INSTRUMENTAL VARIABLE AND GMM ESTIMATION FOR PANEL DATA WITH MEASUREMENT ERROR

Zhiguo Xiao ${ }^{1}$, Jun Shao 2 and Mari Palta ${ }^{2}$
${ }^{1}$ Fudan University and ${ }^{2}$ University of Wisconsin, Madison

Abstract

Panel data allow correction for measurement error without assuming a known measurement error covariance matrix or using additional validation/replication data to estimate the measurement error covariance matrix. Griliches and Hausman (1986) proposed using the generalized method of moments (GMM) or optimal weighting to efficiently combine instrumental variable (IV) estimators. Wansbeek (2001) applied GMM based on moment conditions expressed in the form of the Kronecker product. This paper studies some issues crucial to applications of these two approaches, including the estimability of the regression parameter under Griliches and Hausman's or Wansbeek's approach, how to choose instruments, what is the optimally weighted IV estimator, how to explicitly construct GMM estimators, how to remove the redundancy of the moment conditions constructed by Wansbeek (2001), and the existence of optimal GMM estimators. We unify Griliches and Hausman's and Wansbeek's approaches by establishing their equivalence. We also consider models with exogenous regressors and models with nonclassical assumptions. We apply the methods in this paper to revisit an investment controversy, viz., whether financially constrained firms respond to internal funds such as cash flow more sensitively than financially unconstrained firms.

Key words and phrases: Equivalence, GMM, instrumental variable, measurement error, panel data, Tobin's q.

1. Introduction

Measurement error (errors-in-variables or errors-in-regressors) leads to the failure of classical estimation methods such as ordinary least squares (OLS). Under standard assumptions, with a single regressor measured with random error, the OLS estimator of the regression coefficient is inconsistent and biased towards zero. Existing remedies for the measurement error problem often require that the measurement error covariance matrix be known or that it can be estimated using additional validation/replication data (see, e.g., Fuller (1987), Zhong, Fung and Wei (2002), Cui, Ng and Zhu (2004), Carroll et al. (2006)). In panel data, each individual has more than one observation, which can be used as "partial" replicates for the purpose of handling measurement error. As shown by Griliches and Hausman (1986) (hereinafter Griliches-Hausman) and Wansbeek (2001) (hereinafter

Wansbeek), under some panel data models, valid estimators can be constructed without the requirement of knowing the measurement error covariance matrix or additional validation/replication data.

In their seminal paper on errors-in-variables in panel data, Griliches-Hausman proposed using either the Generalized Method of Moments (GMM, Hansen (1982)) or weighting to efficiently combine instrumental variable estimators constructed using linear combinations of the observed regressors as instruments. GrilichesHausman, and later research work by Biørn and Klette (1998) and Biørn (2000), provided a GMM estimator based on instrumental variables derived from difference transformations. However, a general form of Griliches-Hausman's GMM estimator is not available. Griliches-Hausman's idea of using optimal weights to combine instrumental variable estimators has not been pursued by later researchers, possibly because no explicit weighting formula was provided. Wansbeek's GMM approach for panel data with measurement error is based on a set of moment conditions constructed using the structure of measurement error covariance matrix.

The purpose of this paper is to study (i) some issues that are not addressed or not fully addressed in Griliches-Hausman and Wansbeek but are crucial to applications of these two approaches; (ii) the relationship between Griliches and Hausman's and Wansbeek's estimators; (iii) the extensions of the two methods to more complicated models; and (iv) the estimability of the regression parameter under Griliches and Hausman's or Wansbeek's approach. Issues in (i) include how to choose instruments, what the optimally weighted IV estimator is, how to explicitly construct GMM estimators, how to remove the redundancy of the moment conditions constructed by Wansbeek, and the existence of optimal GMM estimators. For (ii), we show that the optimally weighted IV estimator is identical to a GMM estimator when the same set of instruments is used, i.e., Griliches-Hausman's two ways of optimally obtaining an estimator are the same. Furthermore, we show that Griliches-Hausman's and Wansbeek's approaches use equivalent sets of moment conditions and, hence, the efficient GMM estimator under Griliches-Hausman's approach is asymptotically equivalent to the efficient GMM estimator under Wansbeek's approach. For (iii), we extend GrilichesHausman's method to allow for strictly exogenous covariates in the model; we construct a set of moment conditions that can yield asymptotically more efficient GMM estimators than Wansbeek when strictly exogenous covariates exist; and we extend Griliches-Hausman's and Wansbeek's methods to nonclassical models. For (iv), we show that the estimability in Griliches-Hausman's approach (i.e., the existence of at least one instrumental variable) is the same as the estimability in Wansbeek's approach. We also provide a necessary and sufficient condition for the estimability, which can be easily checked in terms of the correlation structures of the measurement error and the covariate subject to measurement error.

Results related to Griliches-Hausman's approach are given in Section 2, after an introduction of the model and notation. Results related to Wansbeek's GMM and its equivalence to Griliches-Hausman's GMM are presented in Section 3. The estimability issue is studied in Section 4. In Section 5, we generalize the methods to situations where there are exogenous covariates not measured with errors, and where measurement error and covariate are correlated. In Section 6 , we apply our methods to a long-debated topic in corporate finance, viz., whether financially constrained firms respond more sensitively to cash flow than unconstrained firms, using the COMPUSTAT database for years 1992-1995. Section 7 contains some concluding remarks. Proofs of lemmas and theorems are given in the Appendix.

2. Griliches-Hausman's GMM and Weighted IV Estimator

We start with the model of Griliches-Hausman, a static linear model with one regressor measured with error:

$$
\begin{align*}
& y_{i t}=\xi_{i t} \beta+\alpha_{i}+\eta_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N, \tag{2.1}\\
& x_{i t}=\xi_{i t}+v_{i t},
\end{align*} \quad
$$

where β is a parameter of interest, $y_{i t}$ is the t th observed response from the i th individual, $\xi_{i t}$ is an unobserved covariate associated with $y_{i t}, \eta_{i t}$ is a regression error, $x_{i t}$ is an observed surrogate for $\xi_{i t}$ with unobserved measurement error $v_{i t}$, and α_{i} is an unobserved individual fixed effect or random effect that may be correlated with ξ_{i}. The estimation of the effect α_{i} is not considered until Section 5.3. For each i, let $y_{i}=\left(y_{i 1}, \ldots, y_{i T}\right)^{\prime}, x_{i}=\left(x_{i 1}, \ldots, x_{i T}\right)^{\prime}, \xi_{i}=\left(\xi_{i 1}, \ldots, \xi_{i T}\right)^{\prime}$, $\eta_{i}=\left(\eta_{i 1}, \ldots, \eta_{i T}\right)^{\prime}$, and $v_{i}=\left(v_{i 1}, \ldots, v_{i T}\right)^{\prime}$.
Assumption A. The random $3 T$-vectors $\left(\xi_{i}^{\prime}, \eta_{i}^{\prime}, v_{i}^{\prime}\right)^{\prime}, i=1, \ldots, N$, are i.i.d. with $E \eta_{i}=0, E v_{i}=0$, and a finite positive definite covariance matrix. The random T-vectors ξ_{i}, η_{i}, and v_{i} are independent.
Under this assumption, homoskedasticity and independence across i of data is assumed but heteroskedasticity and correlation across t (within i) is allowed for. The covariance matrix of $\left(\xi_{i}^{\prime}, \eta_{i}^{\prime}, v_{i}^{\prime}\right)^{\prime}$ is a block diagonal matrix with three $T \times T$ diagonal blocks, which are the covariance matrices of ξ_{i}, η_{i}, and v_{i}.

Replacing ξ_{i} by $x_{i}-v_{i}$ in (2.1), we obtain

$$
\begin{equation*}
y_{i}=x_{i} \beta+l_{T} \alpha_{i}+\varepsilon_{i}, \tag{2.2}
\end{equation*}
$$

where $\varepsilon_{i}=\eta_{i}-v_{i} \beta$ and l_{T} is the $T \times 1$ vector of ones. To obtain consistent estimators, Griliches-Hausman suggested that we first find a set of instrumental variable estimators of the form

$$
\widehat{\beta}_{P}=\left(w^{\prime} x\right)^{-1} w^{\prime} y, \quad w=\left(I_{N} \otimes P\right) x,
$$

where I_{N} is the identity matrix of order N, x is the stacked column vector of all x_{i} 's, \otimes is the Kronecker product (see Abadir and Magnus (2005), Chapter 10 for properties of the Kronecker product and the vec operator below), and P is a $T \times T$ deterministic known matrix satisfying
(IV.1) $P^{\prime} l_{T}=0$,
(IV.2) $E\left[x_{i}^{\prime} P^{\prime} \varepsilon_{i}\right]=0$,
(IV.3) $E\left[x_{i}^{\prime} P^{\prime} x_{i}\right] \neq 0$.

Condition (IV.1) ensures that multiplying P^{\prime} to both sides of (2.2) eliminates the unobserved α_{i}. Conditions (IV.2)-(IV.3) state that the instrument $P x_{i}$ must be uncorrelated with the error ε_{i} but correlated with x_{i}. Let

$$
\begin{equation*}
\mathcal{P}=\{\text { all } T \times T \text { matrices } P \text { 's satisfying (IV.1) }-(\text { IV. } 3)\} \tag{2.3}
\end{equation*}
$$

To use Griliches-Hausman's method we need to assume that $\mathcal{P} \neq \emptyset$, i.e., there exists at least one P satisfying (IV.1)-(IV.3). A further discussion about the condition $\mathcal{P} \neq \emptyset$ is given in Section 4.

For each $P \in \mathcal{P}, \widehat{\beta}_{P}$ is a consistent but possibly inefficient estimator of β, since it is a moment estimator. Griliches-Hausman suggested two ways to combine moment estimators to obtain an efficient estimator of β :
(W1) '.. to combine such estimators optimally we use the Generalized Method of Moments estimator, developed by Hansen (1982); and White (1982), ..." - Griliches and Hausman (1986, p.104, lines 30-33),
(W2) "After obtaining a complete set of instruments, the efficient β is calculated as a weighted average of the β 's from each w. The inverse of the variance-covariance matrix of the β 's is the appropriate weighting matrix." - Griliches and Hausman (1986, p.115, lines 26-28).

There are infinitely many P 's in \mathcal{P} when \mathcal{P} is not empty. Thus, prior to implementing (W1) or (W2), as argued by Griliches-Hausman, we need to find a complete set of $P_{1}, \cdots, P_{K}\left(K \leq T^{2}\right)$ in the sense that (1) $P_{k} \in \mathcal{P}, k=1, \ldots, K$; (2) P_{1}, \ldots, P_{K} are linearly independent; (3) every $P \in \mathcal{P}$ is a linear combination of P_{1}, \ldots, P_{K}. A complete set $\left\{P_{1}, \ldots, P_{K}\right\}$ is referred to as a basis of \mathcal{P}.

To apply this method we first need to answer the following questions that are not fully addressed in Griliches-Hausman.

1. Does \mathcal{P} have a basis?
2. If a basis exists, how do we find it?
3. After we find a basis P_{1}, \ldots, P_{K}, how do we implement Griliches-Hausman's method by (W1) or (W2)? Furthermore, are the estimators resulting from (W1) and (W2) the same?

Note that \mathcal{P} is not a linear subspace of $\mathbb{R}^{T^{2}}$ and, thus, it is not obvious whether \mathcal{P} has a basis. Let

$$
\begin{aligned}
& \mathcal{P}_{0}=\{P: P \text { is a } T \times T \text { matrix satisfying (IV.1) and (IV.2) }\} \\
& \mathcal{P}_{1}=\{P: P \text { is a } T \times T \text { matrix satisfying (IV.1) and (IV.2), but not (IV.3) }
\end{aligned}
$$

Here \mathcal{P}_{0} and \mathcal{P}_{1} are linear subspaces of $\mathbb{R}^{T^{2}}, \mathcal{P}_{1} \subseteq \mathcal{P}_{0}$, and $\mathcal{P}=\mathcal{P}_{0} \backslash \mathcal{P}_{1}$. With this understanding, we can answer Question 1 with the following lemma.

Lemma 1.Let V_{0} and V_{1} be two linear subspaces of \mathbb{R}^{p} with $V_{1} \subsetneq V_{0}$. Then the maximum number of linearly independent vectors in $S=V_{0} \backslash V_{1}$ is $K=$ the dimension of V_{0}. Furthermore, if s_{1}, \ldots, s_{K} are linearly independent vectors in S, then any vector in S is a linear combination of s_{1}, \ldots, s_{K}.

To answer the second question, we need the following lemma that characterizes (IV.1)-(IV.3) in unified algebraic forms. Observe that for every measurement error covariance matrix $E\left[v_{i} v_{i}^{\prime}\right]$, there exists a known matrix R_{0} such that $\operatorname{vec}\left(E\left[v_{i} v_{i}^{\prime}\right]\right)=R_{0} \varphi$, where the vec operator stacks the columns of a matrix into a column vector, and φ is the vector of free parameters in $E\left[v_{i} v_{i}^{\prime}\right]$. The matrix R_{0} represents the structure of $E\left[v_{i} v_{i}^{\prime}\right]$. If φ is an $m \times 1$ vector, then R_{0} is a $T^{2} \times m$ matrix of full rank.

Lemma 2.(1) $P^{\prime} l_{T}=0$ if and only if vec $(P)^{\prime}\left(I_{T} \otimes l_{T}\right)=0$;
(2) $E\left[x_{i}^{\prime} P^{\prime} \varepsilon_{i}\right]=0$ if and only if $\operatorname{vec}(P)^{\prime} R_{0}=0$;
(3) $E\left[x_{i}^{\prime} P^{\prime} x_{i}\right] \neq 0$ if and only if $\operatorname{vec}(P)^{\prime}\left[\operatorname{vec}\left(E\left[v_{i} v_{i}^{\prime}\right]\right)+\operatorname{vec}\left(E\left[\xi_{i} \xi_{i}^{\prime}\right]\right)\right] \neq 0$.

It follows from Lemma 2 that

$$
\begin{equation*}
\mathcal{P}_{0}=\left\{P: P^{\prime} l_{T}=0, \operatorname{vec}(P)^{\prime} R_{0}=0\right\}=\left\{P: \operatorname{vec}(P) \in[\mathcal{C}(L)]^{\perp}\right\} \tag{2.4}
\end{equation*}
$$

where the matrix $L=\left[R_{0} \vdots I_{T} \otimes l_{T}\right]$ is $T^{2} \times(m+T), \mathcal{C}(L)$ denotes the column space of L, and $[\mathcal{C}(L)]^{\perp}$ denotes the orthogonal complement of $\mathcal{C}(L)$. Hence

$$
K=\operatorname{dim}\left(\mathcal{P}_{0}\right)=T^{2}-\operatorname{dim}(\mathcal{C}(L))
$$

To obtain a basis of \mathcal{P}, we first find a basis of $[\mathcal{C}(L)]^{\perp}$, say $\left\{\nu_{1}, \ldots, \nu_{K}\right\}$. For example, a set of eigenvectors of matrix $L L^{\prime}$ corresponding to the zero eigenvalue of $L L^{\prime}$ can serve this purpose. By the assumption that $\mathcal{P} \neq \emptyset$, at least one of them, say ν_{1}, satisfies condition (IV.3). Now let

$$
\widetilde{\nu}_{i}= \begin{cases}\nu_{1}, & i=1 \\ \nu_{i}+\nu_{1}, & K \geq i \geq 2\end{cases}
$$

Then $\left\{P_{1}, \ldots, P_{K}\right\}$ is a basis of \mathcal{P}, where $\widetilde{\nu}_{i}=\operatorname{vec}\left(P_{i}\right), i=1, \ldots, K$.
Now we answer the third question. Let $\left\{P_{1}, \ldots, P_{K}\right\}$ be a basis of \mathcal{P}. According to Griliches-Hausman, as cited above in (W1) and (W2), we have two ways to obtain an efficient estimator. We first study the GMM approach (W1). The moment conditions associated with P_{1}, \ldots, P_{K} are

$$
E\left[x_{i}^{\prime} P_{k}^{\prime}\left(y_{i}-x_{i} \beta\right)\right]=0, \quad k=1, \ldots, K
$$

Because $x_{i}^{\prime} P_{k}^{\prime}\left(y_{i}-x_{i} \beta\right)=\operatorname{vec}\left(P_{k}\right)^{\prime}\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]$ for each k, these equations can be written as

$$
\begin{equation*}
H E\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]=0, \tag{2.5}
\end{equation*}
$$

where $H=\left[\operatorname{vec}\left(P_{1}\right), \ldots, \operatorname{vec}\left(P_{K}\right)\right]^{\prime}$. Since P_{1}, \ldots, P_{K} are linearly independent, H is a matrix of full rank and the system of orthogonality conditions in (2.5) contains no redundant equations. The (asymptotically) efficient two-step GMM estimator can be derived from (2.5), using the technique described in Hall (2005). Specifically, let

$$
\begin{equation*}
A_{i}=H\left[x_{i} \otimes y_{i}\right], \quad B_{i}=H\left[x_{i} \otimes x_{i}\right], \quad \bar{A}=\frac{1}{N} \sum_{i=1}^{N} A_{i}, \quad \bar{B}=\frac{1}{N} \sum_{i=1}^{N} B_{i} . \tag{2.6}
\end{equation*}
$$

Then the GMM estimator using weighting matrix W is the minimizer of $(\bar{A}-\bar{B} \beta)^{\prime} W(\bar{A}-\bar{B} \beta)$ over β, which is given by

$$
\widehat{\beta}_{G M M}=\left(\bar{B}^{\prime} W \bar{B}\right)^{-1} \bar{B}^{\prime} W \bar{A}
$$

A typical consistent first-step GMM estimator is the unweighted GMM estimator where W is taken as the identity matrix:

$$
\widehat{\beta}_{G M M 1}=\left(\bar{B}^{\prime} \bar{B}\right)^{-1} \bar{B}^{\prime} \bar{A}
$$

Under Assumption A, the matrix

$$
\begin{equation*}
\Gamma=E\left[\left(A_{i}-B_{i} \beta\right)\left(A_{i}-B_{i} \beta\right)^{\prime}\right] \tag{2.7}
\end{equation*}
$$

is well-defined and does not depend on i. In terms of the asymptotic variance, $W=\Gamma^{-1}$, if it is known, is the optimal weighting matrix. Since Γ^{-1} is unknown, we replace it by a consistent estimator

$$
\begin{equation*}
\widehat{W}=\left[\frac{1}{N} \sum_{i=1}^{N}\left(A_{i}-B_{i} \widehat{\beta}_{G M M 1}\right)\left(A_{i}-B_{i} \widehat{\beta}_{G M M 1}\right)^{\prime}\right]^{-1} \tag{2.8}
\end{equation*}
$$

A two-step GMM estimator is then

$$
\begin{equation*}
\widehat{\beta}_{G M M 2}=\left(\bar{B}^{\prime} \widehat{W} \bar{B}\right)^{-1} \bar{B}^{\prime} \widehat{W} \bar{A} \tag{2.9}
\end{equation*}
$$

Griliches-Hausman provided a GMM estimator at (21) in their paper. To compute their estimator one needs to find a basis P_{1}, \ldots, P_{K} using difference transformations, where some P_{k} 's have to be obtained manually. To compute our GMM estimator $\widehat{\beta}_{G M M 2}$, we only need to determine the matrix H in (2.5), as discussed previously.

From standard statistical theory, $\widehat{\beta}_{G M M 2}$ in (2.9) is consistent for β and asymptotically normal, as $N \rightarrow \infty$. It is asymptotically efficient (optimal) in the sense that the asymptotic variance of $\widehat{\beta}_{G M M 2}$ is no larger than that of $\widehat{\beta}_{G M M}$ with any W, and is smaller than that of $\widehat{\beta}_{G M M}$ unless W converges to Γ^{-1}.

One natural question is whether the asymptotic variances of $\widehat{\beta}_{G M M 2}$ in (2.9) are the same for different bases of \mathcal{P}. If $\left\{P_{1}, \ldots, P_{K}\right\}$ and $\left\{\widetilde{P}_{1}, \ldots, \widetilde{P}_{J}\right\}$ are two bases of \mathcal{P}, then $J=K$. Let \widetilde{H} be the same as H in (2.5) with P_{k} replaced by \widetilde{P}_{k}. Then, there exists a $K \times K$ nonsingular matrix Π such that $\widetilde{H}=\Pi H$. The set of moment conditions in (2.5) and

$$
\widetilde{H} E\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]=0
$$

are equivalent variants of each other in the sense that any moment condition in one of them is a linear combination of the moment conditions in the other. The following result provides sufficient conditions for two sets of moment conditions to be equivalent variants of each other, and shows that equivalent variants produce two-step GMM estimators with the same efficiency.

Lemma 3. Let Q_{1} and Q_{2} be two matrices with the same number of columns.
(i) Suppose that $Q_{1} \zeta=0$ if and only if $Q_{2} \zeta=0$, for any vector ζ. Then the set of moment conditions $Q_{1} E[g(\beta)]=0$ is an equivalent variant of the set of moment conditions $Q_{2} E[g(\beta)]=0$, where g is a given function of β. Furthermore, two-step GMM estimators based on $Q_{1} E[g(\beta)]=0$ and $Q_{2} E[g(\beta)]=0$ have the same asymptotically normal distribution.
(ii) Suppose that $Q_{1} \zeta=0$ implies $Q_{2} \zeta=0$ for any vector ζ. Then the twostep $G M M$ estimator based on $Q_{1} E[g(\beta)]=0$ is at least as efficient as the two-step GMM estimator based on $Q_{2} E[g(\beta)]=0$.

As a direct consequence of Lemma 3 and the previous discussion, we have the following.

Theorem 4. Suppose Assumption A holds and $\mathcal{P} \neq \emptyset$. For any basis P_{1}, \ldots, P_{K} of \mathcal{P}, the GMM estimator defined by (2.9) is asymptotically optimal among all such GMM estimators.

Now, we discuss the second way of constructing an efficient estimator. As cited in (W2), Griliches-Hausman mentioned optimally weighting a complete set of IV estimators, but did not provide an explicit weighting formula.

Let P_{1}, \ldots, P_{K} be a basis of \mathcal{P} and $\widehat{\beta}_{P_{k}}=\left(w_{k}^{\prime} x\right)^{-1} w_{k}^{\prime} y$, with $w_{k}=\left(I_{N} \otimes P_{k}\right) x$ for $k=1, \ldots, K$. For each K-vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ satisfying $\lambda_{1}+\cdots+\lambda_{K}=1$, we define the weighted IV estimator

$$
\begin{equation*}
\hat{\beta}(\lambda)=\lambda_{1} \hat{\beta}_{P_{1}}+\cdots+\lambda_{K} \hat{\beta}_{P_{K}} \tag{2.10}
\end{equation*}
$$

Since $\widehat{\beta}_{P_{1}}, \ldots, \widehat{\beta}_{P_{K}}$ are consistent for $\beta, \widehat{\beta}(\lambda)=\lambda_{1} \widehat{\beta}_{P_{1}}+\cdots+\lambda_{K} \widehat{\beta}_{P_{K}}$ is consistent for β. The following result shows how to find an optimally weighted IV estimator.

Theorem 5.uppose Assumption A holds and $\mathcal{P} \neq \emptyset$.
(i) For each fixed $\lambda,(\hat{\beta}(\lambda)-\beta) / \sqrt{V(\lambda)}$ converges in distribution to standard normal.
(ii) $V(\lambda)$ is minimized at $\lambda^{*}=\left(B^{\prime} \Gamma^{-1} B\right)^{-1} \operatorname{diag}(B) \Gamma^{-1} B$ and $V\left(\lambda^{*}\right)=$ $\left(B^{\prime} \Gamma^{-1} B\right)^{-1}$, where Γ is defined in (2.7), $B=\left(B_{1}, \ldots, B_{K}\right)^{\prime}$ is a K-vector with $B_{k}=E\left(x_{i}^{\prime} P_{k}^{\prime} x_{i}\right)$, and $\operatorname{diag}(B)$ is the $K \times K$ diagonal matrix whose k th diagonal element is B_{k}.
(iii) If we estimate λ^{*} by

$$
\widehat{\lambda}=\left(\bar{B}^{\prime} \widehat{W} \bar{B}\right)^{-1} \operatorname{diag}(\bar{B}) \widehat{W} \bar{B}
$$

where \widehat{W} is given by (2.8) and \bar{B} is given by (2.6), then the weighted IV estimator $\hat{\beta}(\hat{\lambda})$ is identical to $\hat{\beta}_{G M M 2}$ defined at (2.9) and is optimal in the sense that $\hat{\beta}(\widehat{\lambda})$ is asymptotically normal with mean β and asymptotic variance $V\left(\lambda^{*}\right)$.

Theorem 5 indicates that an optimally weighted IV estimator is identical to an efficient two-step GMM estimator. Although optimally weighted IV estimators and efficient two-step GMM estimators are not unique (we may use different consistent estimators of Γ^{-1} and/or different consistent estimators of λ^{*}), Theorem 5 shows that all of them are asymptotically equivalent in the sense that they are asymptotically normal with mean β and the same asymptotic variance.

Since Griliches-Hausman's approaches in (W1) and (W2) produce the same or asymptotically equivalent estimators, we refer to Griliches-Hausman's GMM method, or simply Griliches-Hausman's approach.

3. Wansbeek's GMM Estimator

Instead of constructing orthogonality conditions by means of instrumental variables, Wansbeek constructed moment conditions directly. Let $A_{T}=$
$I_{T}-(1 / T) l_{T} l_{T}^{\prime}$ denote the within transformation, $R=\left(I_{T} \otimes A_{T}\right) R_{0}$, and $M_{R}=$ $I_{T^{2}}-R\left(R^{\prime} R\right)^{-} R^{\prime}$, where $\left(R^{\prime} R\right)^{-}$is a generalized inverse of $R^{\prime} R$ and R_{0} is the correlation structure matrix in $\operatorname{vec}\left(E\left[v_{i} v_{i}^{\prime}\right]\right)=R_{0} \varphi$. Under (2.1) with Assumption A, Wansbeek derived

$$
\begin{equation*}
M_{R}\left(I_{T} \otimes A_{T}\right) E\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]=0 \tag{3.1}
\end{equation*}
$$

and suggested constructing GMM estimators based on (3.1). However, some equations in (3.1) are linear combinations of others. Hence, the covariance matrix of $M_{R}\left(I_{T} \otimes A_{T}\right)\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]$ is not invertible and the efficient GMM estimator in the form of (2.9) is not directly obtainable based on (3.1). The redundancy in (3.1) comes from the singularity of $M_{R}\left(I_{T} \otimes A_{T}\right)$, which is caused by the singularity of A_{T} and M_{R}.

To continue we need the following concept. A set of moment conditions is essential if, in this set of moment conditions, no single moment condition can be written as a linear combination of the rest. If a set of moment conditions is not essential, then we should find its essential equivalent variant, from which we can easily obtain GMM estimators in the form of (2.9). The question is, given a set of moment conditions that is not essential, how do we find its essential equivalent variant?

Biørn and Klette (1998) and Biørn (2000) provided solutions for identifying essential conditions in some special cases related to Griliches-Hausman's GMM. For the moment conditions in (3.1), we suggest using singular value decomposition to obtain essential equivalent variant. Specifically, suppose the singular value decomposition of $M_{R}\left(I_{T} \otimes A_{T}\right)$ is $M_{R}\left(I_{T} \otimes A_{T}\right)=U \Lambda V^{\prime}$, where U and V are $T^{2} \times r$ matrices whose columns are orthogonal to each other, r is the rank of $M_{R}\left(I_{T} \otimes A_{T}\right)$, and Λ is a $r \times r$ nonsingular diagonal matrix. By Lemma 3 , an essential equivalent variant of (3.1) is

$$
\begin{equation*}
V^{\prime} E\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]=0 . \tag{3.2}
\end{equation*}
$$

Now, the asymptotically efficient GMM estimator based on (3.2) is given by (2.9) with $A_{i}=V^{\prime}\left[x_{i} \otimes y_{i}\right]$ and $B_{i}=V^{\prime}\left[x_{i} \otimes x_{i}\right]$.

Wansbeek's choice of $\left(A_{T}, M_{R}\right)$ is not the only way of constructing moment conditions. Consider an arbitrary $l \times T$ matrix A satisfying $A l_{T}=0$ and a corresponding conformable matrix M satisfying $M\left(I_{T} \otimes A\right) R_{0}=0$. Following the procedures above, we can obtain the GMM estimator (2.9) based on (A, M) and the essential equivalent variant of

$$
\begin{equation*}
M\left(I_{T} \otimes A\right) E\left[x_{i} \otimes\left(y_{i}-x_{i} \beta\right)\right]=0 \tag{3.3}
\end{equation*}
$$

The set of moment conditions constructed by Wansbeek in (3.1) is a special case of (3.3). Let

$$
\mathcal{S}=\left\{(A, M): A l_{T}=0 \text { and } M\left(I_{T} \otimes A\right) R_{0}=0\right\}
$$

be the collection of all pairs (A, M) that can be used for constructing moment conditions. Besides Wansbeek's $\left(A_{T}, M_{R}\right)$, another popular pair in \mathcal{S} is $\left(D_{1}, M_{D_{1}}\right)$, where D_{1} is the $(T-1) \times T$ matrix representing the first order difference transformation, i.e., in the t th row of D_{1}, the t th element is -1 , the $(t+1)$ th element is 1 , and the rest of the elements are $0, t=1, \ldots, T-1$, and

$$
M_{D_{1}}=I_{T(T-1)}-R_{D_{1}}\left(R_{D_{1}}^{\prime} R_{D_{1}}\right)^{-} R_{D_{1}}^{\prime}, \quad R_{D_{1}}=\left(I_{T} \otimes D_{1}\right) R_{0}
$$

Now, two questions arise naturally.

- Among all $(A, M) \in \mathcal{S}$ leading to the GMM estimator (2.9), is there an optimal choice in the sense that the GMM estimator (2.9) has the smallest asymptotic variance?
- Is Wansbeek's choice $\left(A_{T}, M_{R}\right)$ optimal?

To answer the above questions we establish the following result.
Theorem 6.(i) The two-step GMM estimator (2.9) based on a pair $(A, M) \in \mathcal{S}$ is optimal if (A, M) satisfies (1) $\operatorname{rank}(A)=T-1$ and $(2) M$ has the maximum possible rank, $\operatorname{rank}(M)=T^{2}-\operatorname{rank}\left(R_{A}\right)$, where $R_{A}=\left(I_{T} \otimes A\right) R_{0}$.
(ii) The sets of moment conditions based on any pairs $\left(A_{1}, M_{1}\right)$ and $\left(A_{2}, M_{2}\right)$ in \mathcal{S} satisfying conditions in part (i) are equivalent variants of each other.

It is easy to check that both $\left(A_{T}, M_{R}\right)$ and $\left(D_{1}, M_{D_{1}}\right)$ satisfy the conditions in Theorem 6(i). Hence, they both lead to GMM estimators that are optimal among GMM estimators (2.9) based on pairs in \mathcal{S}.

As the last result of this section, we study the relationship between GrilichesHausman's and Wansbeek's approaches. Griliches-Hausman's set of moment conditions (2.5) bears a striking resemblance to Wansbeek's set of conditions (3.1). This hints at an intimate relationship between them. The following result tells us that any moment condition in (2.5) is a linear combination of moment conditions in (3.1), and vice versa. Therefore, the two methods lead to asymptotically equivalent GMM estimators.

Theorem 7.Consider model (2.1) with Assumption A. Then the set of moment conditions in Griliches-Hausman, as specified in (2.5), is an equivalent variant of the set of moment conditions in Wansbeek, as specified in (3.1).

4. Estimability of β

In this section we elaborate on the estimability of β under Griliches-Hausman's or Wansbeek's approach.

Under Griliches-Hausman's approach, β is estimable if and only if there exists at least one matrix P satisfying (IV.1)-(IV.3). Let ϑ be the vector of free parameters in $E\left[\xi_{i} \xi_{i}^{\prime}\right]$ and $\operatorname{vec}\left(E\left[\xi_{i} \xi_{i}^{\prime}\right]\right)=R_{\xi} \vartheta$, where R_{ξ} is a known matrix representing the correlation structure of ξ_{i}. From Lemma $2, \mathcal{P} \neq \emptyset$ if and only if

$$
\begin{equation*}
\operatorname{vec}(P)^{\prime} R_{0}=0 \text { and } \operatorname{vec}(P)^{\prime}\left(I_{T} \otimes l_{T}\right)=0 \nRightarrow \operatorname{vec}(P)^{\prime} R_{\xi}=0 \tag{4.1}
\end{equation*}
$$

For Wansbeek's approach, β is estimable if and only if $M_{R}\left(I_{T} \otimes A_{T}\right) E\left[x_{i} \otimes x_{i}\right] \neq$ 0 . Since $M_{R}\left(I_{T} \otimes A_{T}\right) E\left[v_{i} \otimes v_{i}\right]=0, \beta$ is estimable if and only if

$$
\begin{equation*}
M_{R}\left(I_{T} \otimes A_{T}\right) R_{0}=0 \nRightarrow M_{R}\left(I_{T} \otimes A_{T}\right) R_{\xi}=0 \tag{4.2}
\end{equation*}
$$

Condition (4.2) is equivalent to condition (4.1), as we have shown in (A.1) that $H u=0$ if and only if $M_{R}\left(I_{T} \otimes A_{T}\right) u=0$ for any vector u. This means that when Griliches-Hausman's method fails, so does Wansbeek's method, and vice versa. Therefore, the two approaches are not only equivalent in producing asymptotically equivalent efficient GMM estimators, but also equivalent in terms of when they fail.

Obviously, (4.1) does not hold if R_{ξ} is a submatrix of R_{0}, or if any column of R_{ξ} is a linear combination of the columns of R_{0}. An easier-to-check characterization of (4.1) is given as follows. Its proof is omitted.
Lemma 8.Let $\Pi=\left[\nu_{1}, \ldots, \nu_{K}\right]$, where $\left\{\nu_{1}, \ldots, \nu_{K}\right\}$ is a basis of $[\mathcal{C}(L)]^{\perp}$ given in (2.4). Then (4.1) holds if and only $\Pi^{\prime} R_{\xi} \neq 0$.

Note that the conclusion in Lemma 8 is invariant to the choice of Π. We illustrate the application of Lemma 8 by two examples with $T=3$.

Suppose first that $E\left[v_{i} v_{i}^{\prime}\right]=\sigma_{v}^{2} I_{3}$ and $E\left[\xi_{i} \xi_{i}^{\prime}\right]=\left(\sigma_{\xi}^{2}-c\right) I_{3}+c l_{3} l_{3}^{\prime}$, where I_{3} is the identity matrix of order 3 , and l_{3} is the 3 dimensional vector of ones. Then $R_{0}=\operatorname{vec}\left(I_{3}\right), \varphi=\sigma_{v}^{2}$,

$$
R_{\xi}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]^{\prime}
$$

and $\vartheta=\left[\sigma_{\xi}^{2}, c\right]^{\prime}$. Using $L=\left[R_{0} \vdots I_{3} \otimes l_{3}\right]$, we obtain the matrix Π in Lemma 8 as

$$
\Pi=\left[\begin{array}{ccccccccc}
-1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & -1
\end{array}\right]^{\prime}
$$

It is easy to verify that $\Pi^{\prime} R_{\xi}=0$. Therefore, β is not estimable.
Suppose next that

$$
E\left[v_{i} v_{i}^{\prime}\right]=\left[\begin{array}{ccc}
\sigma_{v 1}^{2} & 0 & 0 \\
0 & \sigma_{v 2}^{2} & 0 \\
0 & 0 & \sigma_{v 3}^{2}
\end{array}\right] \quad \text { and } \quad E\left[\xi_{i} \xi_{i}^{\prime}\right]=\left[\begin{array}{ccc}
\sigma_{\xi}^{2} & \lambda & 0 \\
\lambda & \sigma_{\xi}^{2} & \lambda \\
0 & \lambda & \sigma_{\xi}^{2}
\end{array}\right]
$$

Then

$$
R_{0}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{\prime}, \quad R_{\xi}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]^{\prime}
$$

$\varphi=\left[\sigma_{v 1}^{2}, \sigma_{v 2}^{2}, \sigma_{v 3}^{2}\right]^{\prime}$, and $\vartheta=\left[\sigma_{\xi}^{2}, \lambda\right]^{\prime}$. Using $L=\left[R_{0} \vdots I_{3} \otimes l_{3}\right]$, we obtain

$$
\Pi=\left[\begin{array}{ccccccccc}
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0
\end{array}\right]^{\prime} \quad \text { and } \quad \Pi^{\prime} R_{\xi}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]^{\prime} \neq 0
$$

Hence, β is estimable.

5. Extensions

5.1. Models with strictly exogenous variables

A covariate without measurement error is said to be strictly exogenous if it is uncorrelated with both the regression disturbance and the measurement error. With strictly exogenous variables in the model we can construct additional orthogonality conditions.

Consider the model

$$
\begin{align*}
& y_{i}=\xi_{i} \beta+Z_{i} \gamma+l_{T} \alpha_{i}+\eta_{i}, \tag{5.1}\\
& x_{i}=\xi_{i}+v_{i}
\end{align*} \quad t=1, \ldots, T ; i=1, \ldots, N
$$

where Z_{i} with dimension $T \times q$ is a set of strictly exogenous covariates. By the strict exogeneity of Z_{i} we have moment conditions

$$
\begin{equation*}
E\left[\operatorname{vec}\left(Z_{i}\right) \otimes\left(A_{T} \epsilon_{i}\right)\right]=0 \tag{5.2}
\end{equation*}
$$

Now we can give the moment conditions of Griliches-Hausman and Wansbeek for the model specified by (5.1). Since (5.2) can be expressed as

$$
\left(I_{q T} \otimes A_{T}\right) E\left[\operatorname{vec}\left(Z_{i}\right) \otimes\left(y_{i}-x_{i} \beta-Z_{i} \gamma\right)\right]=0
$$

an extension of (2.5) under Griliches-Hausman's approach is

$$
\left[\begin{array}{ll}
H & \tag{5.3}\\
& \left(I_{q T} \otimes A_{T}\right)
\end{array}\right] E\left\{\left[\begin{array}{c}
x_{i} \\
\operatorname{vec}\left(Z_{i}\right)
\end{array}\right] \otimes\left(y_{i}-x_{i} \beta-Z_{i} \gamma\right)\right\}=0
$$

and an extension of (3.1) under Wansbeek's approach is

$$
\left[\begin{array}{cc}
M_{R}\left(I_{T} \otimes A_{T}\right) & \tag{5.4}\\
& \left(I_{q T} \otimes A_{T}\right)
\end{array}\right] E\left\{\left[\begin{array}{c}
x_{i} \\
\operatorname{vec}\left(Z_{i}\right)
\end{array}\right] \otimes\left(y_{i}-x_{i} \beta-Z_{i} \gamma\right)\right\}=0
$$

As acknowledged by Wansbeek himself, he did not use the full information from exogeneity to construct moment conditions. The moment conditions used by Wansbeek to represent exogeneity of Z_{i} are

$$
\begin{equation*}
E\left[Z_{i}^{\prime}\left(A_{T} \epsilon_{i}\right)\right]=0 \tag{5.5}
\end{equation*}
$$

which are some linear combinations of the moment conditions in (5.2). By Lemma 3 , the GMM estimator based on (5.2) is more efficient than the GMM estimator based on (5.5).

Note also that both (5.3) and (5.4) contain redundant conditions. We can apply singular value decomposition (as we did in Section 3) to these equations to derive GMM estimators based on the essential variants of (5.3) and (5.4).

The equivalence between (5.3) and (5.4) follows immediately from Theorem 7, i.e., Griliches-Hausman's and Wansbeek's methods are equivalent in the case where exogenous covariates enter into the regression.

5.2. Extension to nonclassical assumptions

The independence of the true covariate ξ_{i} and the measurement error v_{i} is a "classical" measurement error assumption (Hausman (2001), Bound, Brown and Mathiowetz (2001)). Violations of this classical measurement error assumption have appeared in a number of economic applications, such as in Bound and Krueger (1991) where a negative correlation between the true covariate (true earnings) and measurement error was found to be significant. We now relax this assumption to allow the measurement error and the true covariate to be correlated. We illustrate the extension of the two GMM methods using the model specified by (2.1). The results for more general situations are similar. Let $\Delta=E\left[v_{i} \xi_{i}^{\prime}\right]$ be the correlation matrix between the measurement error and the true covariate. Assume $\operatorname{vec}(\Delta)=\Lambda_{0} \eta$, where Λ_{0} is a known matrix and η is a vector of free parameters in Δ. Both Griliches-Hausman's and Wansbeek's methods can be easily adapted to this situation.

Consider the extension of (2.5). The conditions (IV.1)-(IV.3) in Section 2 should be replaced by the following new requirements for matrix P.

- $\operatorname{vec}(P)^{\prime}\left(I_{T} \otimes l_{T}\right)=0 ;$
- $\operatorname{vec}(P)^{\prime}\left[R_{0} \vdots \Lambda_{0}\right]=0$;
- $\operatorname{vec}(P)^{\prime}\left[\operatorname{vec}\left(E\left[\xi_{i} \xi_{i}^{\prime}\right]\right)\right] \neq 0$.

The resulting moment conditions are still given by (2.5).
To generalize (3.1), we can still use (3.1) with M_{R} defined by $M_{R}=I_{T^{2}}-$ $R\left(R^{\prime} R\right)^{-} R^{\prime}$, where $R=\left(I_{T} \otimes A_{T}\right)\left[R_{0} \vdots \Lambda_{0}\right]$.

The equivalence between the two new sets of moment conditions can be established similarly as before.

If the structure of Δ is a special class within the structure class of $E\left[v_{i} v_{i}^{\prime}\right]$, i.e., columns of Λ_{0} are linear combinations of the columns of R_{0}, then

$$
\operatorname{vec}(P)^{\prime}\left[R_{0} \vdots \Lambda_{0}\right]=0 \Leftrightarrow \operatorname{vec}(P)^{\prime} R_{0}=0
$$

and we can also take $R=\left(I_{T} \otimes A_{T}\right) R_{0}$. This means that we can ignore the correlation between measurement error and true covariate if its structure is simpler than the serial correlation structure of measurement errors.

In theory it is also possible to generalize both methods when η_{i} and $\left(\xi_{i}^{\prime}, v_{i}^{\prime}\right)^{\prime}$ are dependent, or when all three vectors η_{i}, ξ_{i}, and v_{i} are dependent. However, one needs to be cautious that more general model assumptions imply more restrictions on the corresponding transformations, and a too general model setup may lead to non-estimability of parameters.

5.3 Estimation of the individual effect α_{i}

Under Griliches-Hausman's and Wansbeek's approaches, the individual effect α_{i} under model (2.1) is treated as a nuisance effect. Under some assumptions, some effects related to the α_{i} 's can be estimated. For example, if the α_{i} 's are i.i.d. random effects, then a consistent estimator of $E\left(\alpha_{i}\right)($ as $N \rightarrow \infty)$ is $N^{-1} \sum_{i=1}^{N} \widehat{\alpha}_{i}$, where $\widehat{\alpha}_{i}=T^{-1} \sum_{t=1}^{T}\left(y_{i t}-x_{i t} \widehat{\beta}_{G M M 2}\right), i=1, \cdots, N$. For fixed effect α_{i}, we need some assumption since α_{i} is unobserved. For instance, $\widehat{\alpha}_{i}$ is a consistent estimator of α_{i} if $T \rightarrow \infty$; if $\alpha_{i}=\psi^{\prime} t_{i}$ for a vector of covariate t_{i} observed without measurement error and an unknown parameter vector ψ, then a consistent estimator of $\psi($ as $N \rightarrow \infty)$ is $\left(\sum_{i=1}^{N} t_{i} t_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} t_{i} \widehat{\alpha}_{i}$, provided that $N^{-1} \sum_{i=1}^{N} t_{i} t_{i}^{\prime}$ converges to a positive definite matrix. Combining the previous arguments, we can also handle the situation where α_{i} follows a mixed-effect model.

6. Application to the q Theory of Investment

Economic theory on firm investment suggests that a firm's optimal investment decision is solely determined by its marginal q, the ratio of the market value of an additional unit of capital to its replacement cost. According to this so called q theory of investment, a firm's financing structure is irrelevant to its investment decision after controlling for q. Therefore, both financially unconstrained firms and financially constrained firms should be insensitive to their
internal financing capabilities (such as the amount of cash flow). However, empirical studies (Fazzari, Hubbard and Petersen (1988), Barnett and Sakellaris (1998), and others) found that financial factors such as cash flow and sales enter into the investment- q regression significantly as additional regressors. Moreover, financially constrained firms were found to be more sensitive to cash flow than unconstrained firms. Erickson and Whited (2000) argued that the previous controversial and disappointing empirical results were caused by the analysts neglecting the mismeasurement of marginal q, as marginal q is unobservable and empirical proxies such as average q, the ratio of the market value of existing capital to its replacement cost (Hayashi (1982)), could contain considerable error. Using a GMM method involving higher order moments to adjust for measurement error in q, Erickson and Whited (2000) found that cash flow did not have effect on investment; they concluded that the empirical failure of the q theory of investment was due to inappropriate treatment of the measurement error of marginal q (neglecting either the measurement error of q or the serial correlation of the measurement error). Erickson and Whited (2000) showed that the measurement error of marginal q is serially correlated. Hence, estimation methods neglecting this correlation structure may produce misleading results.

We revisit the investment-cash flow sensitivity controversy by applying Wansbeek's GMM method described in the previous sections. Although GrilichesHausman's approach produces asymptotically equivalent GMM estimators to Wansbeek's approach, and can be programmed using standard software package, we prefer Wansbeek's approach since it is computationally simpler. We consider the model

$$
\begin{equation*}
\frac{I_{i, t}}{K_{i, t-1}}=\mu_{0}+\beta q_{i, t}+\gamma \frac{C F_{i, t}}{K_{i, t-1}}+\alpha_{i}+\eta_{i t} \tag{6.1}
\end{equation*}
$$

where $I_{i, t}$ represents firm i 's investment in period $t, K_{i, t-1}$ is its capital stock at the beginning of period $t, C F_{i, t}$ is its cash flow in period t, and $q_{i, t}$ is the firm's marginal q value at the beginning of period t. The observable q value is the average q and denoted by $Q_{i, t}$. We assume that

$$
\begin{equation*}
Q_{i, t}=q_{i, t}+\lambda_{0}+v_{i t} . \tag{6.2}
\end{equation*}
$$

Compared with the model defined by (5.1), (6.1) - (6.2) have the additional quantities μ_{0} and λ_{0}. These do not have any effect on our GMM estimator of β and γ since they will be swept out by the transformation we use to sweep out the unobserved individual effect α_{i}. We assume that the measurement error is uncorrelated with the true covariate marginal q, and that cash flow is strictly exogenous.

Table 1. Descriptive statistics for separate samples of firms

	Variable	Q1	Median	Q3	Mean	s.d.
FC firms	$\frac{I}{K}$	0.0902	0.161	0.295	0.234	0.234
$(445$ firms $)$	$\frac{C F}{K}$	0.1130	0.188	0.289	0.229	0.171
	Average q	0.9810	1.147	1.488	1.340	0.666
FUC firms	$\frac{I}{K}$	0.1510	0.238	0.417	0.346	0.346
$(494$ firms $)$	$\frac{C F}{K}$	0.4600	0.709	1.400	1.066	0.904
	Average q	1.2260	1.711	2.474	2.027	1.198

$\mathrm{FC}=$ Financially constrained; $\mathrm{FUC}=$ Financially unconstrained.
Q1 denotes the first quartile and Q3 denotes the third quartile.
Our data come from COMPUSTAT database (years 1992-1995), the same data source used by Erickson and Whited (2000). We adopt the accounting definitions of $I_{i, t}, K_{i, t}, C F_{i, t}$ and $Q_{i, t}$ as in Kaplan and Zingales (1997). We follow Lamont, Polk and Saa-Requejo (2001) to classify firms into financially constrained and financially unconstrained categories. Specifically, we construct a composite index of financial constraints called the KZ index for each firm in each year, and each year we rank all firms accordingly. A firm is classified as "financially constrained for year t " if its KZ index is among the top 33% of all firms at year t; it is classified as "financially unconstrained for year t " if its KZ index is among the bottom 33% of all firms in year t. We refer to a firm as "financially constrained" if it is classified as financially constrained for every year from 1992 to 1995. "Financially unconstrained" firms are defined similarly. We follow the conventional practice of removing outlying observations from the data analysis. Specifically, we keep observations with the following characteristics: (1) investment to capital ratio is between 0 and 3 ; (2) average q is between 0 and 10; (3) cash flow to capital ratio is between 0 and 5 . Some descriptive statistics are given in Table 1.

We apply efficient two-step GMM estimation separately to financially constrained firms and unconstrained firms. The results are given in Table 2. The OLS estimates were based on the within transformation suggested by Wallace and Hussain (1969), and the OLS-1 estimates were obtained by applying the OLS method to the first order differences. To consider the serial correlation of the measurement errors, we calculated four GMM estimates based on (2.9) with different serial correlation structures of measurement errors: GMM-1 assumes $v_{i 1}, \ldots, v_{i T}$ are i.i.d., where $v_{i t}$ is the t th component of v_{i}; GMM-2 assumes $\left\{v_{i 1}, \ldots, v_{i T}\right\}$ is stationary with $E\left[v_{i 1} v_{i t}\right]=0$ if and only if $t>1$; GMM- 3 assumes $\left\{v_{i 1}, \ldots, v_{i T}\right\}$ is stationary with $E\left[v_{i s} v_{i t}\right]=\rho^{|s-t|} E\left(v_{i 1}^{2}\right)$ for some $\rho \in(-1,1)$; and GMM-4 assumes nonstationary MA(1) measurement errors, which is what GMM-2 assumes except that $\left\{v_{i 1}, \ldots, v_{i T}\right\}$ is not stationary.

Table 2. Effects of marginal q and cash flow on firm's investment: comparison of various estimation methods.

		Method					
	OLS	OLS-1	GMM-1	GMM-2	GMM-3	GMM-4	
FC firms	β	0.013	0.005	0.019	0.013	0.019	0.054
		(0.012)	(0.015)	(0.011)	(0.011)	(0.012)	(0.008)
	γ	0.464	0.433	0.415	0.410	0.369	0.605
		(0.047)	(0.055)	(0.049)	(0.050)	(0.053)	(0.052)
FUC firms	β	-0.017	-0.039	-0.039	-0.059	-0.056	-0.009
		(0.010)	(0.013)	(0.012)	(0.013)	(0.014)	(0.011)
	γ	0.169	0.190	0.200	0.203	0.199	0.266
		(0.011)	(0.014)	(0.021)	(0.021)	(0.021)	(0.023)

The numbers in the parenthesis are standard errors of the parameter estimates.
$\mathrm{FC}=$ Financially constrained; $\mathrm{FUC}=$ Financially unconstrained.
OLS-1: OLS applying to first order differences.
GMM-1: Two-step GMM estimator with i.i.d. measurement errors
GMM-2: Two-step GMM estimator with stationary MA(1) measurement errors.
GMM-3: Two-step GMM estimator with stationary AR(1) measurement errors.
GMM-4: Two-step GMM estimator with nonstationary MA(1) measurement errors.

For financially constrained firms, all GMM estimates for β, the coefficient of marginal q, are positive and larger than the OLS estimate, which reflects the attenuation by measurement error of the coefficient of a mismeasured covariate. The estimate of β from the first order difference OLS estimate (OLS-1) is smaller than that from the OLS, consistent with the argument in Griliches-Hausman that measurement error biases the first order difference estimator toward zero more than it biases the within estimator. GMM estimates for β are not significantly different from zero except for the GMM estimate under nonstationary MA(1) measurement errors. All GMM estimates of cash flow effect γ are significantly different from zero, indicating a robust effect of cash flow on investment for liquidity constrained firms.

For financially unconstrained firms, all GMM estimates of cash flow effect are significantly greater than zero, and all estimates for the coefficient of q are negative (except for the nonstationary MA(1) measurement error situation, all are significant.), suggesting that cash flow might be playing a more important role in determining corporate investment than marginal q.

Compare the results for the two groups of firms, we find that the GMM estimates of cash flow effect for financially constrained firms are approximately twice that for financially unconstrained firms, which indicates that financially constrained firms respond more sensitively to cash flow than financially unconstrained firms.

Therefore, our empirical study suggests that: (1) cash flow is a significant factor for firms' investment, regardless of whether the firm is financially constrained
or not; (2) financially constrained firms respond more sensitively to cash flow than financially unconstrained firms; and (3) adjusting for measurement error in marginal q might still lead to results unexplainable by the q theory of investment. These results confirm some of the previous findings (Fazzari, Hubbard and Petersen (1988), etc.) that internal funds play an important role in corporate investment, even after controlling for Tobin's marginal q, and that there is substantial difference between the two types of firms in the effect of cash flow on investment. Accordingly, our results provide different explantation of the effect of measurement error than Erickson and Whited (2000).

7. Concluding Remarks

In this paper we investigated two previously proposed approaches to the measurement error problem in panel data. The main results of this paper have been to (i) provide an easy-to-compute GMM estimator based on Griliches-Hausman's idea of using instrumental variables; (ii) provide a weighted instrumental variable estimator that is as efficient as the GMM estimator in (i); (iii) remove the redundancy of the moment conditions constructed by Wansbeek and show that Wansbeek's GMM estimator is optimal; (iv) show that Griliches-Hausman's and Wansbeek's methods are asymptotically equivalent and also computationally similar so that applied users can choose one that is easy to implement; and (v) discuss the estimability of the parameters and some extensions to both methods.

A key advantage of Griliches-Hausman's and Wansbeek's methods and our extensions is that measurement error is handled without assuming a known measurement error covariance matrix or requiring additional validation/replication data, because we can use panel data as "partial" replicates under certain assumptions on the serial correlation structure of the measurement error (e.g., condition (4.11). As seen in the application, different assumptions on the serial correlation structure of the measurement error lead to different moment conditions and different GMM estimators. Empirical studies may be carried out to choose between different measurement error correlation structures.

The methods in this paper work for balanced, linear, static panel data. An interesting future research topic is to investigate whether these methods can be applied to unbalanced panel data, nonlinear panel data, and dynamic panel data.

Acknowledgements

The authors thank two referees and an associate editor for their helpful comments and suggestions.

Appendix: Proofs of results

Proof of Lemma 1. Let $d=\operatorname{dim}\left(V_{0}\right), \widetilde{d}=\operatorname{dim}\left(V_{1}\right)$, with $\widetilde{d}<d$. Let $v_{1}, \ldots, v_{\tilde{d}}$ be a basis of V_{1}. Enlarge $\left\{v_{1}, \ldots, v_{\tilde{d}}\right\}$ to a basis $v_{1}, \ldots, v_{\tilde{d}}, v_{\tilde{d}+1}, \ldots, v_{d}$ of V_{0}. Then $v_{\widetilde{d}+1}, \ldots, v_{d} \in S$. Now consider vectors $v_{1}+v_{\tilde{d}+1}, \ldots, v_{\widetilde{d}}+v_{\widetilde{d}+1}, v_{\widetilde{d}+1}, \ldots, v_{d}$. It is easy to show that they are linearly independent. All of them are in S, otherwise there is a contradiction. Thus we have constructed a set of d linearly independent vectors in S. Since $S \subseteq V_{0}$, the maximum number of linearly independent vectors in S should not exceed d, hence the claim is proved. If s_{1}, \ldots, s_{d} are linearly independent vectors in S, then they are a basis of V_{0}, consequently every vector in S can be expressed as a linear combination of them.

Proof of Lemma 2. For (IV.1), it is easy to verify that $P^{\prime} l_{T}=0$ if and only if $\operatorname{vec}(P)^{\prime}\left(I_{T} \otimes l_{T}\right)=0$. For (IV.2), using the properties of the Kronecker product, one can show that $E\left[x_{i}^{\prime} P^{\prime} \varepsilon_{i}\right]=-v e c(P)^{\prime} R_{0} \varphi \beta$. Hence $E\left[x_{i}^{\prime} P^{\prime} \varepsilon_{i}\right]=$ $0 \Leftrightarrow \operatorname{vec}(P)^{\prime} R_{0}=0$. Similarly we can show (IV.3).
Proof of Lemma 3. (i) Since $Q_{1} \zeta=0 \Leftrightarrow Q_{1}^{\prime} Q_{1} \zeta=0$ and $Q_{2} \zeta=0 \Leftrightarrow Q_{2}^{\prime} Q_{2} \zeta=$ 0 , we have that $Q_{1}^{\prime} Q_{1} \zeta=0 \Leftrightarrow Q_{2}^{\prime} Q_{2} \zeta=0$. Thus if ζ is an eigenvector of $Q_{1}^{\prime} Q_{1}$ associated with the eigenvalue 0 , it is an eigenvector of $Q_{2}^{\prime} Q_{2}$ associated with the eigenvalue 0 . Hence, the zero-eigenspace of $Q_{1}^{\prime} Q_{1}$ is the same as the zeroeigenspace of $Q_{2}^{\prime} Q_{2}$. Since $Q_{1}^{\prime} Q_{1}$ and $Q_{2}^{\prime} Q_{2}$ have the same dimension, we know that the nonzero-eigenspace of $Q_{1}^{\prime} Q_{1}$ is the same as the nonzero-eigenspace of $Q_{2}^{\prime} Q_{2}$. Let $Q_{1}=U_{1} \Lambda_{1} V_{1}^{\prime}$ and $Q_{2}=U_{2} \Lambda_{2} V_{2}^{\prime}$ be the singular value decompositions of Q_{1} and Q_{2}, respectively. Then the rows of V_{1}^{\prime} form a basis for the nonzeroeigenspace of $Q_{1}^{\prime} Q_{1}$, and the rows of V_{2}^{\prime} form a basis for the nonzero-eigenspace of $Q_{2}^{\prime} Q_{2}$. Hence there exists a nonsingular matrix A such that $V_{2}^{\prime}=A V_{1}^{\prime}$. This means that the set of moment conditions $Q_{1} E[g(\beta)]=0$ is an equivalent variant of the set of moment conditions $Q_{2} E[g(\beta)]=0$. Applying the arguments in part (ii) below we can see that the two GMM estimators have the same asymptotic variance.
(ii) By a similar argument as in (i), there exists a $r_{2} \times r_{1}$ matrix A with rank r_{2} such that $V_{2}^{\prime}=A V_{1}^{\prime}$. While $Q_{1} E[g(\beta)]=0 \Leftrightarrow V_{1}^{\prime} E[g(\beta)]=0, Q_{2} E[g(\beta)]=$ $0 \Leftrightarrow A V_{1}^{\prime} E[g(\beta)]=0$. Assuming there is no redundancy in $g(\beta), \Omega=\operatorname{var}(g(\beta))$ >0. The asymptotic variance of the efficient GMM estimator based on $V_{1}^{\prime} E[g(\beta)]$ $=0$ is $\left(C^{\prime} V_{1}\left(V_{1}^{\prime} \Omega V_{1}\right)^{-1} V_{1}^{\prime} C\right)^{-1}$, while the asymptotic variance of the efficient GMM estimator based on $A V_{1}^{\prime} E[g(\beta)]=0$ is $\left(C^{\prime} V_{1} A^{\prime}\left(A V_{1}^{\prime} \Omega V_{1} A^{\prime}\right)^{-1} A V_{1}^{\prime} C\right)^{-1}$. By the theory of linear models,

$$
\left(C^{\prime} V_{1}\left(V_{1}^{\prime} \Omega V_{1}\right)^{-1} V_{1}^{\prime} C\right)^{-1} \leq\left(C^{\prime} V_{1} A^{\prime}\left(A V_{1}^{\prime} \Omega V_{1} A^{\prime}\right)^{-1} A V_{1}^{\prime} C\right)^{-1}
$$

Hence the GMM estimator based on $Q_{1} E[g(\beta)]=0$ is at least as efficient as the GMM estimator based on $Q_{2} E[g(\beta)]=0$.
Proof of Theorem 5. (i) For $k=1, \ldots, K$, let $A_{k}\left(x_{i}, y_{i}\right)=x_{i}^{\prime} P_{k}^{\prime} y_{i}, B_{k}\left(x_{i}, y_{i}\right)=$ $x_{i}^{\prime} P_{k}^{\prime} x_{i}, \overline{A_{k}}=(1 / N) \sum_{i=1}^{N} A_{k}\left(x_{i}, y_{i}\right), \overline{B_{k}}=(1 / N) \sum_{i=1}^{N} B_{k}\left(x_{i}, y_{i}\right)$. Then $\widehat{\beta}_{P_{k}}=\overline{A_{k}} / \overline{B_{k}}$. If $e_{k}^{i}=A_{k}\left(x_{i}, y_{i}\right)-B_{k}\left(x_{i}, y_{i}\right) \beta, \overline{e_{k}}=(1 / N) \sum_{i=1}^{N} e_{k}^{i}=\overline{A_{k}}-\overline{B_{k}} \beta, e^{i}=\left(e_{1}^{i}, \cdot, e_{K}^{i}\right)^{\prime}$ and $\bar{e}=\sum_{i=1}^{N} e^{i}$, then $E\left[e_{k}^{i}\right]=0$. Let $\Gamma=\operatorname{var}\left(e^{i}\right)$. By the Central Limit Theorem, $\sqrt{N} \bar{e} \xrightarrow{d} \mathcal{N}(0, \Gamma)$. Since $\widehat{\beta}_{P_{k}}-\beta=\overline{A_{k}} / \overline{B_{k}}-\beta=\overline{e_{k}} / \overline{B_{k}}$,

$$
\begin{aligned}
\sqrt{N}(\widehat{\beta}(\lambda)-\beta) & =\lambda_{1} \sqrt{N}\left(\widehat{\beta}_{P_{1}}-\beta\right)+\cdots+\lambda_{K} \sqrt{N}\left(\widehat{\beta}_{P_{K}}-\beta\right) \\
& =\left(\frac{\lambda_{1}}{\overline{B_{1}}}, \cdots, \frac{\lambda_{K}}{\overline{B_{K}}}\right) \sqrt{N} \bar{e} \\
& \xrightarrow{d} \mathcal{N}(0, V(\lambda))
\end{aligned}
$$

with

$$
V(\lambda)=\left(\frac{\lambda_{1}}{E\left(B_{1}\right)}, \ldots, \frac{\lambda_{K}}{E\left(B_{K}\right)}\right) \Gamma\left(\frac{\lambda_{1}}{E\left(B_{1}\right)}, \ldots, \frac{\lambda_{K}}{E\left(B_{K}\right)}\right)^{\prime} .
$$

(ii) Consider another approach: pool the K equations and use GMM to solve for an efficient estimator. Denote the efficient GMM estimator by $\widehat{\beta}_{G M M}$. Its asymptotic variance is

$$
V^{*}=\left[\left(E\left(B_{1}\right), \ldots, E\left(B_{K}\right)\right) \Gamma^{-1}\left(E\left(B_{1}\right), \ldots, E\left(B_{K}\right)\right)^{\prime}\right]^{-1} .
$$

Let $w=\Gamma^{1 / 2}\left(\frac{\lambda_{1}}{E\left(B_{1}\right)}, \ldots, \frac{\lambda_{K}}{E\left(B_{K}\right)}\right)^{\prime}$, and $v=\Gamma^{-1 / 2}\left(E\left(B_{1}\right), \cdots, E\left(B_{K}\right)\right)^{\prime}$. Then by Cauchy's inequality,

$$
V(\lambda) / V^{*}=w^{\prime} w v^{\prime} v \geq\left(w^{\prime} v\right)^{2}=1
$$

where the equality holds if and only if $w=c v$ for some scalar c, i.e.,

$$
\Gamma^{1 / 2}\left(\frac{\lambda_{1}}{E\left(B_{1}\right)}, \ldots, \frac{\lambda_{K}}{E\left(B_{K}\right)}\right)^{\prime}=c \Gamma^{-1 / 2}\left(E\left(B_{1}\right), \ldots, E\left(B_{K}\right)\right)^{\prime}
$$

which is

$$
\left(\frac{\lambda_{1}}{E\left(B_{1}\right)}, \ldots, \frac{\lambda_{K}}{E\left(B_{K}\right)}\right)^{\prime}=c \Gamma^{-1}\left(E\left(B_{1}\right), \ldots, E\left(B_{K}\right)\right)^{\prime}
$$

Now combining with the fact that $\sum_{k=1}^{K} \lambda_{k}=1$, we can find $c=\left(B^{\prime} \Gamma^{-1} B\right)^{-1}$. Hence the optimal weight is $\lambda^{*}=\left(B^{\prime} \Gamma^{-1} B\right)^{-1} \operatorname{diag}(B) \Gamma^{-1} B$, since V^{*} is the
lower bound of the asymptotic variance of any consistent estimator based on the set of K equations.
(iii) It is easy to verify that

$$
\begin{aligned}
\hat{\beta}(\widehat{\lambda}) & =\left(\bar{B}^{\prime} \widehat{W} \bar{B}\right)^{-1} \bar{B}^{\prime} \widehat{W}^{\prime} \operatorname{diag}(\bar{B})\left[\frac{\overline{A_{1}}}{\overline{B_{1}}}, \ldots, \frac{\overline{A_{K}}}{\overline{B_{K}}}\right]^{\prime} \\
& =\left(\overline{B^{\prime}} \widehat{W} \bar{B}\right)^{-1} \bar{B}^{\prime} \widehat{W}^{\prime} \bar{A} \\
& =\widehat{\beta}_{G M M 2} .
\end{aligned}
$$

Proof of Theorem 6. It is easy to verify that $\left(D_{1}, M_{D_{1}}\right)$ satisfies conditions (1) and (2) of part (i). We first show that $\left(D_{1}, M_{D_{1}}\right)$ is optimal. By Lemma 3(ii), we need only check that $M_{D_{1}}\left(I_{T} \otimes D_{1}\right) u=0$ implies $M\left(I_{T} \otimes A\right) u=0$ for any $(A, M) \in \mathcal{S}$ and for any u. Observe that the rows of D_{1} form a basis of the space $\left\{x \in \mathbb{R}^{T}: x^{\prime} l_{T}=0\right\}$. This means that each row of A is a linear combination of the rows of D_{1}, hence there exists a matrix C such that $A=C D_{1}$. Now observe that $M_{D_{1}}\left(I_{T} \otimes D_{1}\right) u=0$ implies that there exists some fixed vector γ such that $\left(I_{T} \otimes D_{1}\right) u=\left(I_{T} \otimes D_{1}\right) R_{0} \gamma$. By some algebraic manipulation, we have that $M\left(I_{T} \otimes A\right) u=M\left(I_{T} \otimes A\right) R_{0} \gamma=0$. Hence $\left(D_{1}, M_{D_{1}}\right)$ is optimal. Now we show that any two pairs $\left(A_{1}, M_{1}\right)$ and $\left(A_{2}, M_{2}\right)$ in \mathcal{S} generate moment conditions that are equivalent variants of each other, hence any $(A, M) \in \mathcal{S}$ satisfying the condition (1) and (2) of part (i) is optimal. First we observe that $A_{1} y=0 \Leftrightarrow A_{2} y=0 \Leftrightarrow y=c l_{T}$, where c is some scalar. We establish (C) for any two conformable matrices P and Q satisfying $\operatorname{rank}(P Q)=\operatorname{rank}(Q)$, we have that $P Q u=0$ implies $Q u=0$ for any vector u. To see this, note that $\operatorname{ker}(P Q)=\left[\mathcal{C}\left(Q^{\prime} P^{\prime}\right)\right]^{\perp}$ and $\operatorname{ker}(Q)=\left[\mathcal{C}\left(Q^{\prime}\right)\right]^{\perp}$. Now $\operatorname{rank}(P Q)=\operatorname{rank}(Q)$ implies $\operatorname{rank}\left(Q^{\prime} P^{\prime}\right)=\operatorname{rank}\left(Q^{\prime}\right)$. Since $\mathcal{C}\left(Q^{\prime} P^{\prime}\right) \subseteq \mathcal{C}\left(Q^{\prime}\right)$, we have that $\mathcal{C}\left(Q^{\prime} P^{\prime}\right)$ $=\mathcal{C}\left(Q^{\prime}\right)$, hence $\operatorname{ker}(P Q)=\operatorname{ker}(Q)$. This means that $P Q u=0$ if and only if $Q u=0$ for any vector u. Now let $(A, M) \in \mathcal{S}$ satisfy (1) and (2) of part (i). By definition $M R_{A}=0$, hence there exists a matrix U such that $M=$ $U\left[I-R_{A}\left(R_{A}^{\prime} R_{A}\right)^{-} R_{A}^{\prime}\right]$. Since M has maximum possible $\operatorname{rank}, \operatorname{rank}(M)=$ $\operatorname{rank}\left(I-R_{A}\left(R_{A}^{\prime} R_{A}\right)^{-} R_{A}^{\prime}\right)$. Hence by (C),

$$
\begin{aligned}
M u=0 & \Leftrightarrow U\left[I-R_{A}\left(R_{A}^{\prime} R_{A}\right)^{-} R_{A}^{\prime}\right] u=0 \\
& \Leftrightarrow\left[I-R_{A}\left(R_{A}^{\prime} R_{A}\right)^{-} R_{A}^{\prime}\right] u=0 \\
& \Leftrightarrow u \in \mathcal{C}\left(R_{A}\right)
\end{aligned}
$$

Therefore $M_{1}\left(I_{T} \otimes A_{1}\right) x=0$ if and only if $\left(I_{T} \otimes A_{1}\right) x \in \mathcal{C}\left(\left(I_{T} \otimes A_{1}\right) R_{0}\right)$, i.e., there exist some vector γ such that $\left(I_{T} \otimes A_{1}\right) x=\left(I_{T} \otimes A_{1}\right) R_{0} \gamma$. This is again
equivalent to $A_{1}(X-\widetilde{\Omega})=0$, where $\operatorname{vec}(\widetilde{\Omega})=R_{0} \gamma$ and $\operatorname{vec}(X)=x$, hence equivalent to $A_{2}(X-\widetilde{\Omega})=0$, and eventually equivalent to $M_{2}\left(I_{T} \otimes A_{2}\right) x=0$.
Proof of Theorem 7. By virtue of Lemma 3(i), we need only check that

$$
\begin{equation*}
H u=0 \text { if and only if } M_{R}\left(I_{T} \otimes A_{T}\right) u=0 \text {, for any vector } u . \tag{A.1}
\end{equation*}
$$

Assume first that $M_{R}\left(I_{T} \otimes A_{T}\right) u=0$. Since M_{R} is the projection matrix for the column space of R, there exits a vector $\widetilde{\gamma}$ such that $\left(I_{T} \otimes A_{T}\right) u=R \widetilde{\gamma}=$ $\left(I_{T} \otimes A_{T}\right) R_{0} \widetilde{\gamma}$. Let $\widetilde{\Omega}$ and U be matrices such that $\operatorname{vec}(\widetilde{\Omega})=R_{0} \widetilde{\gamma}$, vec $(U)=$ u. Then by the properties of the Kronecker product we have $\operatorname{vec}\left(A_{T} U\right)=$ $\operatorname{vec}\left(A_{T} \widetilde{\Omega}\right)$. This implies $A_{T}(U-\widetilde{\Omega})=0$. Hence there exist scalars c_{1}, \ldots c_{T} such that $U=\widetilde{\Omega}+\left(c_{1}, \ldots, c_{T}\right) \otimes l_{T}$. Then for any $k=1, \ldots, K$,

$$
\begin{aligned}
\operatorname{vec}\left(P_{k}\right)^{\prime} \operatorname{vec}(U) & =\operatorname{vec}\left(P_{k}\right)^{\prime} \operatorname{vec}(\widetilde{\Omega})+\operatorname{vec}\left(P_{k}\right)^{\prime} \operatorname{vec}\left(\left(c_{1}, \cdots, c_{T}\right) \otimes l_{T}\right) \\
& =\operatorname{vec}\left(P_{k}\right)^{\prime} \operatorname{vec}(\widetilde{\Omega}) \\
& =\operatorname{vec}\left(P_{k}\right)^{\prime} R_{0} \gamma \\
& =0 .
\end{aligned}
$$

Hence, $M_{R}\left(I_{T} \otimes A_{T}\right) u=0$ implies $H u=0$.
Now suppose $H u=0$. Then there exist a vector $\theta=\left[\begin{array}{ll}\theta_{1} & \theta_{2}\end{array}\right]^{\prime}$ such that

$$
u=L \theta=\left[R_{0} I_{T} \otimes l_{T}\right]\left[\theta_{1} \theta_{2}\right]^{\prime}=R_{0} \theta_{1}+\left(I_{T} \otimes l_{T}\right) \theta_{2}
$$

Hence

$$
\begin{aligned}
M_{R}\left(I_{T} \otimes A_{T}\right) u & =M_{R}\left(I_{T} \otimes A_{T}\right)\left[R_{0} \theta_{1}+\left(I_{T} \otimes l_{T}\right) \theta_{2}\right] \\
& =M_{R}\left(I_{T} \otimes A_{T}\right) R_{0} \theta_{1}+M_{R}\left(I_{T} \otimes A_{T}\right)\left(I_{T} \otimes l_{T}\right) \theta_{2} \\
& =0+M_{R}\left(I_{T} \otimes A_{T} l_{T}\right) \theta_{2} \\
& =0 .
\end{aligned}
$$

This proves (A.1).

References

Abadir, K. and Magnus, J. (2005). Matrix Algebra. Cambridge University Press, New York.
Barnett, S. and Sakellaris, P. (1998). Nonlinear response of firm investment to Q: Testing a model of convex and non-convex adjustment costs. J. Monetary Economics 42, 261-288.
Biørn, E. (2000). Panel data with measurement errors: Instrumental variables and GMM procedures combining levels and differences. Econom. Rev. 19, 391-424.

Biørn, E. and Klette, T. (1998). Panel data with errors-in-variables: Essential and redundant orthogonality conditions in GMM-estimation. Econom. Lett. 59, 275-282.
Bound, J., Brown, C. and Mathiowetz, N. (2001). Measurement error in survey data. Handbook of Econometrics 5, 3705-3843.
Bound, J. and Krueger, A. (1991). The extent of measurement error in longitudinal earnings data: Do two wrongs make a right? J. Labor Economics 9, 1-24.
Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Chapman \& Hall/CRC, Boca Raton, FL.
Cui, H., Ng, K. and Zhu, L. (2004). Estimation in mixed effects model with errors in variables. J. Multivariate Anal. 91, 53-73.

Erickson, T. and Whited, T. (2000). Measurement error and the relationship between investment and Q. J. Political Economy 108, 1027-1057.
Fazzari, S., Hubbard, G. R. and Petersen, B. (1988). Financing constraints and corporate investment. Brookings Paper on Economic Activity 1, 141-195.
Fuller, W. (1987). Measurement Error Models. John Wiley, New York.
Griliches, Z. and Hausman, J. A. (1986). Errors in variables in panel data. J. Econometrics 32, 93-118.
Hall, A. (2005). Generalized Method of Moments. Oxford University Press, New York.
Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50, 1029-1054.
Hausman, J. (2001). Mismeasured variables in econometric analysis: Problems from the right and problems from the left. J. Economic Perspectives 15, 57-67.
Hayashi, F. (1982). Tobin's marginal Q and average Q: A neoclassical interpretation. Econometrica 50, 213-224.
Kaplan, S. and Zingales, L. (1997). Do investment-cash flow sensitivities provide useful measures of financing constraints? Quarterly J. Economics 112, 168-216.
Lamont, O., Polk, C. and Saa-Requejo, J. (2001). Financial constraints and stock returns. Rev. Financial Studies 14, 529-554.
Wallace, T. D. and Hussain, A. (1969). The use of error components models in combining cross-section and time-series data. Econometrica 37, 55-72.
Wansbeek, T. J. (2001). GMM estimation in panel data models with measurement error. J. Econometrics 104, 259-268.
White, H. (1982). Instrumental variables regression with independent observations. Econometrica 50, 483-499.
Zhong, X., Fung, W. and Wei, B. (2002). Estimation in linear models with random effects and errors-in-variables. Ann. Inst. Statist. Math. 54, 595-606.
Department of Statistics, School of Management, Fudan University, Shanghai, China.
E-mail: zhiguo_xiao@fudan.edu.cn
Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
E-mail: shao@stat.wisc.edu
Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI 53726, U.S.A.
E-mail: mpalta@wisc.edu
(Received October 2008; accepted June 2009)

