

)
= o(1).

Since Gn is an idempotent matrix and sign(εi) = 0, Lemma 8 gives

P{I4} ≤ (1 −
∑3

i=1 ki)−1λ−1
n Eε maxj /∈A1

∣∣∣x′
jGnsign(ε)

∣∣∣
≤ O

(√
n log(2pn)

λn

)
+ O

(
log(2pn)

λn

)
= o(1).

Suppose the strong irrepresentable condition holds for 0 < δ0 < 1. We can always
choose 1 − δ0 < k1 < 1. Thus we have

P{I5} ≤ P{n−1 max
j /∈A1

∣∣x′
jX1n(Σn

11)−1s1n

∣∣ ≥ k1} = o(1).

Furthermore,

P{I6} = P
{

n−1 maxj /∈A1
|x′

jX1n(Σn
11)−1h(1)

1n | ≥
λnk2

2

}
+P

{
n−1 maxj /∈A1

|x′
jX1n(Σn

11)−1h(2)
1n | ≥

λnk2
2

}
= P{I61} + P{I62}.

The following inequalities hold from (i) and (ii) in Lemma 8.

P{I61} ≤ O
(
λ−1

n

√
n log(2pn)

)
+ O

(
λ−1

n log(2pn)
)

= o(1),

P{I62} ≤ O

(
λn|A1|2

n3/2

)
+ O

(
n−1nc1+1/2|A1|(log pn)

λn

)
,

P{I7} ≤ P{max
j /∈A1

|h(1)
nj | ≥

λnk3

2
} + P

{
max
j /∈A1

|h(2)
nj | ≥

λnk3

2

}
= o(1).
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