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Abstract: Mixtures provide a useful approach for relaxing parametric assumptions.

Discrete mixture models induce clusters, typically with the same cluster allocation

for each parameter in multivariate cases. As a more flexible approach that facili-

tates sparse nonparametric modeling of multivariate random effects distributions,

this article proposes a kernel partition process (KPP) in which the cluster alloca-

tion varies for different parameters. The KPP is shown to be the driving measure

for a multivariate ordered Chinese restaurant process that induces a highly-flexible

dependence structure in local clustering. This structure allows the relative loca-

tions of the random effects to inform the clustering process, with spatially-proximal

random effects likely to be assigned the same cluster index. An exact block Gibbs

sampler is developed for posterior computation, avoiding truncation of the infinite

measure. The methods are applied to hormone curve data, and a dependent KPP

is proposed for classification from functional predictors.

Key words and phrases: Chinese restaurant process, Dirichlet process, discriminant

analysis, local clustering, longitudinal data, nonparametric Bayes, random effects.

1. Introduction

Mixture models are used for addressing a broad variety of problems including
model-based clustering (Banfield and Raftery (1993)), density estimation (Fraley
and Raftery (2002)), and supervised classification (Hastie and Tibshirani (1996)).
In multivariate cases, the vast majority of the literature focuses on global mixture
models in which subjects are allocated to the same mixture component index for
all of their parameters. To provide motivation for local alternatives to global
mixture models, consider the functional data analysis model with

fi(x) =
p∑

j=1

θijbj(x), θi = (θi1, . . . , θip)′ ∼ P, (1.1)

where b = {bj}p
j=1 is a collection of basis functions, such as splines or kernels, θi

is a random effects vector, and P is a random effects distribution.
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To allow flexible modeling of functional data, such as longitudinal trajecto-
ries, P is commonly assumed to have a discrete form with

P =
k∑

h=1

πhδΘh
, (1.2)

where k is the number of mixture components, πh is the probability of allo-
cation to component h, δΘ is a degenerate distribution with unit probability
mass at Θ and Θh = (Θh1, . . . , Θhp)′ is a vector of random effects coefficients
specific to component h. Subjects allocated to component h have function
fi(x) = f∗

h(x) = b(x)′Θh. For applications of mixture modeling to functional
clustering applications, refer to Heard, Holmes and Stephens (2006) and Ray
and Mallick (2006). In longitudinal data applications, latent class trajectory
models (Muthén and Shedden (1999)) are widely used. These models allow
π = (π1, . . . , πk)′ to depend on predictors. Implementation proceeds via the
EM algorithm, with the BIC used to select the number of classes k.

The global mixture model that results from using (1.2) for the random ef-
fects distribution P has some distinct disadvantages when P is moderate to high
dimensional, as is typically the case for functional data. As motivation, con-
sider an application to modeling of PdG (a metabolite of progesterone) in early
pregnancy; these data have previously been analyzed by Bigelow and Dunson
(2009) and Dunson (2009). Figure 1 shows the data for five of the 165 women in
the study. After ovulation, which is estimated using a highly-accurate hormonal
marker, progesterone tends to rise to a plateau in healthy pregnancies. However,
the shapes vary substantially, and pregnancies that result in an early loss exhibit
a decline, as is apparent for two of the women in Figure 1. Assuming for simplic-
ity that b corresponds to a pre-specified collection of 20 Gaussian kernels placed
at equally-spaced times and applying the model specified in (1.1)−(1.2), it is not
clear whether the model with k = 2 or k = 5 components is preferred. Although
there are two groups of curves having similar shapes, there are also substantial
local differences between the individual curves in these two groups. In addition,
all the curves are similar up to day 10-12, which corresponds approximately to
the timing of implantation.

As the dimension p increases, it is increasingly unlikely that two subjects are
similar with respect to all the elements of their random effects vectors. Hence,
global mixture models will either allocate subjects to many clusters, leading to
an inefficient characterization of the data, or will inappropriately cluster subjects
that are similar at most locations, obscuring local differences. In practice, both of
these problems occur and one can obtain a simultaneous improvement in goodness
of fit and reduction in model complexity using a carefully-specified local mixture
model.
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Figure 1. Log PdG data in early pregnancy for five randomly selected women.

Expression (1.2) is appealing in facilitating a reduction of dimensionality
from n random effects vectors, θ1, . . . , θn, to k coefficient vectors, Θ1, . . . ,Θk. To
maintain this characteristic, while relaxing the assumption of global clustering,
one can replace (1.2) with a local mixture model of the form

P =
k∑

h1=1

· · ·
k∑

hp=1

πh1···hpδΘh
, Θh =

(
Θh11, . . . , Θhpp

)′
, (1.3)
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where πh1···hp is the probability of allocation to component h1 for the first el-
ement of the random effect vector, h2 for the second element, and so on up
to hp for the pth element. Hence, as in (1.2), there are k clusters. However,
instead of forcing the cluster index to be the same for every parameter, I al-
low a different cluster allocation for each parameter. This additional flexibility
comes at the price of incorporating an array of kp − 1 allocation probabilities
π = {πh1···hp , hj = 1, . . . , k, j = 1, . . . , p} instead of a vector of k − 1 allocation
probabilities. However, this increase in dimensionality of the model for the al-
location probabilities is typically more than made up for by a reduction in the
value of k needed to characterize the data.

As for the global latent class trajectory model that uses (1.2) for the ran-
dom effects distribution in (1.1), the EM algorithm can potentially be used for
maximum likelihood estimation under the local mixture model (1.3). However,
to improve estimation of π and the coefficient vectors {Θh}k

h=1, it is appealing to
incorporate a shrinkage prior. In addition, the assumption that all subjects can
be allocated to a finite number of groups k regardless of sample size is unappeal-
ing. For example, suppose that we estimate that k = 3 based on an initial sample
of 100 subjects, and data later become available for an additional 1,000 subjects.
Ideally, the model would be flexible enough to allow new sub-populations, and
hence mixture components, to be represented in the new sample. Following this
line of reasoning, the number of mixture components occupied by the subjects in
a sample should grow without bound as the sample size increases. This can be
accomplished automatically within a coherent nonparametric Bayes framework
by setting k = ∞.

A Dirichlet process (DP) prior (Ferguson (1973, 1974)) on the random effects
distribution induces the global mixture model in (1.2) with

P =
∞∑

h=1

πhδΘh
, πh = π∗

h

∏
l<h

(1 − π∗
l ), π∗

h ∼ beta(1, α), Θh ∼ P0, (1.4)

h = 1, . . . ,∞. This is the so-called stick-breaking representation of Sethuraman
(1994). Although k = ∞, the weights decrease stochastically as the index h

increases, so that the n subjects will tend to be allocated to a small number of
components relative to the sample size, particularly if α is small. Indeed, the
expected number of occupied components is proportional to α log n, suggesting a
slow rate of discovery of new clusters as additional subjects are added. DP priors
and DP mixtures (Lo (1984); Escobar and West (1995)) have been widely used
for modeling of unknown random effects distributions (Bush and MacEachern
(1996); Müller and Rosner (1997); Kleinman and Ibrahim (1998)).

The goal of this article is to generalize the DP prior to develop useful classes
of priors that have the local mixture form in (1.3), with k = ∞, instead of the
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global form in (1.2). Dunson, Xue, and Carin (2008) and Dunson (2009) proposed
approaches for addressing this problem based on matrix stick-breaking process
(MSBP) and local partition process (LPP) priors, respectively. However, these
approaches simplify modeling of the infinite probability tensor π controlling the
local allocation to mixture components by assuming an exchangeable dependence
structure. In particular, it is assumed that Pr(θij = θi′j | θil = θi′l) = Pr(θij =
θi′j | θim = θi′m) for all l,m ∈ {1, . . . , p} with l 6= m. This assumption is an
over-simplification in applications in which the random effects have locations or
a natural ordering. For example, suppose bj in model (1.1) is a kernel located at
zj ∈ Z, for j = 1, . . . , p, and let

∆jj′ = Pr(θij = θi′j | θij′ = θi′j′) − Pr(θij = θi′j)

represent the increase in the probability of allocating two subjects to the same
cluster for the jth random effect given knowledge that they are allocated to the
same cluster for the j′th random effect. Then, intuitively, the value of ∆jj′ should
be greater a priori when zj′ is close to zj , since then the subjects are known to be
similar at a location close to the location zj of the jth random effect. This article
proposes a kernel partition process (KPP) prior for P that allows incorporation
of the feature matrix Z = (z1, . . . , zp).

Also motivated by functional data analysis, Petrone, Guindani, and Gelfand
(2009) proposed a hybrid Dirichlet process prior that has a fundamentally differ-
ent structure than the KPP. Their approach formulates the individual functions
as hybrids of global functions drawn from a Gaussian process (GP). A latent
GP copula is used to allow local surface selection, inducing local clustering of
functions. A related alternative that also includes a GP copula was proposed by
Rodriguez, Dunson, and Gelfand (2010). These approaches are quite flexible, but
can be computationally intensive due to the need to update high-dimensional la-
tent variables within MCMC sampling. The KPP has computational advantages
and avoids the need to truncate the infinite-dimensional representation.

Mixed membership models allow subjects to be proportionally allocated to
different clusters (Woodbury, Clive, and Garson (1978); Rosenberg et al. (2002);
Erosheva, Fienberg, and Lafferty (2006)). Mixture model (1.3) instead allows
different allocation for different parameters, and hence is related to methods
for characterizing dependence in latent class analysis (Chung, Lanza, and Lo-
ken (2008)). However, previous methods for dependent latent allocation rely on
Markov or other restrictive assumptions, while the KPP allows the dependence
structure to be unknown.

Section 2 proposes the KPP formulation, discusses properties and considers
relationships with previous methods. Section 3 develops an MCMC algorithm
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for posterior computation. Section 4 considers a simulation example, Section 5
applies the methods to hormone curve data, and Section 6 discusses the results.

2. Kernel Partition Processes

2.1. Proposed prior

Letting θi ∼ P , I propose a prior P ∼ KPP(α, β, ψ, P0) for the unknown
random effects distribution, with α > 0, β > 0, ψ > 0 scalar hyperparameters
and P0 = ⊗p

j=1P0j a base measure providing an initial guess for P . The KPP
prior for P , which is explicitly specified at (2.3), leads to a hierarchical model
for the random effects:

θi = Θγi
, Θγi

= (Θγi11, . . . , Θγipp)′, Θh ∼ P0, h = 1, . . . ,∞,

γij ∼
p∑

g=1

ωjgδφig
, φig ∼

∞∑
t=1

νtδt, (2.1)

where γi = (γi1, . . . , γip)′ ∈ {1, . . . ,∞}p is a multivariate cluster index for subject
i, φi = (φi1, . . . , φip)′ is a vector of group-specific latent cluster indices, ωjg =
Pr(γij = φig) is the probability of allocating the jth random effect to group
g, and νt = Pr(γij = t) is the marginal probability of allocation to cluster t.
For parsimony and computational efficiency, the marginal distribution of γij is
assumed constant for j = 1, . . . , p, though this assumption can be relaxed by
replacing νt with νgt.

Letting Gij = g denote that the jth random effect from subject i is allocated
to group g, all random effects in the same group are assigned the same cluster
index, with γij = φig for all j : Gij = g. The cluster indices for different groups
are generated independently. Hence, dependence in the elements of γi is entirely
induced through the process of grouping the random effects, which is controlled
by the choice of {ωjg}. Letting zj and zg denote features for the jth random effect
and gth group, respectively, it is appealing to allow these features to inform the
grouping process. For example, considering the functional data analysis model
in (1.1), zj could be chosen to correspond to the location of the jth kernel basis,
for j = 1, . . . , p. Then, by allowing the probability of allocating the jth random
effect to group g to decrease with distance between zj and zg, as measured by a
kernel Kψ : Z × Z → [0, 1], one automatically makes it more likely to allocate
random effects for nearby basis functions to the same group.

To complete the specification, I choose explicit processes for the probability
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weights in (2.1) by letting

ωjg =
λgKψ(zj , zg)∑p

g′=1 λg′Kψ(zj , zg′)
, λg ∼ gamma(

β

p
, 1), j, g = 1, . . . , p,

νt = ν∗
t

∏
s<t

(1 − ν∗
s ), ν∗

t ∼ beta(1, α), t = 1, . . . ,∞, (2.2)

where λ = (λ1, . . . , λp)′ are random weights for groups g = 1, . . . , p, respectively,
ψ is a kernel precision, and Pr(φig = t) = νt follows a stick-breaking process, with
precision α controlling how rapidly the probabilities decrease as t increases. The
hyperparameter β controls the variability in the group-specific weights, with val-
ues of β close to zero leading to a small number of dominant groups having much
higher weights. Smaller β tends to induce greater dependence in the elements of
γi in leading to few large groups. Tighter kernels Kψ induce a local dependence
structure in which the elements of γi tend to be identical within local blocks,
particularly for small β. In practice, hyperpriors are chosen for α, β, ψ to allow
the data to inform about their values.

Expression (2.1) is consistent with an explicit KPP prior for P ,

P =
∞∑

h1=1

· · ·
∞∑

hp=1

πh1···hpδΘh
, Θh = (Θh11, . . . , Θhpp)′, Θh ∼ P0,

πh1···hp =
∑

J∈Jh

∏
g:Jg 6=∅

νh(Jg)

∏
j∈Jg

ωjg, (2.3)

where Pr(γ1 = h1, . . . , γp = hp) = πh1···hp , J = (J1, . . . , Jp) is a partition of the
index set {1, . . . , p} into p groups, with Jg ⊂ {1, . . . , p} the indices in group g,
h(Jg) = {hj , j ∈ Jg}, and Jh is the set of all partitions J satisfying #h(Jg) = 1
for all g such that Jg 6= ∅, with #A denoting the cardinality of set A.

Let P correspond to a probability measure over {Ω,B(Ω)}, where Ω is a
measurable Polish space, and B(Ω) is the Borel σ-algebra of subsets of Ω. The
prior expectation of P can be expressed as

E
{
P (B)

}
= E

[ ∞∑
h1=1

· · ·
∞∑

hp=1

πh1···hp1
{
(Θh11, . . . , Θhpp)′ ∈ B

}]

= E
{ ∞∑

h1=1

· · ·
∞∑

hp=1

πh1···hp

} ∫
1(Θ ∈ B)dP0(Θ) = P0(B) (2.4)

for all B ∈ B(Ω). Hence, the prior for P is centered on P0.
The hybrid Dirichlet process (hDP) of Petrone, Guindani, and Gelfand

(2009) also induces a prior having the form in (1.3), but with a carefully-specified
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joint Dirichlet distribution on the weights π = {πh1···hp , hj = 1, . . . , k, j =
1, . . . , p}. They focus on the finite k case in developing the prior and in conducting
posterior computation and inferences, though they show weak limit properties as
k → ∞. To accommodate spatial dependence in the allocation to components,
they incorporate a hidden label process, which leads to challenging computation
and identifiability issues. The LPP prior of Dunson (2009) has the form shown
in the first line of (2.3), but with a fundamentally different prior on π, that is
induced through mixing global and independent Dirichlet process priors to ob-
tain an exchangeable dependence structure for γ. The KPP has advantages over
the LPP in terms of allowing inclusion of spatial dependence that can lead to
substantial improvements in interpolations and predictions.

2.2. Predictive probability function

To better understand the KPP prior and the associated clustering process, it
is useful to marginalize out the infinitely-many stick-breaking random variables
ν∗ = {ν∗

t }∞t=1 and random atoms Θ = {Θh}∞h=1 to obtain a conditional prediction
rule. Before deriving a prediction rule for the KPP, I review the Dirichlet process
prediction rule, and propose a modification, which is then generalized to the KPP
case in Theorem 1.

In the case in which θi ∼ P , with P ∼ DP (αP0) assigned a Dirichlet process
prior, Blackwell and MacQueen (1973) showed that the conditional distribution
of θn+1 given θ1, . . . , θn, but marginalizing out P , is

(θn+1 | γ̃(n), θ̃
(n)

) =
(

α

α + n

)
P0 +

k̃(n)∑
h=1

(
ñ

(n)
h

α + n

)
δ˜θh

, n = 0, 1, . . . ,∞, (2.5)

where γ̃(n) = (γ̃1, . . . , γ̃n)′, γ̃i = h denotes that the ith subject is allocated to
cluster h, with clusters indexed in the order of appearance as subjects i = 1, . . . , n

are added, θ̃h is the value of θi for the ñ
(n)
h =

∑n
i=1 1(γ̃i = h) subjects in cluster

h, and k̃(n) is the number of unique values of θ = (θ1, . . . , θn)′.
To obtain intuition for the Polya urn scheme in (2.5), it is common to rely

on a Chinese restaurant process (CRP) metaphor (Aldous (1985); Ishwaran and
James (2003)). In particular, consider a Chinese restaurant with infinitely many
tables, with each table containing a dish generated from P0. The first customer
entering the restaurant is seated at the first table, and the second customer is
either seated at the first table with probability 1/(α + 1) or is seated at the
unoccupied second table with probability α/(α + 1). As the CRP proceeds,
the nth customer entering the restaurant is seated at an occupied table with
probability proportional to the number of customers seated at that table and is
seated at a new table with probability proportional to α.
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In order for the CRP to be more closely linked to the DP stick-breaking
process in (1.4), it is convenient to define a modification, which I refer to as
the ordered CRP (oCRP). The distinguishing characteristic of the oCRP is that
the tables are indexed not by the order in which they are occupied but by the
order of the components in the stick-breaking representation. Because the stick-
breaking weights are stochastically-decreasing, one can modify the metaphor so
that the restaurant has infinitely-many tables ordered in terms of desirability,
with table t = 1 the most desirable. Lemma 1 provides the predictive probability
of allocation to table t for individual i = n + 1 under the oCRP.

Lemma 1. Assuming that θi ∼ P for i = 1, 2, . . . , n + 1, with P ∼ DP(αP0) as
in (1.4), γi = t if θi = Θt, and γ(n) = (γ1, . . . , γn)′, we have

Pr(γn+1 = t |γ(n)) =
(

1 + n
(n)
t

α + 1 +
∑k(n)

s=t n
(n)
s

) t−1∏
h=1

(
α +

∑k(n)

s=h+1 n
(n)
s

α + 1 +
∑k(n)

s=h n
(n)
s

)
,

t = 1, . . . ,∞, where n
(n)
t =

∑n
i=1 1(γi = t) is the number of customers sitting at

table t and k(n) = max{γ(n)} is the maximum index of an occupied table.

The KPP prior proposed in Section 2.1 induces a multivariate extension of
the oCRP. Suppose households i = 1, . . . , n+1 each contain p types of individuals
who are allocated to groups. Individuals of type j have traits zj and select group g
with probability proportional to λgK(zj , zg), for g = 1, . . . , p. Individuals within
a group are more likely to have similar traits than individuals in different groups,
though very popular groups having high λg values may contain widely different
types of individuals unless the kernel is tight. Individuals from a household that
are in the same group are seated together when they arrive at the restaurant,
with the seating following an oCRP that depends on the number of previous
groups seated at each table instead of the number of individuals. Theorem 1
shows the resulting multivariate predictive probability function.

Theorem 1. Let Gij = g if individual j in household i is allocated to group g,
Tig = t if group g from household i is seated at table t, Gi = (Gi1, . . . , Gip)′,
G(n) = {Gi}n

i=1, nig =
∑p

j=1 1(Gij = g) denotes the number of individuals from
household i in group g, Ti = {Tig, g : nig > 0} denotes the table assignment for
the groups from household i, and T(n) = {Ti}n

i=1. Then,(
θn+1,Gn+1 = g,Tn+1 = t |θ(n),G(n),T(n)

)
=

p∏
j=1

ωjgjπ
(n)
jtgj

{
1
(
w

(n)
j = 0

)
P0j(θn+1,j) + 1(w(n)

j > 0)δΘtgj j (θn+1,j)
}
,

where g = (g1, . . . , gp)′ are the groups for individuals 1, . . . , p in household n +
1, t = {tg, g ∈ g} are the tables for each group in household n + 1, w

(n)
j =
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i=1 1(TiGij = tgj ) is the number of individuals of type j seated at table tgj , ωjg

is defined in (2.2), π
(n)
jt = 1(t = tgl

, l : gl = gj , l < j) if gj ∈ {g1, . . . , gj−1} and
otherwise

π
(n)
jt =

(
1 + n

(n)
jt

α + 1 +
∑k

(n)
j

s=t n
(n)
js

)
t−1∏
h=1

(
α +

∑k
(n)
j

s=h+1 n
(n)
js

α + 1 +
∑k

(n)
j

s=h n
(n)
js

)
, t = 1, . . . ,∞,

with n
(n)
jt =

∑n
i=1

∑
g:nig>0 1(Tig = t) +

∑
g∈{g1,...,gj−1} 1(tg = t) the number of

groups seated at table t, including individuals 1, . . . , j−1 in household n+1, and
k

(n)
j = max{T(n), tg1 , . . . , tgj−1}.

Proofs of Lemma 1 and Theorem 1 are provided in an Appendix. If an
individual of type j is seated at a table that does not already contain an individual
of that type, they are given a new dish sampled from P0j , with this dish served
to all future individuals of type j seated at that table. In sequentially applying
Theorem 1 for n = 1, 2, . . . , the first member of a group to be seated is assigned
to the first few tables with high probability if α is small, with the subsequent
members in the same household and group automatically assigned to the same
table. Small α leads to a sparse formulation with few large tables, and hence
a small number of high probability clusters. In addition, when β is small, the
popularity of the groups varies greatly, leading to a small number of dominant
groups within each household unless the kernel is very tight. When all members
of a household are in the same group, global clustering is induced.

Proposition 1. Under (2.1),

(i) Pr(γij = γij′) =
1 + αω′

jωj′

1 + α
= ρjj′ , for j 6= j′,

(ii) Pr(γij = γi′j′) =
1

1 + α
= κjj′ , for any j, j′,

where ωj = (ωj1, . . . , ωjp)′.
Proposition 1 (i) gives the probability of allocating two individuals in a house-

hold of type j and j′ to the same table and hence the same cluster index, while
Proposition 1 (ii) gives the probability of assigning individuals from two differ-
ent households to the same table. For concreteness, consider a longitudinal data
application in which fi(x) = b(x)′θi, with bj(x) = exp{−ψb(x − zj)2} a kernel
basis function located at time zj for j = 1, . . . , p. The within-subject pairwise
dependence structure in the vector of cluster indices γi is characterized by Propo-
sition 1 (i), while the cross-subject dependence is characterized by Proposition 1
(ii). Within a subject it is more likely for random effects that are located close
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together to be allocated to the same cluster index. The ω′
jωj′ term is a cross-

product of weighted and normalized kernel functions, and so induces a highly
flexible dependence structure.

The hyperparameter α provides a global control on clustering, with small
values implying a high probability of being allocated to the same cluster in-
dex even for random effects located far apart. Indeed, in the limiting case
limα→0 ρjj′ = κjj′ = 1, and θi ∼ δΘ1

, so that all subjects are allocated to a
single global cluster. A small but non-zero α instead implies a sparse formula-
tion with a combination of short and long range dependence in clustering.

Proposition 2. Let A : Gij = Gij′ denote allocation of individuals j and j′ from
household i to the same group, B : Gi′j = Gi′j′ denote allocation of individuals j

and j′ from household i′ to the same group, and A and B denote the complements
of A and B, respectively. Then, under the KPP prior,

Pr(θij = θi′j | θij′ = θi′j′) =
1

1 + α

{
∆1 +

∆2

2 + α
+

(6 + α)∆3

(2 + α)(3 + α)

}
,

where ∆ = (∆1, ∆2, ∆3)′ is a probability vector, with ∆1 = Pr(A∩B) = (ω′
jωj′)2,

∆2 = Pr{(A ∩ B) ∪ (A ∩ B)} = 2ω′
jωj′ω

′
j(1 − ωj′), and ∆3 = Pr(A ∩ B) =

{ω′
j(1 − ωj′)}2.

As Pr(θij = θi′j) = 1/(1 + α), it is clear from Proposition 2 that the prob-
ability of clustering subjects i and i′ for their jth random effect increases given
information that these subjects are clustered for their j′th random effect. This
is an appealing property in allowing borrowing of information in local clustering.
The magnitude of the multiplicative increase in {·} tends to decrease as the dis-
tance between the jth and j′th random effect increases, though the function can
take an extremely wide variety of shapes and is not restricted to be monotone
due to the incorporation of the adaptive weights λ.

2.3. Some special cases

We consider special cases of the KPP. First, suppose Kψ(zj , zg) = 1(j = g)
for all j, g. In this case, each individual is assigned to their own group, and hence
there is no within-household dependence in the seating process. Interestingly,
in this case we obtain a fixed-π dependent Dirichlet process (DDP) prior for
{Pj}p

j=1 (De Iorio et al. (2004)), with

θij ∼ Pj , Pj =
∞∑

h=1

νhδΘhj
, Θh = (Θh1, . . . , Θhp)′ ∼ P0.

Although we assumed P0 = ⊗p
j=1P0j for simplicity, it is straightforward to modify

the specification to include dependence in P0.
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As another extreme case, let Kψ(zj , zg) = 1 for all j, g, which leads to
ωj = ω = (ω1, . . . , ωp)′ with ωg = λg/

∑p
l=1 λl. Because λg ∼ gamma(β/p, 1), we

obtain ω ∼ Dirichlet(β/p, . . . , β/p). As β decreases, ω converges in distribution
to δvξ

, with vξ a p×1 vector of zeros with a single one in position ξ ∼
∑p

l=1(1/p)δl.
Hence, from (2.1) it is clear we obtain γij = γi = φiξ for all i, j, leading to
P ∼ DP(αP0). By replacing the DP-type stick-breaking prior on the distribution
of φig in (2.1), we can induce an arbitrary species sampling prior on P .

In addition to fixed-π DDP and global DP priors, we can induce an ex-
changeable within-subject dependence structure by letting Kψ(zj , zg) = 1 for all
j, g with β > 0. In this case, it follows from Proposition 1 that

Pr(γij = γij′) =
1 + αω′ω

1 + α
, for all i, j, ω ∼ Dirichlet(β/p, . . . , β/p).

As β → 0, ω
D→ δvξ

, so that ω′ω
D→ δ1 and Pr(γij = γij′)

D→ δ1.

3. Posterior Computation

For posterior computation, we propose a Markov chain Monte Carlo (MCMC)
algorithm, which is a hybrid of data augmentation, the exact block Gibbs sam-
pler of Papaspiliopoulos (2008) and Yau et al. (2008), and Metropolis sampling.
Papaspiliopoulos (2008) proposed the exact block Gibbs sampler as an efficient
approach to posterior computation in Dirichlet process mixture models, modify-
ing the block Gibbs sampler of Ishwaran and James (2001) to avoid truncation
approximations. The exact block Gibbs sampler combines characteristics of the
retrospective sampler (Papaspilioupoulos and Roberts (2008)) and the slice sam-
pler (Walker (2007)).

For concreteness, we focus on a functional data analysis model with yit ∼
tυ

(
fi(xit), τ

)
, where tυ(µ, τ) denotes the t-density centered on µ, with υ degrees

of freedom and scale parameter τ . In addition, fi(x) follows (1.1) with θi ∼ P ,
P ∼ KPP(α, β, ψ, P0), and P0 = ⊗p

j=1P
∗
0 , where P ∗

0 denotes a Cauchy prior
centered on zero. The Cauchy prior is an appealing choice for robust shrinkage of
the basis coefficients, as small coefficients tend to be shrunk to very close to zero,
while larger coefficients fall in the tails (Bhuiyan, Ahmad, and Swamy (2007)).
To complete a Bayes specification, let α ∼ gamma(aα, bα), β ∼ gamma(aβ , bβ),
ψ ∼ gamma(aψ, bψ), υ ∼ gamma(aυ, bυ), and τ ∼ gamma(aτ , bτ ). From West
(1987), the t-density can be expressed as a scale mixture of Gaussians, which
results in yit ∼ N(b′

itθi, τ
−1ϕ−1

it ), bit = b(xit), ϕit ∼ gamma(υ/2, υ/2), P ∗
0 =

N(0, κ−1), and κ ∼ gamma(1/2, 1/2).
The algorithm proceeds as follows.
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1. Update Gij for all i, j from the multinomial conditional posterior, with

Pr(Gij = g | −) =
ωjg

∏ni
t=1 N

(
yit;b′

itΘγi(Gij=g), τ
−1ϕ−1

it

)∑p
l=1 ωjl

∏ni
t=1 N

(
yit;b′

itΘγi(Gij=l), τ−1ϕ−1
it

) , (3.1)

h = 1, . . . , p, where Θγi(Gij=g) is (Θγi11, . . . , Θγipp)′ but with the current
value of γij set to φig.

2. To update λg, for g = 1, . . . , p, use a data augmentation approach related
to Holmes and Held (2006) and Dunson, Pillai, and Park (2007). Letting
Kjg = Kψ(zj , zg) and K∗

jg = Kjg/
(∑

l 6=g λlKjl

)
, the conditional likelihood

for λg is

L(λg) =
p∏

j=1

(
λgK

∗
jg

1 + λgK∗
jg

)P

i 1(Gij=g)( 1
1 + λgK∗

jg

)P

i 1(Gij 6=g)

,

obtained via 1(Gij = g) = 1(Z∗
ijg > 0), with Z∗

ijg ∼ Poisson(λgξijgK
∗
jg) and

ξijg ∼ exp(01). Update {Z∗
ijg, ξijg} and {λg} in Gibbs steps as follows.

(a) Let Z∗
ijg = 0 if Gij 6= g and otherwise Z∗

ijg ∼ Poisson(λgξijgK
∗
jg)1(Zijg∗

> 0).
(b) ξijg ∼ gamma(1 + Z∗

ijg, 1 + λgK
∗
jg).

(c) λg ∼ gamma
(
β/p +

∑
i,j Z∗

ijg, 1 +
∑

i,j ξijgK
∗
jg

)
.

3. Update ψ, β, υ using Metropolis steps.

4. Update ϕit, i = 1, . . . , n, t = 1, . . . , ni, and τ by sampling from gamma full
conditionals

(ϕit | −) ∼ gamma
(

υ + 1
2

,
υ

2
+

τ

2
(yit − b′

itθi)2
)

,

(τ | −) ∼ gamma
(

aτ +
1
2

n∑
i=1

ni, bτ +
1
2

n∑
i=1

ni∑
t=1

ϕit(yit − b′
itθi)2

)
.

5. Implement exact block Gibbs sampler steps as follows.

(a) Sample uig ∼ uniform(0, νφig
), for i = 1, . . . , n, with νh = ν∗

h

∏
l<h(1 −

ν∗
l ).

(b) Sample the stick-breaking random variables,

ν∗
h ∼ beta

(
1 +

p∑
g=1

n∑
i=1

1(φig = h), α +
p∑

g=1

n∑
i=1

1(φig > h)
)

,

for h = 1, . . . , φ∗, with φ∗ the minimum value satisfying ν1+ · · ·+νφ∗ >
1 − min{uig}.
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(c) Update Θh, for h = 1, . . . , φ∗, from Np(Θ̂h,ΣΘh
) with

Θ̂h = ΣΘh

n∑
i=1

ni∑
t=1

τϕitΓihbit(yit − b′
itΓi(−h)θi),

ΣΘh
=

(
κIp +

n∑
i=1

ni∑
t=1

τϕitΓihbitb′
itΓih

)
,

where Ip is the p×p identity matrix, Γih = diag
(
1(γi1 = h), . . . , 1(γip =

h)
)
, and Γi(−h) = diag

(
1(γi1 6= h), . . . , 1(γip 6= h)

)
.

(d) Update φig, i = 1, . . . , n, g = 1, . . . , p from the multinomial conditional
with

Pr(φig =h | −) ∝ 1(uig <νh)
ni∏

t=1

N

(
y

(g)
it ;

p∑
j=1

1(Gij =g)bitjΘhj , τ
−1ϕ−1

it

)
,

h = 1, . . . , φ∗, where y
(g)
it = yit −

∑p
j=1 1(Gij 6= g)bitjθij .

6. Update α by sampling from the conditional posterior

(α | −) ∼ gamma
(

aα + φ∗, bα −
φ∗∑

h=1

log(1 − ν∗
h)

)
.

7. Update κ by sampling from the conditional posterior

(κ | −) ∼ gamma
(

1
2

+
pφ∗

2
,
1
2

+
1
2

φ∗∑
h=1

p∑
j=1

Θ2
hj

)
.

This algorithm is straightforward to program and has exhibited good rates of
convergence and mixing in simulations and in data applications. I also consid-
ered using the slice sampler of Walker (2007) in place of the exact block Gibbs
sampling steps, but this resulted in considerably slower rates of convergence and
mixing. Adaptations for more complex random effects models, which include
fixed and random effects and other complications, are trivial by imbedding steps
similar to those outlined above in an MCMC algorithm that includes additional
steps to update fixed effects and any additional unknowns involved in the more
complex model.

4. Simulation Example

To assess the performance of the approach, I assumed n = 100 and simulated
data under the functional data analysis model described in Section 3, with n =
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100, υ = 10, τ = 20, X = (0, 1), b1(x) = 1, bj+1(x) = exp{−25(x − zj)2}, and
zj = (j − 1)/19, for j = 1, . . . , 19. In addition, I let ni = 10 plus a discrete
uniform random variable on [1, . . . , 10], for i = 1, . . . , n, and simulated tij ∼
Uniform(0, Ci), with Ci = 1 for the first 50 subjects and Ci = 2/3 for the second
50 subjects. I let Θh = (Θh1, . . . ,Θl20)′, for h = 1, 2, 3, with the elements
Θhl ∼ 0.8δ0+0.2N(0, 2) independently. Then, letting θij = Θγijj , for j = 1, . . . , p,
I simulated the elements of γi = (γi1, . . . , γip)′ from a Markov chain, with γi1

set to a random element of {1, 2, 3}, γij = γi,j−1 with probability 0.9, and γij

otherwise set to a random element of {1, 2, 3}.
The approach of Section 3 was applied after choosing hyperpriors by letting

aα = bα = 1, aβ = bβ = 1, aψ = 25, bψ = 1, aυ = 4, bυ = 1, and aτ =
bτ = 0.1. These were considered reasonable default values when X = (0, 1) and
the overall variance of y is within a factor of 10 of 1. Values of α ≈ 1 favor a
sparse specification, with most of the probability mass placed on the first few
cluster indices, while a gamma(1,1) prior for β allows substantial variability in
the group-specific weights, tending to favor a few dominant groups. However,
the hyperpriors are vague enough to allow substantial uncertainty. The prior for
υ favors heavy-tailed measurement errors and hence robust estimation, while the
prior for the scale parameter τ is vague if the data are normalized in advance.
In addition, I let Kψ(z, z′) = exp{−ψ(z − z′)2} and zj = z∗j , for j = 1, . . . , 19.
Note that these values of zj , z∗j , and p provide a reasonable default for smooth
curves, as there are sufficient numbers of equally-spaced kernels to capture a very
wide variety of smooth curve shapes. The results are robust to increases in the
number of kernels due to the adaptive shrinkage resulting from allowing the data
to inform about κ and β. The MCMC algorithm was run for 22,500 iterations
including a 7500 iteration burn-in, with the chain thinned by collecting every 15
iterations due to storage constraints.

Based on examination of trace plots of the parameters and function estimates
at a variety of points for different subjects, convergence was rapid and mixing
was good. Note that it is important to avoid diagnosing convergence based
on examination of the unique coefficient vectors, Θh, due to the well-known
label switching issue that is omnipresent in mixture models (Jasra, Holmes, and
Stephens (2005)). This label switching does not create problems as long as
the focus of inference is not on mixture component-specific quantities and one
obtains good rates of convergence and mixing in quantities of interest, such as
individual-specific function estimates.

Figure 2 shows the data, estimated posterior mean curves (solid lines), 95%
pointwise credible intervals (dashed lines), and true curves (dotted lines) for
subjects 1, . . . , 8 (top 8 panels) and subjects 51, . . . , 58 (bottom 8 panels). Recall
that subjects 1, . . . , 50 have observations throughout the [0, 1] interval, while
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subjects 51, . . . , 100 have no observations in the [2/3, 1] interval. For subjects
1, . . . , 50 the estimates are very close to the true curves, while there is some
deviation after the 2/3 point for some of the 51, . . . , 100 subjects. However,
in general, predictions across this interval are quite good, with the true curves
enclosed in the credible bounds. The average mean square error across a dense
grid of times between 0 and 1 is 0.156 and the mean width of 95% credible
intervals is 0.916.

Repeating the analysis for the LPP prior of Dunson (2009), the results were
very good at locations close to data points. However, interpolations and pre-
dictions were not as good as for the KPP. For example, for the subject in the
(2,3) panel there was a substantial gap in the observations. Across this gap, the
95% credible intervals were much wider in the LPP analysis. In addition, across
the [2/3,1] region for many of the subjects 51, . . . , 100, the LPP estimates were
substantially farther from the truth than the KPP-based estimates. The mean
square error for the LPP was 0.183.

5. Application to Hormone Curve Data

5.1. Function estimation

I consider progesterone curve data in early pregnancy previously analyzed
by Dunson (2009) using a functional data analysis model with kernel basis func-
tions and t-distributed measurement errors. That article demonstrated improved
performance for a local partition process (LPP) prior on the random effects dis-
tribution relative to a DP. Data consisted of daily urinary measurements of PdG,
a metabolite of progesterone, starting on the identified day of ovulation and con-
tinuing for up to 40 additional days. There were 165 women, with an average of
23 measurements per women (range = [4, 41]). To analyze these data using the
KPP prior for the random effects distribution, I implemented the approach used
in Section 4, with the same prior specification.

In examining plots of the individual curve estimates for each of the 165
women, it is apparent that the estimates fit the data very well. Figure 3 shows the
estimated curves and 95% pointwise credible intervals for 16 randomly selected
women. There is a small but notable improvement in fit in using the KPP prior
for the random effects distribution instead of the LPP prior. The improvement in
fit is not attributable to over-fitting, as it is clear that a very sparse representation
of the data is obtained in examining the estimated parameters in Table 1. In
particular, the small α value suggests that a small number of unique coefficient
vectors are sufficient to characterize the data. Indeed, the estimate of φ∗ was
4.72, implying that the basis coefficient vectors for all 165 women are constituted
of elements selected from ∼ 5 unique coefficient vectors. In addition, the small
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Figure 2. Results for simulation example. The upper 8 plots are for subjects
having observations distributed randomly in [0,1], while the lower 8 plots
are for subjects having observations in [2/3,1]. The solid lines are posterior
mean curves, dashed lines are 95% pointwise credible intervals, and dotted
lines are true curves.

value of β suggests the occurrence of a few dominate locations with much higher
λh values, again leading to a sparse characterization.
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Figure 3. Log(PdG) data and KPP-based function estimates for 16 randomly
selected women. The data points are marked with ×, the posterior means
are solid lines, and 95% credible intervals are dashed lines.

A primary motivation for the KPP over the LPP is that the incorporation of
information on the relative locations of the basis functions should allow improve-
ments in prediction. Although the LPP is flexible enough to provide a good fit
to complex functional data, one may expect diminished predictive performance
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Table 1. Posterior summaries of parameters in KPP analysis of hormone
curve data.

Posterior Summary
Parameter Mean Median SD 95% CI

α 0.43 0.38 0.26 [0.08, 1.11]
β 0.30 0.30 0.07 [0.18, 0.45]
τ 12.94 12.93 0.84 [11.27, 14.71]
ψ 4.41 4.34 0.94 [2.81, 6.56]
υ 2.06 2.06 0.02 [2.02, 2.11]
κ 30.42 25.61 17.04 [12.26, 78.63]
φ∗ 4.72 4.00 1.96 [3.00, 9.50]

when there is no observed data available for a subject at times close to the time
of interest. To assess predictive performance, we repeated the analysis holding
out the last 5 observations for 50 women randomly selected from among the
women having at least 10 observations. Figure 4 shows the true values of yit

for these held-out observations versus the predicted values, with 95% predictive
intervals shown with light dotted lines. The correlation between the true and
predicted values was 0.866 and the mean square predictive error was 2.05. Given
that hormone trajectories are difficult to predict more than a few days out, this
is very good performance. For the first held out observation the correlation was
very high at 0.939, while for the second to fifth observations the correlations were
0.898, 0.765, 0.741 and 0.685, respectively.

For comparison, we repeated the analysis using the LPP prior with the same
held-out observations. Figure 5 shows the true values of yit versus the predictive
values. The results are clearly not as good as those shown in Figure 4 for the
KPP, with a small but non-neglible subset of the points moving much further
away from the line. The correlation between yit and ŷit diminished to 0.795, the
mean square predictive error was 2.340 and the correlations for observations 1-5
were 0.939, 0.853, 0.580, 0.500, and 0.389, respectively. As expected, the LPP
has good predictive performance when the subject has data available close to
the time of interest, but the performance decays rapidly with an increasing time
gap. Repeating the analysis also for a DP prior on the random effects, the mean
square predictive error was 4.920 and the correlation between yit and ŷit was
0.681, suggesting substantially worse predictive performance than for either the
KPP or LPP.

The computations were implemented on a MacBook Pro laptop with a 2.6
GHz Intel Core 2 Duo processor. For the KPP analysis, MCMC iterations pro-
ceeded at a rate of approximately 1/sec using non-optimized Matlab code, so
that 10,000 iterations required several hours to run. Convergence was assessed
by examining trace plots of the subject-specific functions at a wide variety of
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Figure 4. Out-of-sample predictive performance for the KPP. The last 5
log(PdG) observations for 50 women randomly selected from those with 10
or more observations were held out.

times for a random selection of subjects, while also examining trace plots of the
hyperparameters in the KPP prior and parameters characterizing the residual
distribution. In addition, correlograms were estimated to assess mixing. These
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Figure 5. Out-of-sample predictive performance for the LPP (Dunson
(2009)). The last 5 log(PdG) observations for 50 women randomly selected
from those with 10 or more observations were held out.

exercises showed that apparent convergence occurred rapidly, and autocorrela-
tion functions declined to zero quickly for most of the unknowns, suggesting good
mixing.
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5.2. Dependent KPP and classification

As motivated in Bigelow and Dunson (2009), it is of interest to use the PdG
measurements following ovulation to predict impending early pregnancy loss.
For i = 1, . . . , 165, let li = 1 denote that an early pregnancy loss occurred, with
li = 0 otherwise. Let i = 1, . . . , n0 index the women in a training sample, and let
i = n0 + 1, . . . , n = 165 index women in a test sample. The overall proportion of
early pregnancy losses was 1/n

∑n
i=1 li = 0.29. To assess the impact of the size of

the training sample on predictive performance, I varied n0 ∈ {85, 65, 45}, running
each case for two different randomly chosen splits of the data and averaging the
results.

To adapt the model implemented in Section 5.1 for prediction, I propose a
nonparametric Bayes discriminant analysis approach based on a dependent KPP
(DKPP) mixture model. De la Cruz-Mesia, Quintana and Müller (2007) proposed
a related discriminant analysis approach for classification based on longitudinal
markers, but they used a dependent DP (DDP) instead of a DKPP. To predict
li given yi, write

Pr(li = 1 |yi) =
Pr(li = 1) L(yi | li = 1)

Pr(li = 1) L(yi | li = 1) + Pr(li = 0)L(yi | li = 0)
,

where Pr(li = 1) = ζ is the marginal probability of an early pregnancy loss, with
ζ ∼ beta(1, 1) to allow uncertainty in this probability under a uniform prior, and

L(y | li) =
ni∏

t=1

tκ(yit;b′
itθi, τ), (θi | li = l) = P (l), (5.1)

is the conditional likelihood of yi given li = l, for l = 0, 1. I consider DDP
and DKPP priors for the random effects distributions (P (0), P (1)), with the same
probability weights but varying coefficient vectors Θ(0)

h and Θ(1)
h for P (0) and

P (1), respectively. In particular, Θ(1)
h is expressed as Θ(0)

h plus a component-
specific shift.

The MCMC algorithm of Section 3 is straightforward to modify to accom-
modate the DDP and DKPP models. However, in implementing the exact block
Gibbs sampler for the DDP model, results tended to be quite sensitive to the ini-
tial cluster allocation, with a slow rate of mixing between different configurations.
To address this problem, I modified the MCMC implementation to incorporate
the label-switching moves recommended by Papaspiliopoulos and Roberts (2008).
This modification was included for both the DDP and DKPP models to make
the results comparable, and led to greatly improved mixing. For each training-
test split of the data, the MCMC algorithm was run for 10,000 iterations with a
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1,500 iteration burn-in for both the DDP and DKPP analyses. In the DDP anal-
yses, the proportion of test subjects correctly classified was 0.88, 0.84 and 0.86
for n0 = 85, 65, 45, respectively, while the corresponding results for the DKPP
were 0.94, 0.96 and 0.92. Hence, the DKPP had consistently better predictive
performance even for small training samples.

6. Discussion

This article has proposed a new nonparametric Bayes prior for unknown
random effects distributions, allowing for flexible local borrowing of informa-
tion across subjects through dependent local partitioning. The KPP has clear
advantages over previous nonparametric Bayes methods based on global parti-
tioning, such as the Dirichlet process. In particular, the KPP favors a sparser
representation of the data in allowing subjects to have clustered random effects,
with cluster allocation varying for different random effects. Clustering is viewed
as an approach for dimensionality reduction and flexible modeling, though one
could perform inferences on the local clustering structure based on the proposed
methods.

The proposed approach was illustrated through applications to functional
data analysis (FDA) models having an unknown distribution for subject-specific
random effects. Behseta, Kass, and Wallstrom (2005) and Kaufman and Sain
(2009) instead avoid an explicit basis representation through hierarchical Gaus-
sian processes. Such models do not allow local borrowing of information or clus-
tering, and results may be sensitive to the choice of covariance function. Morris
and Carroll (2006) proposed a wavelet-based functional mixed model that in-
corporates independent Gaussian random effects. Flexible semiparametric Bayes
approaches for FDA were recently proposed by MacLehose and Dunson (2009)
and Rodriguez, Dunson, and Gelfand (2009). The MacLehose and Dunson (2009)
model relies on a kernel convolution of a random signed measure, leading to ap-
pealing theoretical properties but challenging computation. Rodriguez, Dunson,
and Gelfand (2009) induced an FDA model through a nonparametric Bayes prior
for a collection of related multivariate densities, leading to global functional clus-
tering.

In addition to sparse characterization of unknown random effects distribu-
tions, there are clear applications of the KPP to multiple changepoint detection
and image segmentation. In such settings, it is useful to consider a minor modifi-
cation of the formulation to replace the vector Θh = (Θh1, . . . , Θhp)′ with a scalar
Θh, letting θij = Θγij , for j = 1, . . . , p. Then, using piecewise constant or linear
basis functions, so that z = (z1, . . . , zp)′ is a vector of potential knot locations, a
changepoint in fi occurs at zj if γij 6= γij−1. The KPP will automatically borrow
information on changepoint locations within- and across-subjects using a more
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flexible dependence structure than commonly-used Markov models. In addition,
computation is straightforward using the proposed MCMC algorithm.
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Appendix

Proof of Lemma 1. Letting k(n) = max{γi}n
i=1 and nt =

∑n
i=1 1(γi = t), we

have

Pr(γ1, . . . , γn) = E

[
k(n)∏
t=1

{
π∗

t

∏
s<t

(1 − π∗
s)

}nt
]

=
k(n)∏
t=1

E
{(

π∗
t

)nt
(
1 − π∗

t

)n−
Pt

s=1 ns
}

=
k(n)∏
t=1

Be
(
nt + 1,

∑k(n)

s=t+1 ns + α
)

Be(1, α)
,

where Be(·) is the beta function. Letting k(n+1) = max{k(n),m}, at = nt + 1,
and bt =

∑k(n)

s=t+1 ns + α, we have

Pr(γ1, . . . , γn, γn+1 = m) =
k(n+1)∏

t=1

Be
(
at + 1(m = t), bt + 1(m > t)

)
Be(1, α)

.

Noting that Be(a+1, b)/Be(a, b) = a/(a+b) and Be(a, b+1)/Be(a, b) = b/(a+b)
from properties of the beta function, Lemma 1 is obtained as the ratio of the
previous two expressions,

Pr(γn+1 = m |γ(n)) =
{ m−1∏

t=1

(
bt

at + bt

)}
am

am + bm
, m = 1, . . . ,∞.

Proof of Theorem 1. Let D(n) = {θ(n),G(n),T(n)}, n
(j)
g =

∑j
l=1 1(gl = g)

denote the number of type l ≤ j individuals from household n+1 that belong to
group g, T(j)

n+1 = {Tn+1,g, g : n
(j)
g > 0} denote the tables for the groups formed by

individuals of type l ≤ j, t(j) = {tg, g : n
(j)
g > 0}, G(j)

n+1 = (Gn+1,1, . . . , Gn+1,j)′,
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and g(j) = (g1, . . . , gj−1)′. Then, the predictive distribution in Theorem 1 can
be factorized as(

θn+1,Gn+1 = g,Tn+1 = t |D(n)
)

=
p∏

j=1

{(
θn+1,j |θ(j−1)

n+1 ,T(j)
n+1 = t(j), G

(j)
n+1 = g(j),D(n)

)
Pr(Tn+1,gj = tgj |T

(j−1)
n+1 ,G(j)

n+1 = g(j),D(n)
)

Pr(Gn+1,j = gj |G(j−1)
n+1 = g(j−1),D(n)

)}
,

Simplifying each of these conditional distributions in turn, we obtain

•
(
θn+1,j |θ(j−1)

n+1 ,T(j)
n+1 = t(j), G

(j)
n+1 = g(j),D(n)

)
is either P0j if

∑n
i=1 1(TiGij = tgj ) = 0, so that table tgj does not yet have

an individual of type j, or is δθij
for i : TiGij = tgj .

• Pr
(
Tn+1,gj = tgj |T

(j−1)
n+1 ,G(j)

n+1 = g(j),D(n)
)
.

There are two possibilities: (i) one of the previous 1, . . . , j − 1 individuals
in household n + 1 has been allocated to the same group as individual i, so
that gj ∈ G(j−1)

n+1 ; or (ii) the jth individual in household n + 1 is the first
member of group gj to be seated. In case (i), Tn+1,gj is the table assignment
for previous members of the group from household n + 1 with probability
one. In case (ii), the table assignment follows the predictive rule of the
oCRP shown in Lemma 1, but with the number of past subjects seated at
each table replaced with the number of past groups seated at each table
including groups G(n) and G(j−1)

n+1 . This follows from the form for φig in
expression (2.1).

• Pr
(
Gn+1,j = gj |G(j−1)

n+1 = g(j−1),D(n)
)

= ωjgj .

Proof of Proposition 1. Proposition 1 can be calculated as the probability
that individuals i, j and i, j′ choose the same group, which is trivially calculated
as ω′

jωj′ , plus the probability that these individuals choose different groups (1−
ω′

jωj′) multiplied by the probability of these groups being assigned to the same
table,

E
[ ∞∑

t=1

{
ν∗

t

∏
s<t

(1−ν∗
s )

}2]
=

(
1

1+α

)(
2

2 + α

) ∞∑
t=0

(
α

2 + α

)t

=
(

1
1+α

)
. (A.1)

Here the last identity is a consequence of the infinite geometric series identity. In
addition, Pr(γij = γi′j) is the probability that the jth individual in households i
and i′ are allocated to groups that choose the same table, which is also 1/(1+α).
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