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RIGID MOTION INVARIANT TWO-SAMPLE TESTS

L. Baringhaus and C. Franz

Leibniz Universität Hannover

Abstract: New rigid motion invariant tests for the multivariate two-sample problem

are proposed. The test statistic is based on the inter-point distances between the

two samples and the inter-point distances within each sample. The asymptotic null

distribution of the test statistic is a weighted sum of squares of independent unit

normal random variables, the weights being the eigenvalues of a certain Hilbert-

Schmidt-operator depending on the unknown underlying distribution. An estimate

of the limit distribution is obtained by replacing the unknown weights by the eigen-

values of a bootstrapped version of the operator. Quantiles of the estimate are cho-

sen as critical values. The tests are shown to be consistent. Approximate Bahadur

efficiencies computed for normal location alternatives, normal scale alternatives,

and Lehmann’s contaminated alternative are seen to coincide locally with Pitman

efficiencies. The results are supported by a simulation study.

Key words and phrases: Bootstrap in the limit, Cramér test, multivariate two-

sample tests, rigid motion invariance.

1. Introduction

There is a vast literature dealing with tests for more or less special two-sample
problems. Here we concentrate on multivariate nonparametric two-sample prob-
lems. To be specific, let F be some nonparametric family of distributions on
the Borel sets Bd of Rd. Let X1, . . . , Xm, Y1, . . . , Yn be independent random (col-
umn) d-vectors. Let the X1, . . . , Xm be identically distributed with unknown
distribution F ∈ F , and the Y1, . . . , Yn be identically distributed with unknown
distribution G ∈ F . For broad classes F , we aim to develop new tests for testing

H : F = G, K : F 6= G. (1.1)

Origin. Our starting point is the Cramér test, proposed recently by Baring-
haus and Franz (2004) for the class F of distributions H with finite expectation∫
|x| dH(x), where |·| denotes the Euclidean norm on Rd. The authors give a
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simple proof of the inequality

0 ≤ E|X1 − Y1| −
1
2
E|X1 − X2| −

1
2
E|Y1 − Y2|

=
∫

|x − y| dF ⊗ G(x, y) − 1
2

∫
|x − y| dF ⊗ F (x, y) (1.2)

− 1
2

∫
|x − y| dG ⊗ G(x, y)

and show that equality holds if and only if F = G. A test statistic that is
motivated by this result is the empirical counterpart to the expression on the
right side of (1.2), multiplied by mn/(m + n) to get a limiting null distribution,
i.e.,

Tm,n =
mn

m + n

[∫
|x − y| dFm ⊗ Gn(x, y) − 1

2

∫
|x − y| dFm ⊗ Fm(x, y)

− 1
2

∫
|x − y| dGn ⊗ Gn(x, y)

]
=

mn

m + n

[
1

mn

m∑
j=1

n∑
k=1

|Xj − Yk| −
1

2m2

m∑
j=1

m∑
k=1

|Xj − Xk|

− 1
2n2

n∑
j=1

n∑
k=1

|Yj − Yk|
]
,

where Fm = (1/m)
∑m

i=1 δXi and Gn = (1/n)
∑n

j=1 δYj (δa denotes the distri-
bution degenerate at a ∈ Rd) are the empirical distributions of X1, . . . , Xm and
Y1, . . . , Yn. Rejection is for large values of Tm,n, where the critical value is ob-
tained by bootstrapping. The test statistic was proposed slightly prior to Baring-
haus and Franz by Szabo et al. (2002, 2003) and also by Székely (2004). Klebanov
et al. (2006) discuss the application of a permutation procedure to micro-array
data analysis. A more general type of test statistic is of the form

T `
m,n =

mn

m + n

[∫
`(x, y) dFm ⊗ Gn(x, y) − 1

2

∫
`(x, y) dFm ⊗ Fm(x, y)

− 1
2

∫
`(x, y dGn ⊗ Gn(x, y)

]
=

mn

m + n

[
1

mn

m∑
j=1

n∑
k=1

`(Xj , Yk) −
1

2m2

m∑
j=1

m∑
k=1

`(Xj , Xk)

− 1
2n2

n∑
j=1

n∑
k=1

`(YjYk)
]
,
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where ` : Rd × Rd → R is a continuous negative definite kernel. Like Tm,n, it is
motivated by an inequality asserting that

0 ≤ E`(X1, Y1) −
1
2
E`(X1, X2) −

1
2
E`(Y1, Y2) (1.3)

=
∫

`(x, y) dF ⊗ G(x, y) − 1
2

∫
`(x, y) dF ⊗ F (x, y) (1.4)

− 1
2

∫
`((x, y) dG ⊗ G(x, y)

for distributions F,G such that ` is integrable with respect to H ⊗ H where
H = (F + G)/2. See Berg, Christensen, and Ressel (1984, Thm. 2.1), Zinger,
Klebanov, and Kakosyan (1989) and Klebanov (2005). Clearly, equality holds
if F = G. To achieve consistency, of special interest are kernels for which the
converse is true, i.e. equality holds in (1.3) if and only if F = G. Examples of
such kernels are given in Klebanov (2005). Especially, for all 0 < r < 2 the
kernels `r(x, y) = |x− y|r, x, y ∈ Rd, are shown to have the desired property, see
e.g., Klebanov (2005) and Székely (2004).

Rigid motion invariant tests. Our interest is in tests that are rigid motion
invariant. Recall that a rigid motion g on Rd is a map g : Rd → Rd of the form
g(x) = Qx+ a, x ∈ Rd, where Q is an orthogonal d× d-matrix, and a is a vector
in Rd. The testing problem considered by Baringhaus and Franz is invariant with
respect to the group of rigid motions. The rigid motion invariance of the Cramér
test and, more generally, that of the tests based on T `r

m,n is obvious. There
is a natural generalization. Choose some continuous function φ : [0,∞) → R
such that `φ(x, y) = φ(|x − y|2), x, y ∈ Rd, is a negative definite kernel, and use
T φ

m,n := 2T
`φ
m,n where `φ(x, y) = φ(|x − y|2), x, y ∈ Rd, is a suitable negative

definite kernel as a test statistic.

Test statistic and properties. We aim to develop statistical tests that are con-
sistent in the sense that, given any fixed alternative F 6= G, F,G ∈ F , the power
of the test tends to 1 as the sample sizes m,n tend to infinity in a suitable way.
To obtain consistency of the test rejecting the hypothesis for large values of T φ

m,n,

some conditions need to be imposed on the function φ chosen. We consider the
continuous functions φ : [0,∞) → R that satisfy the inequality

0 ≤ 2
∫

φ(|x − y|2) dF ⊗ G(x, y) −
∫

φ(|x − y|2) dF ⊗ F (x, y)

−
∫

φ(|x − y|2) dG ⊗ G(x, y)
(1.5)



1336 L. BARINGHAUS AND C. FRANZ

for all distributions F,G on the Borel sets of Rd with finite integrals
∫

φ(|x −
y|2) dF ⊗G(x, y),

∫
φ(|x− y|2) dF ⊗F (x, y), and

∫
φ(|x− y|2) dG⊗G(x, y), and

with equality holding if and only if F = G. Such functions exist, and examples
will be given. We can (and do) assume without loss of generality that φ(0) = 0,

and that φ is non-negative.
The inequality (1.5) is valid for all distributions F,G with finite support if

and only if `φ is negative definite, see e.g., Berg, Christensen, and Ressel (1984),
Proposition 7.1.2. Recall that a function f : (0,∞) → R is completely monotone
if (−1)kf (k)(t) ≥ 0 for all t > 0 and k = 0, 1, . . . . The continuous real functions
φ on [0,∞) for which `φ is negative definite for each dimension d are just the
functions having a completely monotone derivative f = φ′|(0,∞) on (0,∞). Es-
sentially, this is a result of Schoenberg (1938). A more general result is given
by Guo, Hu, and Sun (1993). Since equality should hold in (1.5) if and only if
F = G, we have to exclude the functions φ(t) = ct, t ≥ 0, with some constant
c ≥ 0, as is easily checked. Thus, in what follows we are concerned with contin-
uous functions φ : [0,∞) → [0,∞) with φ(0) = 0 and non-constant completely
monotone derivative on (0,∞). Such functions are clearly sub-additive,

φ(s + t) ≤ φ(s) + φ(t) for all s, t ≥ 0,

which implies that

φ(|x − y|2) ≤ 2
(
φ(|x|2) + φ(|y|2)

)
for all x, y ∈ Rd. (1.6)

Introducing for given φ the class F = Fd(φ) of distributions H on Bd with finite
integral

∫
φ(|x|2) dH(x), we have that for all F,G ∈ Fd(φ) the integrals in (1.5)

are finite. With Fd(φ) the underlying class of distributions the testing problem
(1.1) is rigid motion invariant. Mattner (1990, 1997) shows that (1.5) holds
true for F,G ∈ Fd(φ). For completeness, we give a different proof in Section 2
that deals with representations of the test statistic. It has the further advantage
that it yields an alternative representation of the test statistic T φ

m,n, useful when
studying its asymptotic behavior and that of the corresponding test. The statistic
T φ

m,n is the empirical counterpart of the expression on the right hand side in (1.5),
multiplied by mn/(m + n).

The limiting null distribution of T φ
m,n is derived in Section 3 by using the

Central Limit Theorem for random elements in Hilbert spaces. This method of
proof is different from that given by Baringhaus and Franz (2004) for the test
statistic Tm,n.

The distribution of T φ
m,n, say L(T φ

m,n|F ), and that of its limiting distribution,
say L(T φ|F ), depend on the common underlying distribution F = G ∈ Fd(φ)
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in the case when the hypothesis is true. The common underlying distribution
F = G ∈ Fd(φ) is estimated by Hm,n = [m/(m + n)]Fm+[n/(m + n)]Gn, the em-
pirical distribution of the pooled sample, which gives L(T φ

m,n|Hm,n) as an estima-
tor of L(T φ

m,n|F ). For given α ∈ (0, 1) the (1−α)-quantile, cm,n, of L(T φ
m,n|Hm,n)

is an estimator of the (1 − α)-quantile of L(T φ
m,n|F ), and can be used as the

critical value of a test. Due to computational difficulties, it may in turn be esti-
mated by taking Monte Carlo samples from the distribution L(T φ

m,n|Hm,n). We
show in Section 4 that a ‘bootstrap in the limit method’ also works. By this
method, L(T φ|Hm,n) is used as estimator of L(T φ

m,n|F ), and the (1−α)-quantile
cm,n of L(T φ|Hm,n) is used as critical value of the test. This procedure has the
advantage, that the critical values cm,n can be computed by numerical methods.
No Monte Carlo samples are needed.

In Section 5 the performance of some new tests is investigated by means
of the approximate Bahadur efficiency, which is shown to coincide locally with
the Pitman efficiency. Section 6 adds a simulation study on the power of the
new tests compared to that of their well-known parametric and non-parametric
competitors. The empirical results obtained emphasize the theoretical findings
and show that the new procedures exhibit satisfactory power. Experiences from
the simulation study providing practitioners with guidance for the application of
the new tests are summarized in Section 7. Lastly, Section 8 outlines an extension
to the c-sample problem.

Nonparametric multivariate two-sample problems are studied by various au-
thors. We refer to the recent paper of Baringhaus and Franz (2004) for a small
overview. It is pointed out there that only a few tests share the properties of (i)
being invariant with respect to rigid motions, and (ii) being consistent against
any fixed alternative F 6= G where F and G belong to some large nonparametric
class F of distributions. Of special interest is the case where F is the class of
all distributions on the Borel sets of R. Of course, in applications dealing with
data vectors of incommensurable components one would not ask for a proce-
dure satisfying the property (i) of rigid motion invariance. Tests based on the
component-wise ranks, extensively dealt with in Puri and Sen (1971), other rank
like tests (see, e.g., Hettmannsperger and McKean (1998), Zuo and He (2006))
or Kolmogorov-Smirnov-type tests (Bickel (1969), Præstgaard (1995)) may be
applied. Statistical tests based on the number of nearest neighbor type coinci-
dences (Henze (1984, 1988), Schilling (1986)) are orthogonally invariant if the
Euclidean distance is used, as is done in Henze (1984). Henze’s test is one of
the competitors the performance of which is compared with the new procedure
in Section 6. It is rigid motion invariant and it is seen to be consistent against
against each alternative F 6= G, at least if F and G are assumed to have a.e.
continuous densities.
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2. Representations of the Test Statistics

Let Φ be the family of continuous functions φ : [0,∞) → [0,∞) with φ(0) = 0
and non-constant completely monotone derivative on (0,∞). Let us first give a
useful representation for the functions in Φ. A theorem of Bernstein states that
a real function on the interval (0,∞) is completely monotone if and only if it is
the Laplace transform of a positive Radon measure on the Borel sets of [0,∞),
see, e.g., Berg, Christensen, and Ressel (1984), Corollary 4.6.14. Thus for φ ∈ Φ,

φ′ can be written as

φ′(z) =
∫

[0,∞)
exp(−λz) dσφ(λ), z > 0,

where σφ is some positive Radon measure σφ on the Borel sets of [0,∞). It is
seen that σφ is finite if and only if φ′(0+) < ∞. Using the Fubini Theorem, we
get

φ(z) = zσφ({0}) +
∫

(0,∞)

1
λ

[1 − exp(−λz)] dσφ(λ), z ≥ 0. (2.1)

Writing

d2
φ(F,G) := 2

∫
φ(|x − y|2) dF ⊗ G(x, y) −

∫
φ(|x − y|2) dF ⊗ F (x, y)

−
∫

φ(|x − y|2) dG ⊗ G(x, y)

for F,G ∈ Fd(φ), (1.5) can be written as d2
φ(F,G) ≥ 0 for each F,G ∈ Fd(φ),

and one has T φ
m,n = [mn/(m + n)]d2

φ(Fm, Gn).

Lemma 2.1. Let φ ∈ Φ, and let X,Y be random vectors with distributions
F,G ∈ Fd(φ), respectively. Then,

d2
φ(F,G) =

∫
(0,∞)

∫
Rd

1
λ

∣∣∣ϕF (
√

2λz) − ϕG(
√

2λz)
∣∣∣2 dNd(0, Id)(z) dσφ(λ)

+ 2σφ({0}) |EX − EY |2,

where σφ is the positive Radon measure associated with φ, the functions ϕF ,
ϕG are the Fourier transforms of F,G, and dNd(0, Id)(z) denotes integration
with respect to the d-variate normal distribution with mean vector 0 and the d-
dimensional unit matrix Id as covariance matrix. Defining the measure τφ on the
Borel sets of Rd by

τφ(B) :=
∫

(0,+∞)

∫
B

1
λ

dNd(0, 2λId) dσφ(λ), B ∈ Bd,
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it is σ-finite and

d2
φ(F,G) =

∫
|ϕF (z) − ϕG(z)|2 dτφ(z) + 2σφ({0}) |EX − EY |2. (2.2)

Proof. If σφ({0}) > 0 it follows from (2.1) that z2 ≤ σφ({0})−1φ(|z2|) for z ≥ 0,

which implies that E|X|2 and E|X| are finite. Using the representation

exp(−λ|x − y|2) =
∫

Rd

exp(i
√

2λ(x − y)′z) dNd(0, Id)(z)

=
∫

Rd

cos(
√

2λ(x − y)′z) dNd(0, Id)(z), x, y ∈ Rd,

and introducing independent random d-vectors X1, X2, Y1, Y2 with X1
D= X2

D= X

and Y1
D= Y2

D= Y , where ‘D=’ means equality in distribution, we obtain

d2
φ(F,G)

= E
[
φ(|X1 − Y2|2) + φ(|X2 − Y1|2) − φ(|X1 − X2|2) − φ(|Y1 − Y2|2)

]
= E

∫
(0,∞)

1
λ

[
− exp(−λ|X1 − Y2|2) − exp(−λ|X2 − Y1|2)

+ exp(−λ|X1 − X2|2) + exp(−λ|Y1 − Y2|2)
]

dσφ(λ)

+σφ({0})E
[
|X1 − Y2|2 + |X2 − Y1|2 − |X1 − X2|2 − |Y1 − Y2|2

]
= E

∫
(0,∞)

{
1
λ

∫
Rd

[
− cos(

√
2λ(X1 − Y2)′z) − cos(

√
2λ(X2 − Y1)′z)

+ cos(
√

2λ(X1 − X2)′z) + cos(
√

2λ(Y1 − Y2)′z)
]

dNd(0, Id)(z)
}

dσφ(λ)

+2σφ({0}) E
[
(X1 − Y1)′(X2 − Y2)

]
. (2.3)

The integrand in (2.3) is continuous and can be written as the difference of two
non-negative functions,[

1 − cos
(√

2λ(X1 − Y2)′z
)

+ 1 − cos
(√

2λ(X2 − Y1)′z
)]

−
[
1 − cos

(√
2λ(X1 − X2)′z

)
+ 1 − cos

(√
2λ(Y1 − Y2)′z

)]
,

the integrals of which are finite as is seen from

E
∫

(0,∞)

1
λ

∫
Rd

[
1 − cos

(√
2λ(X1 − Y2)′z

)]
dNd(0, Id)(z) dσφ(λ)

≤ Eφ(|X1 − Y2|2) < ∞,
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and corresponding inequalities for the other three terms. Thus, due to the Fubini
Theorem, we can change the order of integration in (2.3) to get the representation

d2
φ(F,G) =

∫
(0,∞)

{
1
λ

E
∫

Rd

[
exp(i

√
2λX ′

1z) − exp(i
√

2λY ′
1z)

]
[
exp(−i

√
2λX ′

2z) − exp(−i
√

2λY ′
2z)

]
dNd(0, Id)(z)

}
dσφ(λ)

+ 2σφ({0}) |EX1 − EY1|2 ,

where, due to the spherical symmetry of the N(0, Id) distribution, the integrals of
the additional terms in the complex-valued integrand vanish. Applying again the
Fubini Theorem, and using the definition of τφ, the representation (2.2) follows.
Putting B0 = {0}, and Bk = {z ∈ Rd : |z| ≥ 1/k}, k ∈ N we have τφ(B0) = 0,

and
τφ(Bk) ≤ d φ(4dk2) < +∞ for k = 1, 2, . . . ,

which implies that τφ is σ-finite.

Remark. As is shown by Mattner (1990, 1997), dφ defines a metric on Fd(φ).
The representation (2.2) provides a simple proof of this result. Here, we show
that dφ(F,G) = 0 implies F = G. In fact, from dφ(F,G) = 0 it follows that
φF = φG τφ-almost everywhere. Since τφ dominates λd, the Lebesgue measure
on Bd, it holds that φF = φG λ-almost everywhere. The continuity of φF and
φG and the uniqueness theorem for Fourier transforms yield F = G.

Replacing F and G by the empirical distributions Fm and Gn based on
X1, . . . , Xm and Y1, . . . , Yn, we have

T φ
m,n =

mn

m + n

[∫
|ϕFm(z) − ϕGn(z)|2 dτφ(z) + 2σφ({0})|X − Y |2

]
,

where X = (1/m)
∑m

k=1 Xk, Y = (1/n)
∑n

`=1 Y`, and ϕFm and ϕGn are the
empirical Fourier transforms of X1, . . . , Xm and Y1, . . . , Yn. Introducing for a
distribution H on Bd the sine-cosine transform ηH(z), z ∈ Rd,

ηH(z) :=
∫

[cos(x′z) + sin(x′z)] dH(x), z ∈ Rd,

it is seen by arguing as in the proof of Lemma 2.1 that for distributions F,G ∈
Fd(φ) d2

φ(F,G) can be also written as

d2
φ(F,G) =

∫
|ηF (z) − ηG(z)|2 dτφ(z) + 2σφ({0})|EX − EY |2.
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Table 1. Measures σφ for selected functions φ.

Function φ Associated measure σφ

φ(z) = 1 − exp(−z/2) σφ = 1
2δ1/2

φ(z) =
√

z/2 dσφ(λ) = 1
4
√

π
λ−1/2 dλ for λ > 0

φ(z) = zα dσφ(λ) = α
Γ(1−α)λ

α dλ for λ > 0; 0 < α < 1
φ(z) = log(1 + z) dσφ(λ) = exp(−λ) dλ for λ ≥ 0
φ(z) = z/(1 + z) dσφ(λ) = λ exp(−λ) dλ for λ ≥ 0

Based on the empirical counterparts ηFm and ηGn the test statistic has the rep-
resentation

T φ
m,n =

mn

m + n

[∫
|ηFm(z) − ηGn(z)|2 dτφ(z) + 2σφ({0})|X − Y |2

]
. (2.4)

Examples of functions φ : [0,∞) → [0,∞) with φ(0) = 0 and completely mono-
tone derivative on (0,∞) are given in Table 1. The function φ(z) =

√
z/2 leads to

the special Cramér test statistic Tm,n suggested by Baringhaus and Franz (2004),
Klebanov et al. (2006), Szabo et al. (2002) and Székely (2004). Bahr (1996) pro-
poses the test statistic [mn/(m+n)]

∫
|ϕFm(z)−ϕGn(z)|2 dNd(0, Id)(z), which can

be derived from the general class T φ
m,n by choosing φ(z) = 1− exp(−z/2). Szabo

et al. (2002) consider the statistics corresponding to φ(z) = zα. The test statistics
obtained by φ(z) = log(1 + z) and φ(z) = z/(1 + z) do not seem to have been
studied elsewhere.

3. The Limiting Null Distribution

Let Φ0 be the familiy of functions φ ∈ Φ, the associated measures σφ of
which satisfy σφ({0}) = 0. Note, that all entries in Table 1 belong to Φ0. Then
we have, compared to (2.4), the somewhat simpler representation

T φ
m,n =

mn

m + n

∫
|ηFm(z) − ηGn(z)|2 dτφ(z).

Putting cosi(u) := cos(u) + sin(u), u ∈ R,

J{X1,...,Xm};F (z) :=
1√
m

m∑
k=1

Xk(z), z ∈ Rd

with Xk(z) := cosi(X ′
kz) − ηF (z), z ∈ Rd, and J{Y1,...,Yn};G(z) := (1/

√
n)

∑n
k=1

Yk(z), z ∈ Rd with Yk(z) := cosi(Y ′
kz)− ηG(z), z ∈ Rd, we can write in the case

F = G,

T φ
m,n =

∫ [√
n

m + n
J{X1,...,Xm};F (z) −

√
m

m + n
J{Y1,...,Yn};G(z)

]2

dτφ(z). (3.1)
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The Xk and Yk are centered random elements in the separable Hilbert space H =
L2(Rd,Bd, τφ). In what follows, only the limiting behavior of the H-valued ran-
dom elements J{X1,...,Xm};F as m → ∞ is discussed; the arguments for J{Y1,...,Yn};G

are the same. Let ‘ D−→’ denote convergence in distribution. Due to

E‖Xk‖2 =
∫

E
[
1 − cos

(
(X1 − X2)′z

)]
dτφ(z) = Eφ(|X1 − X2|2) < ∞, (3.2)

the Central Limit Theorem in Hilbert spaces, cf., Ledoux and Talagrand (1991),
Theorem 10.5, applies to get that

J{X1,...,Xm};F
D−−−−→

m→∞
Z,

where Z is a centered Gaussian random element in H that has the covariance
operator

C :
H→H ,

e 7→
∫

c( · , z)e(z) dτφ(z),

c(s, t) =
∫

cosi(s′x)cosi(t′x) dF (x) − ηF (s)ηF (t), s, t ∈ Rd. (3.3)

In the case when the null hypothesis is true also J{Y1,...,Yn};F
D−−−→

n→∞
Z. Being

a ‘root convex combination’ of two independent random elements converging in
distribution to two independent copies of Z, it follows that√

n

m + n
J{X1,...,Xm};F −

√
m

m + n
J{Y1,...,Yn};G

D−−−−−→
m,n→∞

Z. (3.4)

The Continuous Mapping Theorem yields that T φ
m,n converges in distribution to

the squared H-norm of Z. From the Karhunen-Loève-expansion of Z we deduce
that the squared H-norm of Z has the same distribution as

∑
σ λσZ2

σ, where (Zσ)σ

is a sequence of independent unit normal variables and (λσ)σ is the sequence of
the positive eigenvalues of the operator C associated with the covariance function
(3.3). Theorem 3.1 summarizes the result.

Theorem 3.1. In the case F = G ∈ Fd(φ) it holds that

T φ
m,n

D−−−−−→
m,n→∞

∑
σ

λσZ2
σ. (3.5)
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If F ∈ Fd(φ) and
∫

φ2(|x|2) dF (x) < ∞ we consider the integral operator

H :
L2(Rd,Bd, F ) → L2(Rd,Bd, F ),

f 7→
∫

h( · , x) f (x) dF (x),
(3.6)

h(x1, x2) :=
∫∫ [

φ(|x1 − y2|2) + φ(|x2 − y1|2) (3.7)

−φ(|x1 − x2|2) − φ(|y1 − y2|2)
]
dF (y1) dF (y2),

x1, x2 ∈ Rd. The eigenvalues λσ appearing in the limit distribution (3.5) can be
found by considering the eigenvalues of the operator H.

Lemma 3.2. Let φ ∈ Φ0 and F ∈ Fd(φ) with
∫

φ2(|x|2) dF (x) < ∞. Then the
operator H is positive and of trace class. Additionally, H has the same positive
eigenvalues with the same multiplicities as the operator C.

Proof. Let f ∈ L2(Rd,Bd, F ). From∫∫
h(x1, x2)f(x1)f(x2) dF (x1)dF (x2)

=
∫ [∫

[cosi(x′t) − ηF (t)]f(x) dF (x)
]2

dτφ(t),

we deduce that the operator H is positive. Let (fσ̃)σ̃ be the eigenfunctions to
the non-vanishing positive eigenvalues (λ̃σ̃)σ̃ of H. Then, the eσ̃ with

eσ̃(t) :=
1√
λ̃σ̃

∫
[cosi(t′x) − ηF (t)]fσ̃(x) dF (x), t ∈ Rd,

are orthonormal eigenfunctions of C with the eigenvalues λ̃σ̃. The orthonormality
follows from the identity∫

[cosi(t′x) − ηF (t)][cosi(t′y) − ηF (t)] dτφ(t) = h(x, y).

The eσ̃ are eigenfunctions of C since∫
c(s, t)eσ̃(t) dτφ(t)

=
1√
λ̃σ̃

∫∫∫
[cosi(s′x) − ηF (s)][cosi(t′x) − ηF (t)]

[cosi(t′y) − ηF (t)]fσ(y) dF (x) dF (y) dτφ(t)

=
1√
λ̃σ̃

∫ [
[cosi(s′x) − ηF (s)]

∫
h(x, y)fσ(y) dF (y)

]
dF (x)
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=
√

λ̃σ̃

∫
[cosi(s′x) − ηF (s)]fσ̃(x) dF (x)

= λ̃σ̃eσ̃(s).

Hence, the positive eigenvalues of H are eigenvalues of C. As a covariance oper-
ator, C is of trace class. From

trace(C) =
∑

σ

λσ =
∫

c(t, t) dτφ(t) =
∫

φ(|x − y|2) dF ⊗ F (x, y)

=
∫

h(x, x) dF (x) = trace(H) =
∑

σ̃

λ̃σ̃

see, e.g., Brislawn (1991), we obtain that the operators C and H have the same
positive eigenvalues with same multiplicities.

4. Approximation of the Limit Distribution

Due to the fact that the limit distribution is not distribution-free, methods
are needed to give an approximation of the critical value. One classical method
commonly applied to this kind of problem is the Monte Carlo bootstrap procedure
described in Section 1. Using a central limit theorem for triangular schemes in
Hilbert spaces, see e.g., Kundu, Majundar, and Mukherjee (2000), one can show
that this method works. Henze, Klar, and Meintanis (2003) proceed in this way
to prove a permutational limit theorem for a related test statistic. Instead, we
suggest using the ‘bootstrap in the limit method’ described above. To show
that this works, we first prove a result on the H-norm convergence of operators
associated with covariance functions of the form (3.3), which is interesting in its
own right.

Lemma 4.1. Let φ ∈ Φ0, and let (Fj)∞j=1 be a sequence of distributions on Bd

converging weakly to some distribution F on Bd. Assume that

lim
j→∞

∫
φ(|x − y|2) dFj ⊗ Fj(x, y) =

∫
φ(|x − y|2) dF ⊗ F (x, y). (4.1)

Let Cj be the operator on H associated with the covariance function cj obtained
when replacing F by Fj in (3.3). Then Cj → C in the operator norm on H.

Proof. Let η = ηF and ηj = ηFj be the sine-cosine transforms of F and Fj , i.e.
η(s) =

∫
cosi(s′x) dF (x), ηj(s) =

∫
cosi(s′x) dFj(x), s ∈ Rd. As j → ∞, for each

compact subset M in Rd \ {0},

lim
j→∞

∫ [ ∫
M
|cosi(s′x) − ηj(s)|2 dτφ(s)

]
dFj(x)

=
∫ [ ∫

M
|cosi(s′x) − η(s)|2 dτφ(s)

]
dF (x),

(4.2)



RIGID MOTION INVARIANT TWO-SAMPLE TESTS 1345

lim
j→∞

∫ [ ∫
Mc

|cosi(s′x) − ηj(s)|2 dτφ(s)
]
dFj(x)

=
∫ [ ∫

Mc

|cosi(s′x) − η(s)|2 dτφ(s)
]
dF (x).

(4.3)

Due to∫
φ(|x − y|2) dFj ⊗ Fj(x, y) =

∫ [ ∫
M
|cosi(s′x) − ηj(s)|2 dτφ(s)

]
dFj(x)

+
∫ [ ∫

Mc

|cosi(s′x) − ηj(s)|2 dτφ(s)
]
dFj(x),∫

φ(|x − y|2) dF ⊗ F (x, y) =
∫ [ ∫

M
|cosi(s′x) − η(s)|2 dτφ(s)

]
dF (x)

+
∫ [ ∫

Mc

|cosi(s′x) − η(s)|2 dτφ(s)
]
dF (x),

and (4.1), (4.2) implies (4.3). Since hj(x) =
∫
M |cosi(s′x) − ηj(s)|2 dτφ(s), x ∈

Rd, j ∈ N, is a sequence of uniformly bounded continuous functions converging
uniformly to h(x) =

∫
M |cosi(s′x)−η(s)|2 dτφ(s), x ∈ Rd, as j → ∞, (4.2) follows

from the weak convergence of the Fj to F. Let f ∈ H with ‖f‖ ≤ 1. We have

‖(Cj − C)f‖2 =
∫

M

[∫
[cj(s, t) − c(s, t)]f(s) dτφ(s)

]2
dτφ(t)

+
∫

Mc

[∫
[cj(s, t) − c(s, t)]f(s) dτφ(s)

]2
dτφ(t). (4.4)

The second term on the right hand side of (4.4) is bounded from above by

2
{∫

Mc

[∫
cj(s, t)f(s) dτφ(s)

]2
dτφ(t) +

∫
Mc

[∫
c(s, t)f(s) dτφ(s)

]2
dτφ(t)

}
.

We use Fubini’s Theorem, the Cauchy-Schwarz inequality, and ‖f‖ ≤ 1 to get∫
Mc

[∫
cj(s, t)f(s) dτφ(s)

]2
dτφ(t)

=
∫

Mc

[∫ {∫ (
cosi(s′x) − ηj(s)

)
(cosi(t′x) − ηj(t)

)
dFj(x)

}
f(s) dτφ(s)

]2
dτφ(t)

=
∫

Mc

[∫ {(
cosi(t′x) − ηj(t)

) ∫ (
cosi(s′x) − ηj(s)

)
f(s) dτφ(s)

}
dFj(x)

]2
dτφ(t)

≤
∫

Mc

[∫ {
|cosi(t′x) − ηj(t)|

(∫
|cosi(s′x) − ηj(s)|2 dτφ(s)

)1/2}
dFj(x)

]2
dτφ(t)
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≤
∫ [∫

Mc

|cosi(t′x)−ηj(t)|2 dτφ(t)
]
dFj(x)

∫ [∫
|cosi(s′x)−ηj(s)|2dτφ(s)

]
dFj(x)

=
∫ [∫

Mc

|cosi(t′x)−ηj(t)|2 dτφ(t)
]
dFj(x)

∫
φ(|x−y|2)dFj ⊗ Fj(x, y).

In the same way we obtain∫
Mc

[∫
c(s, t)f(s) dτφ(s)

]2
dτφ(t)

≤
∫ [∫

Mc

|cosi(t′x) − η(t)|2 dτφ(t)
]
dF (x)

∫
φ(|x − y|2) dF ⊗ F (x, y).

Given some ε > 0, we choose a compact M ⊂ Rd \ {0} such that∫ [∫
Mc

|cosi(t′x) − η(t)|2 dτφ(t)
]
dF (x)

∫
φ(|x − y|2) dF ⊗ F (x, y) <

ε

12
.

Then

lim sup
j→∞

sup
f∈H,‖f‖≤1

∫
Mc

[∫
[cj(s, t) − c(s, t)]f(s) dτφ(s)

]2
dτφ(t) ≤ ε

3
. (4.5)

The first term on the right hand side of (4.4) is bounded from above by

2
∫

M

[∫
M

[cj(s, t) − c(s, t)]2f(s) dτφ(s)
]2

dτφ(t)

+ 2
∫

M

[∫
Mc

[cj(s, t) − c(s, t)]2f(s) dτφ(s)
]2

dτφ(t).

Applying the Cauchy-Schwarz inequality, we get∫
M

[∫
M

[cj(s, t) − c(s, t)]f(s) dτφ(s)
]2

dτφ(t)

≤
∫

M

[∫
M

[cj(s, t) − c(s, t)]2 dτφ(s)
]
dτφ(t).

Since, as j → ∞, the functions cj converge uniformly on compact subsets of
Rd × Rd to c, it follows that

lim sup
j→∞

sup
f∈H,‖f‖≤1

∫
M

[∫
M

[cj(s, t) − c(s, t)]f(s) dτφ(s)
]2

dτφ(t) = 0.

The same arguments applied to achieve (4.5) also yield

lim sup
j→∞

sup
f∈H,‖f‖≤1

∫
M

[∫
Mc

[cj(s, t) − c(s, t)]f(s) dτφ(s)
]2

dτφ(t) ≤ ε

3
.
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Summarizing, lim supj→∞ supf∈H,‖f‖≤1‖(Cj − C)f‖2 ≤ ε, which proves the de-
sired assertion, since ε > 0 can be chosen arbitrarily.

Theorem 4.2. Given the assumptions of Lemma 4.1, let Z, Zj , j ∈ N, be centered
Gaussian random elements in H with covariance operators C,Cj , j ∈ N. Then,

as j → ∞, Zj
D−→ Z.

Proof. Let 〈·, ·〉 denote the inner product on H. By Lemma 4.1 the charac-
teristic functionals µ̂j(f) = exp

(
−〈Cjf, f〉/2

)
, f ∈ H, of the distributions of

the Zj converge uniformly on bounded spheres to the characteristic functional
µ̂(f) = exp

(
−〈Cf, f〉/2

)
, f ∈ H. Let (ek)k be an orthonormal basis of H. Being

covariance operators, the C,Cj are of trace class. Due to

trace(C) =
∫

c(s, s) dτφ(s) =
∫

φ(|x − y|2) dF ⊗ F (x, y),

trace(Cj) =
∫

cj(s, s) dτφ(s) =
∫

φ(|x − y|2) dFj ⊗ Fj(x, y),

we have that limj→∞ trace(Cj) = trace(C). For given ε > 0 choose some k0 ∈ N
such that

0 ≤
∑
k>k0

〈Cek, ek〉 = trace(C) −
∑
k≤k0

〈Cek, ek〉 ≤
ε

3
.

Choose some j0 ∈ N such that

trace(Cj) ≤ trace(C) +
ε

3
, and

∑
k≤k0

〈Cjek, ek〉 ≥
∑
k≤k0

〈Cek, ek〉 −
ε

3

for each j ≥ j0. Then

0 ≤
∑
k>k0

〈Cjek, ek〉 = trace(Cj) −
∑
k≤k0

〈Cjek, ek〉

≤ trace(C) −
∑
k≤k0

〈Cek, ek〉 +
2ε

3

=
∑
k>k0

〈Cek, ek〉 +
2ε

3
≤ ε.

This gives limk→∞ supj∈N
∑

`>k〈Cje`, e`〉 = 0. Thus, we have shown that the
sequence of operators Cj is compact. The compactness of the sequence (Cj)
and the convergence of the characteristic functionals stated above implies the
distributional convergence Zj

D−→ Z, see, e.g., Parthasarathy (1967).

Corollary 4.3. Let (λj,σ)σ and (λσ)σ be enumerations of the positive eigenvalues
of Cj and C, and let (Zj,σ)σ and (Zσ)σ be sequences of independent unit normal
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variables. Then, as j → ∞,∑
σ

λj,σZ2
j,σ

D−→
∑

σ

λσZ2
σ.

Proof. From Theorem 4.2 and the Continuous Mapping Theorem it follows that
‖Zj‖2 D−→ ‖Z‖2 as j → ∞. The Karhunen-Loéve expansions of Z and Zj implies
that ‖Z‖2 and ‖Zj‖2 have the same distributions as

∑
σ λσZ2

σ and
∑

σ λj,σZ2
j,σ.

To see that the result of the foregoing lemma applies to the approximation
of the limit distribution described above, we need to show that the condition
(4.1) is fulfilled almost everywhere if (Fj)∞j=1 is a certain sequence of empirical
distributions.

Theorem 4.4. Let X1, X2, . . . , Y1, Y2, . . . be independent random d-vectors. Let
the Xj be identically distributed with distribution F ∈ Fd(φ), and let the Yk be
identically distributed with distribution G ∈ Fd(φ). Let (mj)∞j=1 and (nj)∞j=1 be
sequences of integers tending to infinity in such a way that limj→∞[mj/(mj + nj)]

= ρ ∈ [0, 1]. Let µj = [1/(mj + nj)]
[∑mj

`=1 δX`
+

∑nj

`=1 δY`

]
be the empirical

distribution of the pooled sample X1, . . . , Xmj , Y1, . . . , Ynj , and µρ =ρF +(1−ρ)G.

Then, as j → ∞,∫
φ(|x − y|2) dµj ⊗ µj(x, y) →

∫
φ(|x − y|2) dµρ ⊗ µρ(x, y) with probability 1.

Proof. Put µ̃j = [mj/(mj + nj)]F +[nj/(mj + nj)]G. Let ηFj (z) = (1/mj)
∑mj

`=1

cosi(z′X`), z ∈ Rd, and ηGj (z) = (1/nj)
∑nj

`=1 cosi(z′Y`), z ∈ Rd, be the empirical
sine-cosine transforms of the random vectors X1, . . . , Xmj and the random vectors
Y1, . . . , Ynj , respectively. By Minkowski’s inequality,

dφ(µ̃j , µj) =
{∫ ∣∣∣ mj

mj + nj
ηFj (z) +

nj

mj + nj
ηGj (z)

−
( mj

mj + nj
ηF (z) +

nj

mj + nj
ηG(z)

)∣∣∣2 dτφ(z)
}1/2

=
{∫ ∣∣∣ mj

mj+nj

(
ηFj (z)−ηF (z)

)
+

nj

mj+nj

(
ηGj (z)−ηG(z)

)∣∣∣2dτφ(z)
}1/2

≤ mj

mj + nj

{∫
|ηFj (z) − ηF (z)|2 dτφ(z)

}1/2

+
nj

mj + nj

{∫
|ηGj (z) − ηG(z)|2 dτφ(z)

}1/2

.
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The Law of Large Numbers in the Hilbert space H = L2(Rd,Bd, τφ) yields∫
|ηFj (z) − ηF (z)|2 dτφ(z) → 0, and

∫
|ηGj (z) − ηG(z)|2 dτφ(z) → 0

with probability 1 as j → ∞. Thus,

dφ(µ̃j , µj) → 1 with probability 1 as j → ∞. (4.6)

We have

d2
φ(µ̃j , µj) = 2

∫
φ(|x − y|) dµ̃j ⊗ µj(x, y) −

∫
φ(|x − y|) dµ̃j ⊗ µ̃j(x, y) (4.7)

−
∫

φ(|x − y|) dµj ⊗ µj(x, y).

Note that∫
φ(|x − y|) dµ̃j ⊗ µ̃j(x, y) →

∫
φ(|x − y|) dµρ ⊗ µρ(x, y) as j → ∞.

Additionally, putting

φ1(x) =
∫

φ(|x − y|2) dF (y), φ2(x) =
∫

φ(|x − y|2) dG(y), x ∈ Rd,

we have

2
∫

φ(|x − y|) dµ̃j ⊗ µj(x, y)

= 2
{( mj

mj + nj

)2 1
mj

mj∑
`=1

φ1(X`) +
mjnj

(mj + nj)2
1

mj

mj∑
`=1

φ2(X`)

+
mjnj

(mj + nj)2
1
nj

nj∑
`=1

φ1(Y`) +
( nj

mj + nj

)2 1
nj

nj∑
`=1

φ2(Y`)
}

.

From Eφ1(X1) = Eφ(|X1 − X2|2), Eφ2(X1) = Eφ(|X1 − Y1|2) = Eφ1(Y1), and
Eφ2(Y1) = Eφ(|Y1 − Y2|2), we get by using the Law of Large Numbers, that

2
∫

φ(|x − y|) dµ̃j ⊗ µj(x, y) → 2
∫

φ(|x − y|2) dµρ ⊗ µρ(x, y) (4.8)

with probability 1 as j → ∞. Combining (4.6), (4.7), and (4.8) yields the asser-
tion.

In what follows we adopt the assumptions of Theorem 4.4. Let Cj be the
operator associated with the covariance function cj obtained when replacing F
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by the empirical distribution µj of the pooled sample X1, . . . , Xmj , Y1, . . . , Ynj .

Let L(T φ|F ) denote the limiting null distribution of the test statistic T φ
m,n in

the case when F is the common distribution of the sample variables Xk and Y`.

Lemma 4.1, Theorem 4.2, and Theorem 4.4 justify approximating L(T φ|F ) by
L(T φ|µj). For given α ∈ (0, 1) let cj,α be the (1 − α)-quantile of L(T φ|µj).

Theorem 4.5. Let the conditions of Theorem 4.4 be satisfied. If F = G ∈ Fd(φ),
and F non-degenerate, then limj→∞ P

(
T φ

mj ,nj > cj,α

)
= α. For all distributions

F,G ∈ Fd(φ), F 6= G, it holds that limj→∞ P
(
T φ

mj ,nj > cj,α

)
= 1.

Proof. For each F,G ∈ Fd(φ), Lemma 4.1, Theorem 4.2, and Theorem 4.4
yield, as j → ∞, the weak convergence of L(T φ|µj) to L(T φ|µρ) with probability
1. This proves the first assertion of the theorem. The Law of Large Num-
bers for independent and identically distributed random elements in the Hilbert
space H gives that [(mj + nj)/mjnj ]T

φ
mj ,nj → d2

φ(F,G) with probability 1. Since
d2

φ(F,G) > 0 for F,G ∈ Fd(φ), F 6= G, the second assertion of the theorem
follows.

To get the quantiles of L(T φ|µj) we need to calculate the positive eigenvalues
of the operator Cj . For this purpose we consider the operator Hj defined as in
(3.6) with F replaced by µj . Due to Lemma 3.2, Hj and Cj have the same positive
eigenvalues. Since µj has finite support the integral equation∫

hj(x, y)f(y) dµj(y) = λf(x), f ∈ L2(Rd,Bd, µj),

reduces to a matrix eigenvalue problem that can be solved easily. Here, hj

denotes the kernel function (3.7) with F replaced by µj . The Fourier transform
of L(T φ|µj) is given by

ϕL(T φ|µj)(t) =
∏
σ

(
1 − 2itλj,σ

)−1/2
, t ∈ R.

The inverse fast Fourier transform and the inversion formula of Gurland (1948)
can be used to calculate the (1−α)-quantile of L(T φ|µj). In fact, the distribution
of L(T φ|µj) is the distribution of a special quadratic form in normal variables.
The problem of computing the distribution of quadratic forms in normal variables
has been studied by various authors. The interested reader is referred to the
papers of Imhof (1961) and Martynov (1975), and to the references therein.

5. Efficiency

A theoretical comparison of the new two-sample tests for different φ is easily
done by using the concept of approximate slopes proposed by Bahadur (1960).
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The ratio of approximate slopes of two sequences of test statistics is called their
approximate Bahadur efficiency. These are of limited use as means of compar-
ing tests; for example, monotone transformations of the test statistics can lead
to different approximate slopes. Nevertheless, in typical cases approximate Ba-
hadur efficiencies coincide locally with Pitman efficiencies, see Wieand (1976)
and Kallenberg and Koning (1995). In what follows, we confine ourselves to an
informal approach giving a first rough impression of the performance of the new
tests for normal location alternatives, normal scale alternatives, and Lehmann’s
contaminated alternative.

For simplicity, we deal solely with the case d = 1. As in Theorem 4.4 we start
with sample sizes m = mj and n = nj , where (mj)∞j=1 and (nj)∞j=1 are sequences
of integers tending to infinity in such a way that limj→∞[mj/(mj + nj)] = ρ ∈
(0, 1). To define approximate slopes of the test statistics T φ

m,n we modify the defi-
nition given by Wieand (1974) for two-sample problems: we replace his ‘norming’
factor

√
m + n by the factor

√
mn/(m + n). Then the factor ρ(1 − ρ) does not

appear in the expressions for the approximate slopes.
Consider the simple testing problem of the hypothesis of a common fixed dis-

tribution F, and the alternatives of distributions F and G 6= F. It is assumed that
F and G belong to Fd(φ) for all φ under consideration. Regard

([
T φ

m,n

]1/2)
m,n

as a sequence of test statistics. Denote by λ(φ, F ) the largest eigenvalue of the
covariance operator C associated with F and φ by (3.3). Adjusting Bahadur’s
definition to the two-sample case, it is easily seen, see e.g., Koziol (1986), that([

T φ
m,n

]1/2)
m,n

is a standard sequence with the approximate slope

s(φ, F,G) =
d2

φ(F,G)

λ(φ, F )
.

We are interested in power performance as G tends to F. To this end, we assume
that G belongs to some parametric family {Gθ; θ ∈ Θ} of distributions, where Θ
is an open subset of R \ {0} and Gθ → F weakly as θ → 0. In what follows the
parametric families considered have the property that there is some real positive
a(φ, F ) such that

s(φ, F ) = lim
θ→0

s(φ, F,Gθ)
θ2

=
a(φ, F )
λ(φ, F )

,

the limiting approximate Bahadur slope. The ratios s(φ1, F )/s(φ2, F ) for differ-
ent φ1, φ2 are the limiting approximate Bahadur efficiencies. We give limiting
approximate Bahadur slopes for the function φ(z) = 1 − exp(−z/2) leading to
Bahr’s test, the function φ(z) =

√
z/2 leading to the Cramér test, and the func-

tions φ(z) = log(1+z) and φ(z) = z/(1+z). At first we consider normal location
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Table 2. Limiting approximate slopes for normal location alternatives.

φ(z)
√

z/2 1 − exp(−z/2) log(1 + z) z/(1 + z)
λ
(
φ,N(0, 1)

)
0.29727 0.23607 0.49493 0.20361

s
(
φ,N(0, 1)

)
0.949 0.815 0.918 0.782

test t WMW CvM KS NN
slope 1 0.955 0.907 0.637 0

Table 3. Limiting approximate slopes for normal scale alternatives.

φ(z)
√

z/2 1 − exp(−z/2) log(1 + z) z/(1 + z)
λ
(
φ,N(0, 1)

)
0.29727 0.23607 0.49493 0.20361

s
(
φ, N(0, 1)

)
0.474 0.815 0.596 1.234

test F Mood CvM KS NN
slope 2 1.520 0.302 0.234 0

alternatives and normal scale alternatives. Here, F is N(0, 1), the location al-
ternatives are Gθ = N(θ, 1), the scale alternatives are Gθ = N

(
0, (1 + θ)2

)
with

θ ∈ (−1,∞), θ 6= 0. Table 2 and Table 3 show the limiting approximate Bahadur
slopes and the largest eigenvalues λ

(
φ,N(0, 1)

)
. Except for φ(z) = 1−exp(−z/2)

where exact results are available, see Baringhaus (1996), the eigenvalues are
computed by numerical methods. The last rows of Table 3 and Table 4 give the
limiting approximate slopes of some competing tests.

For normal location alternatives the competitors considered are the two-
sided t-test, the two-sided Wilcoxon-Mann-Whitney test (WMW), the Cramér-
von Mises test (CvM), the Kolmogorov-Smirnov test (KS), and the nearest neigh-
bor test (NN) of Henze (1984). For normal scale alternatives, instead of the t-test
and the Wilcoxon-Mann-Whitney test, the two-sided F -test and the Mood rank
test, see Mood (1954), are chosen.

The limiting approximate slopes for the t-test, F -test, Cramér-von Mises
test, and the Kolmogorov-Smirnov test are obtained from Wieand (1976), that
of the Wilcoxon-Mann-Whitney test from Hollander (1967). The limiting approx-
imate slope of the Mood test is easily derived from the work of Mood (1954).
Using the results given by Henze (1984), it is easily verified that the limiting
approximate Bahadur slope of the nearest neighbor test is 0.

Lehmann’s contaminated alternative considered here is Gθ = (1 − θ)U +
θU2, θ ∈ (0, 1), where U = U[0, 1] denotes the uniform distribution on the unit
interval [0, 1], and U2 is the distribution of the maximum of two independent ran-
dom variables uniformly distributed on the unit interval. The limiting approxi-
mate Bahadur slopes are shown in Table 4 where the last row gives the limiting
approximate slopes of some competing tests: the Wilcoxon-Mann-Whitney test,
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Table 4. Limiting approximate slopes for Lehmann’s contaminated alternative.

φ(z)
√

z/2 1 − exp(−z/2) log(1 + z) z/(1 + z)
λ
(
φ,U(0, 1)

)
0.1013 0.0721 0.1313 0.1058

s
(
φ, U(0, 1)

)
0.329 0.333 0.333 0.331

test WMW CvM KS NN
slope 0.333 0.329 0.250 0

the Cramér-von Mises test, the Kolmogorov-Smirnov test, and the nearest neigh-
bor test of Henze. The limiting approximate slope for the Cramér-von Mises test
is clearly the same as that of the Cramér test, that of the Kolmogorov-Smirnov
test is obtained from Bahadur (1960), and that of the Wilcoxon-Mann-Whitney
test from Hodges and Lehmann (1956). The limiting approximate slope of the
Mood test is easily derived from the work of Mood (1954).

To prove the equivalence of limiting approximate Bahadur efficiency and
limiting Pitman efficiency, one needs to verify a version of Wieand’s condition
III∗, see Wieand (1974, 1976), adjusted to the two-sample case. For the new tests
the condition is as follows.

Wieand’s condition III∗: There exists some θ∗ > 0, such that for each ε > 0
and each δ ∈ (0, 1), there is a real positive constant C such that for all θ ∈
(−θ∗, +θ∗) \ {0} and all j ∈ N with mj , nj > C/b2(θ),

Pθ

(∣∣dφ(Fmj , Gnj ) − dφ(F,Gθ)
∣∣ < εdφ(F,Gθ)

)
> 1 − δ. (5.1)

For the normal location alternatives, normal scale alternatives, and Lehmann’s
contaminated alternative, it can be shown that∫

φ(|x − y|2) dGθ ⊗ Gθ(x, y) →
∫

φ(|x − y|2) dF ⊗ F (x, y) as θ → 0.

Having such a result Wieand’s condition III∗ is easily verified by applying
Markov’s inequality and using the fact that dφ is a metric on Fd(φ). For details
we refer to Franz (2004).

6. Simulation Studies

We have studied the new bootstrap in the limit method. For various univari-
ate and multivariate distributions and for different levels chosen, almost the same
behavior is observed. The deviations of the estimated error probabilities from
the given levels are satisfactorily small, except for the case of higher dimensions
(d ≥ 4) and small sample sizes (m,n ≤ 20), see Franz (2004). In the latter cases
it is recommended to use the conventional Monte Carlo bootstrap procedure. As
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Figure 1. Power values for normal location alternatives, Study (a).

we are interested in the power of the new tests with the critical values obtained
by the bootstrap in the limit method, sample sizes m = n = 20 were chosen only
for some univariate cases, whereas for multivariate problems m = n = 50. The
significance level was always α = 0.05. The first power values shown here are for
the three types of univariate alternatives described in Section 5:

(a) normal location alternatives with F = N(0, 1), G = N(θ, 1);

(b) normal scale alternatives with F = N(0, 1), G = N(0, σ2);

(c) Lehmann’s contaminated alternative with F = U = U[0, 1], G = (1 − θ)U +
θU2.

In the 3-dimensional case, powers are given

(d) for Lehmann’s contaminated alternative F = U = U[0, 1]3, G = (1 − θ)U +
θU2 where U = U[0, 1]3 denotes the uniform distribution on the 3-dimensional
unit cube [0, 1]3, and U2 is the distribution of the random vector the compo-
nents of which are the maxima of the two corresponding components of two
independent copies with distribution U.

We used 10,000 replications. For normal location alternatives, Figure 1 shows the
exact power values of the t-test and the empirical power values for the Cramér



RIGID MOTION INVARIANT TWO-SAMPLE TESTS 1355

Figure 2. Power values for normal scale alternatives, Study (b).

test, Bahr’s test and the Kolmogorov-Smirnov test as functions of the difference
in mean θ.

The t-test outperforms its competitors. It is followed by the Cramér test of
the new family. The Mann-Whitney test, the Cramér-von Mises test, and the
new tests with φ(z) = log(1 + z) and φ(z) = z/(1 + z) are not shown. The
behavior of each of the first three of these tests is similar to that of the Cramér
test; the power of the tests with φ(z) = z/(1 + z) lies between Bahr’s test and
the Kolmogorov-Smirnov test.

For normal scale alternatives, Figure 2 shows the power values as functions of
the ratio of variances σ2 of the underlying distributions F and G. The sample sizes
were m = n = 20. The F -test clearly outperforms its competitors. It is followed
by Bahr’s test, which behaves similar to the test with φ(z) = z/(1+z), not shown.
The Cramér test, which performs almost like the test with φ(z) = log(1+ z), not
shown, is still noticeable better than the Kolmogorov-Smirnov test. The latter
is slightly worse than the Cramér-von Mises test and Henze’s nearest-neighbor
test, also not shown.

In the multivariate normal setting of the location or dispersion problem gen-
erally the same observations can be made. The Cramér-test and the test with
φ(z) = log(1 + z) do very well for the location problem, whereas Bahr’s test
and the test with φ(z) = z/(1 + z) are suited for dispersion alternatives. For a
detailed description of the results in the multivariate case see Franz (2004).
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Table 5. Power values for Lehmann’s contaminated alternative, d=1, Study (c).

θ Cramér log(1+z) Bahr z/(1 + z) WMW KS CvM NN
0.0 0.053 0.054 0.054 0.053 0.051 0.038 0.053 0.045
0.2 0.089 0.093 0.094 0.092 0.090 0.066 0.089 0.047
0.4 0.207 0.212 0.213 0.211 0.210 0.153 0.204 0.055
0.6 0.420 0.433 0.433 0.430 0.416 0.326 0.408 0.080
0.8 0.650 0.666 0.667 0.661 0.635 0.521 0.629 0.112
1.0 0.859 0.873 0.875 0.869 0.833 0.738 0.829 0.177

Table 6. Power values for Lehmann’s contaminated alternative, d=3, Study (d).

θ Cramér log(1+z) Bahr z/(1 + z) NN
0.0 0.050 0.051 0.050 0.051 0.054
0.2 0.117 0.121 0.121 0.120 0.070
0.4 0.358 0.362 0.361 0.364 0.108
0.6 0.715 0.719 0.718 0.718 0.192
0.8 0.944 0.948 0.948 0.945 0.355
1.0 0.998 0.999 0.998 0.998 0.625

For Lehmann’s contaminated alternative the cases d = 1 and d = 3 were
considered and simulation results are shown for θ = 0, 0.2, . . . , 1.0, and sample
sizes m = n = 50. Table 5 gives the empirical power values of the competing tests
(Cramér, Bahr, new class with φ(z) = log(1 + z), φ(z) = z/(1 + z), WMW, KS,
CvM, and NN) in the univariate case. As for the normal location and normal
scale alternatives, the new family of tests exhibits a good power performance,
comparing favorably with the two-sided Wilcoxon-Mann-Whitney test.

Table 6 shows the simulation results for the multivariate case d = 3. The tests
of the new class (Cramér, Bahr, the tests with φ(z) = log(1+z), φ(z) = z/(1+z))
have comparable power and clearly outperform the test of Henze.

The last simulations presented in the paper involve the multivariate t-distri-
bution td(ν) with parameter (degrees of freedom) ν > 0, the multivariate logistic
distribution Ld(κ) with parameter κ > 0, the uniform distribution Ud(µ) on the
unit ball centered at µ ∈ Rd, and the multivariate Weibull distribution Wd(β)
with independent univariate Weibull components and parameter β > 0. Only the
case d = 2 was considered. The pairs of distributions chosen were

(e) F = N2(0, I2) and G = t2(ν) with ν ∈ {2, 5, 10, 20, 50},
(f) F = L2(1) and G = L2(κ) with κ ∈ {1/2, 3/4, 1, 3/2, 2},
(g) F = U2(0) and G = U2

(
(θ, θ)′

)
(location alternatives) with θ = 0.00,

0.05, . . . , 0.45, and

(h) F = W2(1) and G = W2(β) with β = 1.0, 1.2, . . . , 1.8.



RIGID MOTION INVARIANT TWO-SAMPLE TESTS 1357

Table 7. Power values for t2(ν)-distributions, Study (e).

ν Cramér log(1+z) Bahr z/(1 + z) NN
2 0.685 (0.672) 0.672 (0.670) 0.384 (0.390) 0.404 (0.409) 0.197
5 0.134 (0.136) 0.136 (0.138) 0.107 (0.109) 0.101 (0.103) 0.072

10 0.067 (0.067) 0.066 (0.067) 0.062 (0.063) 0.061 (0.061) 0.055
20 0.047 (0.049) 0.047 (0.047) 0.049 (0.052) 0.047 (0.048) 0.045
50 0.049 (0.051) 0.050 (0.051) 0.050 (0.052) 0.047 (0.049) 0.044

Table 8. Power values for L2(κ)-distributions, Study (f).

κ Cramér log(1+z) Bahr z/(1 + z) NN
1/2 0.927 (0.926) 0.870 (0.873) 0.498 (0.503) 0.591 (0.593) 0.206
3/4 0.290 (0.291) 0.239 (0.242) 0.115 (0.117) 0.127 (0.130) 0.059
1 0.053 (0.053) 0.049 (0.051) 0.043 (0.045) 0.041 (0.042) 0.040

3/2 0.507 (0.506) 0.442 (0.445) 0.225 (0.227) 0.253 (0.257) 0.089
2 0.940 (0.939) 0.908 (0.908) 0.654 (0.657) 0.715 (0.718) 0.240

Table 9. Power values for uniform U2

(
(θ, θ)′

)
location alternatives, Study (g).

θ Cramér log(1+z) Bahr z/(1 + z) NN
0.00 0.051 (0.052) 0.052 (0.053) 0.052 (0.053) 0.050 (0.051) 0.044
0.05 0.080 (0.080) 0.081 (0.083) 0.080 (0.081) 0.074 (0.075) 0.054
0.10 0.179 (0.183) 0.180 (0.185) 0.173 (0.178) 0.150 (0.152) 0.078
0.15 0.365 (0.370) 0.364 (0.366) 0.347 (0.348) 0.298 (0.302) 0.131
0.20 0.614 (0.618) 0.611 (0.612) 0.582 (0.584) 0.515 (0.518) 0.223
0.25 0.826 (0.829) 0.818 (0.818) 0.792 (0.793) 0.737 (0.739) 0.347
0.30 0.944 (0.945) 0.938 (0.937) 0.920 (0.922) 0.891 (0.893) 0.499
0.35 0.989 (0.989) 0.986 (0.986) 0.979 (0.979) 0.967 (0.968) 0.651
0.40 0.999 (0.999) 0.999 (0.999) 0.997 (0.997) 0.995 (0.995) 0.776
0.45 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (0.999) 0.875

Table 10. Power values for Weibull W2(β) alternatives, Study (h).

β Cramér log(1+z) Bahr z/(1 + z) NN
1.0 0.046 (0.047) 0.048 (0.048) 0.049 (0.052) 0.046 (0.048) 0.044
1.2 0.079 (0.081) 0.090 (0.091) 0.102 (0.104) 0.101 (0.102) 0.061
1.4 0.189 (0.192) 0.239 (0.243) 0.318 (0.321) 0.313 (0.316) 0.125
1.6 0.421 (0.423) 0.543 (0.543) 0.672 (0.674) 0.667 (0.670) 0.241
1.8 0.712 (0.706) 0.814 (0.814) 0.902 (0.902) 0.903 (0.904) 0.407

The empirical power values of the competing tests (Cramér, Bahr, new class with
φ(z) = log(1 + z), φ(z) = z/(1 + z), and Henze’s nearest neighbor test NN) are
shown in Tables 8−10. For comparison, the power values of the new class tests,
with critical values obtained by the traditional bootstrap Monte Carlo procedure,
are shown in parentheses.
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7. Recommendations

The package cramer for the free statistical software environment R available
under the address http://cran.r-project.org offers a simple way to apply
the new tests to given data. p-values or critical values can be obtained either
with the bootstrap in the limit or with the traditional bootstrap Monte Carlo
procedure. Our experiments with this software show that, on the basis of the
default values for numerical accuracy and the number of Monte Carlo samples,
one will come to rejection/acceptation of the hypothesis for given data slightly
faster with the bootstrap in the limit method as long as m,n ≤ 300. Unless d ≥ 4
and m,n ≤ 20 the deviations of the estimated error probabilities from the given
level are satisfactorily small for this method. Propagating the traditional method
for the exceptional cases mentioned, we strongly advocate use of the bootstrap
in the limit method in all the other cases.

Compared to Baringhaus and Franz (2004) dealing with the Cramér test for
testing H : F = G against the general alternative H : F 6= G, we are able by
choosing a suitable kernel φ to gain more flexibility with respect to the power of
the test against specific alternatives. We suggest the use of the Cramér test or
the test with φ(z) = log(1 + z) for location alternatives. Overall, the test with
φ(z) = log(1 + z) seems to be a good choice.

8. Extension

Consider the c-sample problem, c ≥ 2. Let Xi1, . . . , Xini , i = 1, . . . , c, be c

independent random samples of sizes n1, . . . , nc, where the random variables Xik

of the ith sample are independent and identically distributed with the distribution
Fi ∈ Fd(φ). Let Fini be the empirical distribution of the ith sample, put n =
n1 + · · · + nc, and F = (1/n)

∑c
i=1 niFini . F is the empirical distribution of the

pooled sample X1n1 , . . . , Xcnc . For treating the testing problem

H : F1 = · · · = Fc, K : Fi 6= Fj for some i 6= j,

we suggest the test statistic

T φ
n1,...,nc

=
c∑

i=1

nid
2
φ(Fini , F )

=
c∑

i=1

ni

∫
|ϕFini

(z) − ϕF (z)|2 dτφ(z)

=
c∑

i=1

ni

∫
|ηFini

(z) − ηF (z)|2 dτφ(z).

http://cran.r-project.org
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Denoting by L(T φ|F )?c−1 the (c− 1)-fold convolution of L(T φ|F ), it can be
shown that if the hypothesis is true with F the common distribution, T φ

n1,...,nc

tends in distribution to L(T φ|F )?c−1 as min(n1, . . . , nc) → ∞. The approach of
Section 4 is adjusted easily to see that L(T φ|F )?c−1 provides a suitable approxi-
mation to L(T φ|F )?c−1. Since the distribution L(T φ|F )?c−1 is of the same type as
L(T φ|F ), i.e. the weighted sum of squares of independent unit normal variables,
the methods for calculating the critical value also carry over. The test rejecting
the hypothesis if T φ

n1,...,nc exceeds the critical value is again seen to be consistent,
and to be asymptotically of given level α.
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