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Abstract: Panel data allow correction for measurement error without assuming a

known measurement error covariance matrix or using additional validation/replic-

ation data to estimate the measurement error covariance matrix. Griliches and

Hausman (1986) proposed using the generalized method of moments (GMM) or op-

timal weighting to efficiently combine instrumental variable (IV) estimators. Wans-

beek (2001) applied GMM based on moment conditions expressed in the form of

the Kronecker product. This paper studies some issues crucial to applications of

these two approaches, including the estimability of the regression parameter un-

der Griliches and Hausman’s or Wansbeek’s approach, how to choose instruments,

what is the optimally weighted IV estimator, how to explicitly construct GMM

estimators, how to remove the redundancy of the moment conditions constructed

by Wansbeek (2001), and the existence of optimal GMM estimators. We unify

Griliches and Hausman’s and Wansbeek’s approaches by establishing their equiv-

alence. We also consider models with exogenous regressors and models with non-

classical assumptions. We apply the methods in this paper to revisit an investment

controversy, viz., whether financially constrained firms respond to internal funds

such as cash flow more sensitively than financially unconstrained firms.
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1. Introduction

Measurement error (errors-in-variables or errors-in-regressors) leads to the
failure of classical estimation methods such as ordinary least squares (OLS). Un-
der standard assumptions, with a single regressor measured with random error,
the OLS estimator of the regression coefficient is inconsistent and biased towards
zero. Existing remedies for the measurement error problem often require that the
measurement error covariance matrix be known or that it can be estimated using
additional validation/replication data (see, e.g., Fuller (1987), Zhong, Fung and
Wei (2002), Cui, Ng and Zhu (2004), Carroll et al. (2006)). In panel data, each in-
dividual has more than one observation, which can be used as “partial” replicates
for the purpose of handling measurement error. As shown by Griliches and Haus-
man (1986) (hereinafter Griliches-Hausman) and Wansbeek (2001) (hereinafter



1726 ZHIGUO XIAO, JUN SHAO AND MARI PALTA

Wansbeek), under some panel data models, valid estimators can be constructed
without the requirement of knowing the measurement error covariance matrix or
additional validation/replication data.

In their seminal paper on errors-in-variables in panel data, Griliches-Hausman
proposed using either the Generalized Method of Moments (GMM, Hansen (1982))
or weighting to efficiently combine instrumental variable estimators constructed
using linear combinations of the observed regressors as instruments. Griliches-
Hausman, and later research work by Biørn and Klette (1998) and Biørn (2000),
provided a GMM estimator based on instrumental variables derived from dif-
ference transformations. However, a general form of Griliches-Hausman’s GMM
estimator is not available. Griliches-Hausman’s idea of using optimal weights
to combine instrumental variable estimators has not been pursued by later re-
searchers, possibly because no explicit weighting formula was provided. Wans-
beek’s GMM approach for panel data with measurement error is based on a
set of moment conditions constructed using the structure of measurement error
covariance matrix.

The purpose of this paper is to study (i) some issues that are not addressed
or not fully addressed in Griliches-Hausman and Wansbeek but are crucial to
applications of these two approaches; (ii) the relationship between Griliches and
Hausman’s and Wansbeek’s estimators; (iii) the extensions of the two methods
to more complicated models; and (iv) the estimability of the regression param-
eter under Griliches and Hausman’s or Wansbeek’s approach. Issues in (i) in-
clude how to choose instruments, what the optimally weighted IV estimator is,
how to explicitly construct GMM estimators, how to remove the redundancy of
the moment conditions constructed by Wansbeek, and the existence of optimal
GMM estimators. For (ii), we show that the optimally weighted IV estimator
is identical to a GMM estimator when the same set of instruments is used, i.e.,
Griliches-Hausman’s two ways of optimally obtaining an estimator are the same.
Furthermore, we show that Griliches-Hausman’s and Wansbeek’s approaches use
equivalent sets of moment conditions and, hence, the efficient GMM estimator
under Griliches-Hausman’s approach is asymptotically equivalent to the efficient
GMM estimator under Wansbeek’s approach. For (iii), we extend Griliches-
Hausman’s method to allow for strictly exogenous covariates in the model; we
construct a set of moment conditions that can yield asymptotically more efficient
GMM estimators than Wansbeek when strictly exogenous covariates exist; and
we extend Griliches-Hausman’s and Wansbeek’s methods to nonclassical models.
For (iv), we show that the estimability in Griliches-Hausman’s approach (i.e., the
existence of at least one instrumental variable) is the same as the estimability in
Wansbeek’s approach. We also provide a necessary and sufficient condition for
the estimability, which can be easily checked in terms of the correlation structures
of the measurement error and the covariate subject to measurement error.
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Results related to Griliches-Hausman’s approach are given in Section 2, after
an introduction of the model and notation. Results related to Wansbeek’s GMM
and its equivalence to Griliches-Hausman’s GMM are presented in Section 3. The
estimability issue is studied in Section 4. In Section 5, we generalize the methods
to situations where there are exogenous covariates not measured with errors, and
where measurement error and covariate are correlated. In Section 6, we apply our
methods to a long-debated topic in corporate finance, viz., whether financially
constrained firms respond more sensitively to cash flow than unconstrained firms,
using the COMPUSTAT database for years 1992-1995. Section 7 contains some
concluding remarks. Proofs of lemmas and theorems are given in the Appendix.

2. Griliches-Hausman’s GMM and Weighted IV Estimator

We start with the model of Griliches-Hausman, a static linear model with
one regressor measured with error:

yit = ξitβ + αi + ηit,

xit = ξit + vit,
t = 1, . . . , T ; i = 1, . . . , N, (2.1)

where β is a parameter of interest, yit is the tth observed response from the ith
individual, ξit is an unobserved covariate associated with yit, ηit is a regression
error, xit is an observed surrogate for ξit with unobserved measurement error
vit, and αi is an unobserved individual fixed effect or random effect that may be
correlated with ξi. The estimation of the effect αi is not considered until Section
5.3. For each i, let yi = (yi1, . . . , yiT )′, xi = (xi1, . . . , xiT )′, ξi = (ξi1, . . . , ξiT )′,
ηi = (ηi1, . . . , ηiT )′, and vi = (vi1, . . . , viT )′.

Assumption A. The random 3T -vectors (ξ′i, η
′
i, v

′
i)
′, i = 1, . . . , N , are i.i.d. with

Eηi = 0, Evi = 0, and a finite positive definite covariance matrix. The random
T -vectors ξi, ηi, and vi are independent.

Under this assumption, homoskedasticity and independence across i of data is
assumed but heteroskedasticity and correlation across t (within i) is allowed for.
The covariance matrix of (ξ′i, η

′
i, v

′
i)
′ is a block diagonal matrix with three T × T

diagonal blocks, which are the covariance matrices of ξi, ηi, and vi.
Replacing ξi by xi − vi in (2.1), we obtain

yi = xiβ + lT αi + εi, (2.2)

where εi = ηi − viβ and lT is the T × 1 vector of ones. To obtain consistent
estimators, Griliches-Hausman suggested that we first find a set of instrumental
variable estimators of the form

β̂P =
(
w′x

)−1
w′y, w = (IN ⊗ P ) x,
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where IN is the identity matrix of order N , x is the stacked column vector of
all xi’s, ⊗ is the Kronecker product (see Abadir and Magnus (2005), Chapter 10
for properties of the Kronecker product and the vec operator below), and P is a
T × T deterministic known matrix satisfying

(IV.1) P ′lT = 0,

(IV.2) E [x′
iP

′εi] = 0,

(IV.3) E [x′
iP

′xi] 6= 0.

Condition (IV.1) ensures that multiplying P ′ to both sides of (2.2) eliminates the
unobserved αi. Conditions (IV.2)−(IV.3) state that the instrument Pxi must be
uncorrelated with the error εi but correlated with xi. Let

P = {all T × T matrices P ’s satisfying (IV.1)−(IV.3)} . (2.3)

To use Griliches-Hausman’s method we need to assume that P 6= ∅, i.e., there
exists at least one P satisfying (IV.1)−(IV.3). A further discussion about the
condition P 6= ∅ is given in Section 4.

For each P ∈ P, β̂P is a consistent but possibly inefficient estimator of
β, since it is a moment estimator. Griliches-Hausman suggested two ways to
combine moment estimators to obtain an efficient estimator of β:
(W1) ‘‘...to combine such estimators optimally we use the Generalized Method of

Moments estimator, developed by Hansen (1982); and White (1982), ...”
– Griliches and Hausman (1986, p.104, lines 30-33),

(W2) “After obtaining a complete set of instruments, the efficient β is calcu-
lated as a weighted average of the β’s from each w. The inverse of the
variance-covariance matrix of the β’s is the appropriate weighting matrix.”
– Griliches and Hausman (1986, p.115, lines 26-28).

There are infinitely many P ’s in P when P is not empty. Thus, prior to
implementing (W1) or (W2), as argued by Griliches-Hausman, we need to find a
complete set of P1, · · ·, PK (K ≤ T 2) in the sense that (1) Pk ∈ P, k = 1, . . . ,K;
(2) P1, . . . , PK are linearly independent; (3) every P ∈ P is a linear combination
of P1, . . . , PK . A complete set {P1, . . . , PK} is referred to as a basis of P.

To apply this method we first need to answer the following questions that
are not fully addressed in Griliches-Hausman.

1. Does P have a basis?

2. If a basis exists, how do we find it?

3. After we find a basis P1, . . . , PK , how do we implement Griliches-Hausman’s
method by (W1) or (W2)? Furthermore, are the estimators resulting from
(W1) and (W2) the same?
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Note that P is not a linear subspace of RT 2
and, thus, it is not obvious whether

P has a basis. Let

P0 = {P : P is a T × T matrix satisfying (IV.1) and (IV.2)} ,

P1 = {P : P is a T × T matrix satisfying (IV.1) and (IV.2), but not (IV.3)} .

Here P0 and P1 are linear subspaces of RT 2
, P1 ⊆ P0, and P = P0\P1. With

this understanding, we can answer Question 1 with the following lemma.

Lemma 1.Let V0 and V1 be two linear subspaces of Rp with V1 ( V0. Then
the maximum number of linearly independent vectors in S = V0\V1 is K = the
dimension of V0. Furthermore, if s1, . . . , sK are linearly independent vectors in
S, then any vector in S is a linear combination of s1, . . . , sK .

To answer the second question, we need the following lemma that character-
izes (IV.1)−(IV.3) in unified algebraic forms. Observe that for every measure-
ment error covariance matrix E [viv

′
i], there exists a known matrix R0 such that

vec (E [viv
′
i]) = R0ϕ, where the vec operator stacks the columns of a matrix into

a column vector, and ϕ is the vector of free parameters in E [viv
′
i]. The matrix

R0 represents the structure of E [viv
′
i]. If ϕ is an m × 1 vector, then R0 is a

T 2 × m matrix of full rank.

Lemma 2.(1) P ′lT = 0 if and only if vec (P )′ (IT ⊗ lT ) = 0;
(2) E [x′

iP
′εi] = 0 if and only if vec (P )′ R0 = 0;

(3) E [x′
iP

′xi] 6= 0 if and only if vec (P )′ [vec (E [viv
′
i]) + vec (E [ξiξ

′
i])] 6= 0.

It follows from Lemma 2 that

P0 =
{
P : P ′lT = 0, vec (P )′ R0 = 0

}
=

{
P : vec (P ) ∈ [C (L)]⊥

}
, (2.4)

where the matrix L = [R0
... IT ⊗ lT ] is T 2 × (m + T ), C (L) denotes the column

space of L, and [C (L)]⊥ denotes the orthogonal complement of C (L). Hence

K = dim (P0) = T 2 − dim (C (L)) .

To obtain a basis of P, we first find a basis of [C (L)]⊥, say {ν1, . . . , νK}. For
example, a set of eigenvectors of matrix LL′ corresponding to the zero eigenvalue
of LL′ can serve this purpose. By the assumption that P 6= ∅, at least one of
them, say ν1, satisfies condition (IV.3). Now let

ν̃i =
{

ν1, i = 1;
νi + ν1, K ≥ i ≥ 2.
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Then {P1, . . . , PK} is a basis of P, where ν̃i = vec (Pi) , i = 1, . . . ,K.
Now we answer the third question. Let {P1, . . . , PK} be a basis of P. Ac-

cording to Griliches-Hausman, as cited above in (W1) and (W2), we have two
ways to obtain an efficient estimator. We first study the GMM approach (W1).
The moment conditions associated with P1, . . . , PK are

E
[
x′

iP
′
k (yi − xiβ)

]
= 0, k = 1, . . . ,K.

Because x′
iP

′
k (yi − xiβ) = vec(Pk)′ [xi ⊗ (yi − xiβ)] for each k, these equations

can be written as
HE [xi ⊗ (yi − xiβ)] = 0, (2.5)

where H = [vec (P1) , . . . , vec (PK)]′. Since P1, . . . , PK are linearly independent,
H is a matrix of full rank and the system of orthogonality conditions in (2.5)
contains no redundant equations. The (asymptotically) efficient two-step GMM
estimator can be derived from (2.5), using the technique described in Hall (2005).
Specifically, let

Ai = H [xi ⊗ yi] , Bi = H [xi ⊗ xi] , A =
1
N

N∑
i=1

Ai, B =
1
N

N∑
i=1

Bi. (2.6)

Then the GMM estimator using weighting matrix W is the minimizer of
(A − Bβ)′W (A − Bβ) over β, which is given by

β̂GMM =
(
B

′
WB

)−1
B

′
WA.

A typical consistent first-step GMM estimator is the unweighted GMM estimator
where W is taken as the identity matrix:

β̂GMM1 =
(
B

′
B

)−1
B

′
A.

Under Assumption A, the matrix

Γ = E
[
(Ai − Biβ) (Ai − Biβ)′

]
(2.7)

is well-defined and does not depend on i. In terms of the asymptotic variance,
W = Γ−1, if it is known, is the optimal weighting matrix. Since Γ−1 is unknown,
we replace it by a consistent estimator

Ŵ =

[
1
N

N∑
i=1

(
Ai − Biβ̂GMM1

)(
Ai − Biβ̂GMM1

)′
]−1

. (2.8)
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A two-step GMM estimator is then

β̂GMM2 =
(
B

′
ŴB

)−1
B

′
ŴA. (2.9)

Griliches-Hausman provided a GMM estimator at (21) in their paper. To com-
pute their estimator one needs to find a basis P1, . . . , PK using difference trans-
formations, where some Pk’s have to be obtained manually. To compute our
GMM estimator β̂GMM2, we only need to determine the matrix H in (2.5), as
discussed previously.

From standard statistical theory, β̂GMM2 in (2.9) is consistent for β and
asymptotically normal, as N → ∞. It is asymptotically efficient (optimal) in the
sense that the asymptotic variance of β̂GMM2 is no larger than that of β̂GMM

with any W , and is smaller than that of β̂GMM unless W converges to Γ−1.
One natural question is whether the asymptotic variances of β̂GMM2 in (2.9)

are the same for different bases of P. If {P1, . . . , PK} and {P̃1, . . . , P̃J} are two
bases of P, then J = K. Let H̃ be the same as H in (2.5) with Pk replaced by
P̃k. Then, there exists a K × K nonsingular matrix Π such that H̃ = ΠH. The
set of moment conditions in (2.5) and

H̃E [xi ⊗ (yi − xiβ)] = 0

are equivalent variants of each other in the sense that any moment condition
in one of them is a linear combination of the moment conditions in the other. The
following result provides sufficient conditions for two sets of moment conditions to
be equivalent variants of each other, and shows that equivalent variants produce
two-step GMM estimators with the same efficiency.

Lemma 3.Let Q1 and Q2 be two matrices with the same number of columns.

(i) Suppose that Q1ζ = 0 if and only if Q2ζ = 0, for any vector ζ. Then the
set of moment conditions Q1E [g (β)] = 0 is an equivalent variant of the
set of moment conditions Q2E [g (β)] = 0, where g is a given function of
β. Furthermore, two-step GMM estimators based on Q1E [g (β)] = 0 and
Q2E [g (β)] = 0 have the same asymptotically normal distribution.

(ii) Suppose that Q1ζ = 0 implies Q2ζ = 0 for any vector ζ. Then the two-
step GMM estimator based on Q1E [g (β)] = 0 is at least as efficient as the
two-step GMM estimator based on Q2E [g (β)] = 0.

As a direct consequence of Lemma 3 and the previous discussion, we have
the following.

Theorem 4. Suppose Assumption A holds and P 6= ∅. For any basis P1, . . . , PK

of P, the GMM estimator defined by (2.9) is asymptotically optimal among all
such GMM estimators.
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Now, we discuss the second way of constructing an efficient estimator. As
cited in (W2), Griliches-Hausman mentioned optimally weighting a complete set
of IV estimators, but did not provide an explicit weighting formula.

Let P1, . . . , PK be a basis of P and β̂Pk
= (w′

kx)−1 w′
ky, with wk = (IN ⊗ Pk) x

for k = 1, . . . ,K. For each K-vector λ = (λ1, . . . , λK) satisfying λ1+· · ·+λK = 1,
we define the weighted IV estimator

β̂(λ) = λ1β̂P1 + · · · + λK β̂PK
. (2.10)

Since β̂P1 , . . . , β̂PK
are consistent for β, β̂ (λ) = λ1β̂P1 + · · ·+λK β̂PK

is consistent
for β. The following result shows how to find an optimally weighted IV estimator.

Theorem 5.uppose Assumption A holds and P 6= ∅.
(i) For each fixed λ, (β̂(λ) − β)/

√
V (λ) converges in distribution to standard

normal.
(ii) V (λ) is minimized at λ∗ =

(
B′Γ−1B

)−1
diag (B) Γ−1B and V (λ∗) =

(B′Γ−1B)−1, where Γ is defined in (2.7), B = (B1, . . . , BK)′ is a K-vector
with Bk = E(x′

iP
′
kxi), and diag(B) is the K ×K diagonal matrix whose kth

diagonal element is Bk.
(iii) If we estimate λ∗ by

λ̂ =
(
B

′
ŴB

)−1
diag

(
B

)
ŴB,

where Ŵ is given by (2.8) and B is given by (2.6), then the weighted IV
estimator β̂(λ̂) is identical to β̂GMM2 defined at (2.9) and is optimal in the
sense that β̂(λ̂) is asymptotically normal with mean β and asymptotic vari-
ance V (λ∗).

Theorem 5 indicates that an optimally weighted IV estimator is identical to
an efficient two-step GMM estimator. Although optimally weighted IV estima-
tors and efficient two-step GMM estimators are not unique (we may use different
consistent estimators of Γ−1 and/or different consistent estimators of λ∗), Theo-
rem 5 shows that all of them are asymptotically equivalent in the sense that they
are asymptotically normal with mean β and the same asymptotic variance.

Since Griliches-Hausman’s approaches in (W1) and (W2) produce the same
or asymptotically equivalent estimators, we refer to Griliches-Hausman’s GMM
method, or simply Griliches-Hausman’s approach.

3. Wansbeek’s GMM Estimator

Instead of constructing orthogonality conditions by means of instrumen-
tal variables, Wansbeek constructed moment conditions directly. Let AT =
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IT − (1/T )lT l′T denote the within transformation, R = (IT ⊗ AT ) R0, and MR =
IT 2 − R (R′R)− R′, where (R′R)− is a generalized inverse of R′R and R0 is the
correlation structure matrix in vec(E[viv

′
i]) = R0ϕ. Under (2.1) with Assumption

A, Wansbeek derived

MR (IT ⊗ AT ) E [xi ⊗ (yi − xiβ)] = 0, (3.1)

and suggested constructing GMM estimators based on (3.1). However, some
equations in (3.1) are linear combinations of others. Hence, the covariance ma-
trix of MR (IT ⊗ AT ) [xi ⊗ (yi − xiβ)] is not invertible and the efficient GMM
estimator in the form of (2.9) is not directly obtainable based on (3.1). The re-
dundancy in (3.1) comes from the singularity of MR (IT ⊗ AT ), which is caused
by the singularity of AT and MR.

To continue we need the following concept. A set of moment conditions is
essential if, in this set of moment conditions, no single moment condition can be
written as a linear combination of the rest. If a set of moment conditions is not
essential, then we should find its essential equivalent variant, from which we can
easily obtain GMM estimators in the form of (2.9). The question is, given a set
of moment conditions that is not essential, how do we find its essential equivalent
variant?

Biørn and Klette (1998) and Biørn (2000) provided solutions for identifying
essential conditions in some special cases related to Griliches-Hausman’s GMM.
For the moment conditions in (3.1), we suggest using singular value decompo-
sition to obtain essential equivalent variant. Specifically, suppose the singular
value decomposition of MR (IT ⊗ AT ) is MR (IT ⊗ AT ) = UΛV ′, where U and V

are T 2 × r matrices whose columns are orthogonal to each other, r is the rank of
MR (IT ⊗ AT ), and Λ is a r × r nonsingular diagonal matrix. By Lemma 3, an
essential equivalent variant of (3.1) is

V ′E [xi ⊗ (yi − xiβ)] = 0. (3.2)

Now, the asymptotically efficient GMM estimator based on (3.2) is given by (2.9)
with Ai = V ′ [xi ⊗ yi] and Bi = V ′ [xi ⊗ xi].

Wansbeek’s choice of (AT ,MR) is not the only way of constructing moment
conditions. Consider an arbitrary l × T matrix A satisfying AlT = 0 and a
corresponding conformable matrix M satisfying M (IT ⊗ A) R0 = 0. Following
the procedures above, we can obtain the GMM estimator (2.9) based on (A,M)
and the essential equivalent variant of

M (IT ⊗ A) E [xi ⊗ (yi − xiβ)] = 0. (3.3)
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The set of moment conditions constructed by Wansbeek in (3.1) is a special case
of (3.3). Let

S = {(A,M) : AlT = 0 and M (IT ⊗ A) R0 = 0}

be the collection of all pairs (A,M) that can be used for constructing moment con-
ditions. Besides Wansbeek’s (AT ,MR), another popular pair in S is (D1, MD1),
where D1 is the (T − 1) × T matrix representing the first order difference trans-
formation, i.e., in the tth row of D1, the tth element is −1, the (t + 1)th element
is 1, and the rest of the elements are 0, t = 1, . . . , T − 1, and

MD1 = IT (T−1) − RD1

(
R′

D1
RD1

)−
R′

D1
, RD1 = (IT ⊗ D1) R0.

Now, two questions arise naturally.

• Among all (A,M) ∈ S leading to the GMM estimator (2.9), is there an optimal
choice in the sense that the GMM estimator (2.9) has the smallest asymptotic
variance?

• Is Wansbeek’s choice (AT ,MR) optimal?

To answer the above questions we establish the following result.

Theorem 6.(i) The two-step GMM estimator (2.9) based on a pair (A,M) ∈ S
is optimal if (A, M) satisfies (1) rank (A) = T − 1 and (2) M has the maximum
possible rank, rank (M) = T 2 − rank (RA), where RA = (IT ⊗ A) R0.
(ii) The sets of moment conditions based on any pairs (A1,M1) and (A2,M2) in
S satisfying conditions in part (i) are equivalent variants of each other.

It is easy to check that both (AT ,MR) and (D1,MD1) satisfy the conditions
in Theorem 6(i). Hence, they both lead to GMM estimators that are optimal
among GMM estimators (2.9) based on pairs in S.

As the last result of this section, we study the relationship between Griliches-
Hausman’s and Wansbeek’s approaches. Griliches-Hausman’s set of moment con-
ditions (2.5) bears a striking resemblance to Wansbeek’s set of conditions (3.1).
This hints at an intimate relationship between them. The following result tells
us that any moment condition in (2.5) is a linear combination of moment condi-
tions in (3.1), and vice versa. Therefore, the two methods lead to asymptotically
equivalent GMM estimators.

Theorem 7.Consider model (2.1) with Assumption A. Then the set of moment
conditions in Griliches-Hausman, as specified in (2.5), is an equivalent variant
of the set of moment conditions in Wansbeek, as specified in (3.1).
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4. Estimability of β

In this section we elaborate on the estimability of β under Griliches-Hausman’s
or Wansbeek’s approach.

Under Griliches-Hausman’s approach, β is estimable if and only if there
exists at least one matrix P satisfying (IV.1)−(IV.3). Let ϑ be the vector of
free parameters in E [ξiξ

′
i] and vec (E [ξiξ

′
i]) = Rξϑ, where Rξ is a known matrix

representing the correlation structure of ξi. From Lemma 2, P 6= ∅ if and only if

vec (P )′ R0 = 0 and vec (P )′ (IT ⊗ lT ) = 0 ; vec (P )′ Rξ = 0. (4.1)

For Wansbeek’s approach, β is estimable if and only if MR (IT ⊗ AT ) E [xi ⊗ xi] 6=
0. Since MR (IT ⊗ AT ) E [vi ⊗ vi] = 0, β is estimable if and only if

MR (IT ⊗ AT ) R0 = 0 ; MR (IT ⊗ AT ) Rξ = 0. (4.2)

Condition (4.2) is equivalent to condition (4.1), as we have shown in (A.1) that
Hu = 0 if and only if MR (IT ⊗ AT ) u = 0 for any vector u. This means that when
Griliches-Hausman’s method fails, so does Wansbeek’s method, and vice versa.
Therefore, the two approaches are not only equivalent in producing asymptoti-
cally equivalent efficient GMM estimators, but also equivalent in terms of when
they fail.

Obviously, (4.1) does not hold if Rξ is a submatrix of R0, or if any column
of Rξ is a linear combination of the columns of R0. An easier-to-check charac-
terization of (4.1) is given as follows. Its proof is omitted.

Lemma 8.Let Π = [ν1, . . . , νK ], where {ν1, . . . , νK} is a basis of [C (L)]⊥ given
in (2.4). Then (4.1) holds if and only Π′Rξ 6= 0.

Note that the conclusion in Lemma 8 is invariant to the choice of Π. We
illustrate the application of Lemma 8 by two examples with T = 3.

Suppose first that E [viv
′
i] = σ2

vI3 and E [ξiξ
′
i] = (σ2

ξ − c)I3 + cl3l
′
3, where I3

is the identity matrix of order 3, and l3 is the 3 dimensional vector of ones. Then
R0 = vec(I3), ϕ = σ2

v ,

Rξ =
[

1 0 0 0 1 0 0 0 1
0 1 1 1 0 1 1 1 0

]′
,

and ϑ = [σ2
ξ , c]

′. Using L = [R0
... I3 ⊗ l3], we obtain the matrix Π in Lemma 8 as

Π =


−1 1 0 −1 1 0 0 0 0
−1 0 1 −1 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 −1 1 0 1 0 −1
0 0 0 −1 1 0 0 1 −1


′

.
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It is easy to verify that Π′Rξ = 0. Therefore, β is not estimable.
Suppose next that

E
[
viv

′
i

]
=

σ2
v1 0 0
0 σ2

v2 0
0 0 σ2

v3

 and E
[
ξiξ

′
i

]
=

σ2
ξ λ 0

λ σ2
ξ λ

0 λ σ2
ξ

 .

Then

R0 =

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

′

, Rξ =
[

1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0

]′
,

ϕ = [σ2
v1, σ

2
v2, σ

2
v3]

′, and ϑ = [σ2
ξ , λ]′. Using L = [R0

... I3 ⊗ l3], we obtain

Π =

 0 −1 1 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 1 0

′

and Π′Rξ =
[

0 0 0
−1 0 1

]′
6= 0.

Hence, β is estimable.

5. Extensions

5.1. Models with strictly exogenous variables

A covariate without measurement error is said to be strictly exogenous if
it is uncorrelated with both the regression disturbance and the measurement
error. With strictly exogenous variables in the model we can construct additional
orthogonality conditions.

Consider the model

yi = ξiβ + Ziγ + lT αi + ηi,

xi = ξi + vi,
t = 1, . . . , T ; i = 1, . . . , N, (5.1)

where Zi with dimension T × q is a set of strictly exogenous covariates. By the
strict exogeneity of Zi we have moment conditions

E [vec (Zi) ⊗ (AT εi)] = 0. (5.2)

Now we can give the moment conditions of Griliches-Hausman and Wansbeek for
the model specified by (5.1). Since (5.2) can be expressed as

(IqT ⊗ AT ) E [vec (Zi) ⊗ (yi − xiβ − Ziγ)] = 0,

an extension of (2.5) under Griliches-Hausman’s approach is[
H

(IqT ⊗ AT )

]
E

{[
xi

vec (Zi)

]
⊗ (yi − xiβ − Ziγ)

}
= 0, (5.3)
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and an extension of (3.1) under Wansbeek’s approach is[
MR (IT ⊗ AT )

(IqT ⊗ AT )

]
E

{[
xi

vec (Zi)

]
⊗ (yi − xiβ − Ziγ)

}
= 0. (5.4)

As acknowledged by Wansbeek himself, he did not use the full information from
exogeneity to construct moment conditions. The moment conditions used by
Wansbeek to represent exogeneity of Zi are

E
[
Z ′

i (AT εi)
]

= 0, (5.5)

which are some linear combinations of the moment conditions in (5.2). By Lemma
3, the GMM estimator based on (5.2) is more efficient than the GMM estimator
based on (5.5).

Note also that both (5.3) and (5.4) contain redundant conditions. We can
apply singular value decomposition (as we did in Section 3) to these equations
to derive GMM estimators based on the essential variants of (5.3) and (5.4).

The equivalence between (5.3) and (5.4) follows immediately from Theorem
7, i.e., Griliches-Hausman’s and Wansbeek’s methods are equivalent in the case
where exogenous covariates enter into the regression.

5.2. Extension to nonclassical assumptions

The independence of the true covariate ξi and the measurement error vi is a
“classical” measurement error assumption (Hausman (2001), Bound, Brown and
Mathiowetz (2001)). Violations of this classical measurement error assumption
have appeared in a number of economic applications, such as in Bound and
Krueger (1991) where a negative correlation between the true covariate (true
earnings) and measurement error was found to be significant. We now relax
this assumption to allow the measurement error and the true covariate to be
correlated. We illustrate the extension of the two GMM methods using the
model specified by (2.1). The results for more general situations are similar.
Let ∆ = E [viξ

′
i] be the correlation matrix between the measurement error and

the true covariate. Assume vec (∆) = Λ0η, where Λ0 is a known matrix and η

is a vector of free parameters in ∆. Both Griliches-Hausman’s and Wansbeek’s
methods can be easily adapted to this situation.

Consider the extension of (2.5). The conditions (IV.1)−(IV.3) in Section 2
should be replaced by the following new requirements for matrix P .

• vec (P )′ (IT ⊗ lT ) = 0;

• vec (P )′ [R0
... Λ0] = 0;

• vec (P )′ [vec (E [ξiξ
′
i])] 6= 0.
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The resulting moment conditions are still given by (2.5).
To generalize (3.1), we can still use (3.1) with MR defined by MR = IT 2 −

R (R′R)− R′, where R = (IT ⊗ AT ) [R0
... Λ0].

The equivalence between the two new sets of moment conditions can be
established similarly as before.

If the structure of ∆ is a special class within the structure class of E [viv
′
i],

i.e., columns of Λ0 are linear combinations of the columns of R0, then

vec (P )′ [R0
... Λ0] = 0 ⇔ vec (P )′ R0 = 0,

and we can also take R = (IT ⊗ AT ) R0. This means that we can ignore the cor-
relation between measurement error and true covariate if its structure is simpler
than the serial correlation structure of measurement errors.

In theory it is also possible to generalize both methods when ηi and (ξ′i, v
′
i)
′

are dependent, or when all three vectors ηi, ξi, and vi are dependent. However,
one needs to be cautious that more general model assumptions imply more re-
strictions on the corresponding transformations, and a too general model setup
may lead to non-estimability of parameters.

5.3 Estimation of the individual effect αi

Under Griliches-Hausman’s and Wansbeek’s approaches, the individual effect
αi under model (2.1) is treated as a nuisance effect. Under some assumptions,
some effects related to the αi’s can be estimated. For example, if the αi’s are i.i.d.
random effects, then a consistent estimator of E(αi) (as N → ∞) is N−1

∑N
i=1 α̂i,

where α̂i = T−1
∑T

t=1(yit−xitβ̂GMM2), i = 1, · · · , N . For fixed effect αi, we need
some assumption since αi is unobserved. For instance, α̂i is a consistent estima-
tor of αi if T → ∞; if αi = ψ′ti for a vector of covariate ti observed without
measurement error and an unknown parameter vector ψ, then a consistent esti-
mator of ψ (as N → ∞) is (

∑N
i=1 tit

′
i)
−1

∑N
i=1 tiα̂i, provided that N−1

∑N
i=1 tit

′
i

converges to a positive definite matrix. Combining the previous arguments, we
can also handle the situation where αi follows a mixed-effect model.

6. Application to the q Theory of Investment

Economic theory on firm investment suggests that a firm’s optimal invest-
ment decision is solely determined by its marginal q, the ratio of the market
value of an additional unit of capital to its replacement cost. According to this
so called q theory of investment, a firm’s financing structure is irrelevant to its
investment decision after controlling for q. Therefore, both financially uncon-
strained firms and financially constrained firms should be insensitive to their
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internal financing capabilities (such as the amount of cash flow). However, em-
pirical studies (Fazzari, Hubbard and Petersen (1988), Barnett and Sakellaris
(1998), and others) found that financial factors such as cash flow and sales enter
into the investment-q regression significantly as additional regressors. More-
over, financially constrained firms were found to be more sensitive to cash flow
than unconstrained firms. Erickson and Whited (2000) argued that the previous
controversial and disappointing empirical results were caused by the analysts ne-
glecting the mismeasurement of marginal q, as marginal q is unobservable and
empirical proxies such as average q, the ratio of the market value of existing cap-
ital to its replacement cost (Hayashi (1982)), could contain considerable error.
Using a GMM method involving higher order moments to adjust for measure-
ment error in q, Erickson and Whited (2000) found that cash flow did not have
effect on investment; they concluded that the empirical failure of the q theory
of investment was due to inappropriate treatment of the measurement error of
marginal q (neglecting either the measurement error of q or the serial correlation
of the measurement error). Erickson and Whited (2000) showed that the mea-
surement error of marginal q is serially correlated. Hence, estimation methods
neglecting this correlation structure may produce misleading results.

We revisit the investment-cash flow sensitivity controversy by applying Wans-
beek’s GMM method described in the previous sections. Although Griliches-
Hausman’s approach produces asymptotically equivalent GMM estimators to
Wansbeek’s approach, and can be programmed using standard software pack-
age, we prefer Wansbeek’s approach since it is computationally simpler. We
consider the model

Ii,t

Ki,t−1
= µ0 + βqi,t + γ

CFi,t

Ki,t−1
+ αi + ηit, (6.1)

where Ii,t represents firm i’s investment in period t, Ki,t−1 is its capital stock at
the beginning of period t, CFi,t is its cash flow in period t, and qi,t is the firm’s
marginal q value at the beginning of period t. The observable q value is the
average q and denoted by Qi,t. We assume that

Qi,t = qi,t + λ0 + vit. (6.2)

Compared with the model defined by (5.1), (6.1)−(6.2) have the additional quan-
tities µ0 and λ0. These do not have any effect on our GMM estimator of β

and γ since they will be swept out by the transformation we use to sweep out
the unobserved individual effect αi. We assume that the measurement error is
uncorrelated with the true covariate marginal q, and that cash flow is strictly
exogenous.
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Table 1. Descriptive statistics for separate samples of firms

Variable Q1 Median Q3 Mean s.d.
FC firms I

K 0.0902 0.161 0.295 0.234 0.234

(445 firms) CF
K 0.1130 0.188 0.289 0.229 0.171

Average q 0.9810 1.147 1.488 1.340 0.666
FUC firms I

K 0.1510 0.238 0.417 0.346 0.346

(494 firms) CF
K 0.4600 0.709 1.400 1.066 0.904

Average q 1.2260 1.711 2.474 2.027 1.198
FC = Financially constrained; FUC = Financially unconstrained.

Q1 denotes the first quartile and Q3 denotes the third quartile.

Our data come from COMPUSTAT database (years 1992-1995), the same
data source used by Erickson and Whited (2000). We adopt the accounting
definitions of Ii,t,Ki,t, CFi,t and Qi,t as in Kaplan and Zingales (1997). We
follow Lamont, Polk and Saa-Requejo (2001) to classify firms into financially
constrained and financially unconstrained categories. Specifically, we construct
a composite index of financial constraints called the KZ index for each firm in
each year, and each year we rank all firms accordingly. A firm is classified as
“financially constrained for year t” if its KZ index is among the top 33% of all
firms at year t; it is classified as “financially unconstrained for year t” if its
KZ index is among the bottom 33% of all firms in year t. We refer to a firm as
“financially constrained” if it is classified as financially constrained for every year
from 1992 to 1995. “Financially unconstrained” firms are defined similarly. We
follow the conventional practice of removing outlying observations from the data
analysis. Specifically, we keep observations with the following characteristics: (1)
investment to capital ratio is between 0 and 3; (2) average q is between 0 and
10; (3) cash flow to capital ratio is between 0 and 5. Some descriptive statistics
are given in Table 1.

We apply efficient two-step GMM estimation separately to financially con-
strained firms and unconstrained firms. The results are given in Table 2. The
OLS estimates were based on the within transformation suggested by Wallace
and Hussain (1969), and the OLS-1 estimates were obtained by applying the OLS
method to the first order differences. To consider the serial correlation of the mea-
surement errors, we calculated four GMM estimates based on (2.9) with different
serial correlation structures of measurement errors: GMM-1 assumes vi1, . . . , viT

are i.i.d., where vit is the tth component of vi; GMM-2 assumes {vi1, . . . , viT } is
stationary with E [vi1vit] = 0 if and only if t > 1; GMM-3 assumes {vi1, . . . , viT }
is stationary with E [visvit] = ρ|s−t|E(v2

i1) for some ρ ∈ (−1, 1); and GMM-4 as-
sumes nonstationary MA(1) measurement errors, which is what GMM-2 assumes
except that {vi1, . . . , viT } is not stationary.
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Table 2. Effects of marginal q and cash flow on firm’s investment: comparison
of various estimation methods.

Method
OLS OLS-1 GMM-1 GMM-2 GMM-3 GMM-4

FC firms β 0.013 0.005 0.019 0.013 0.019 0.054
(0.012) (0.015) (0.011) (0.011) (0.012) (0.008)

γ 0.464 0.433 0.415 0.410 0.369 0.605
(0.047) (0.055) (0.049) (0.050) (0.053) (0.052)

FUC firms β -0.017 -0.039 -0.039 -0.059 -0.056 -0.009
(0.010) (0.013) (0.012) (0.013) (0.014) (0.011)

γ 0.169 0.190 0.200 0.203 0.199 0.266
(0.011) (0.014) (0.021) (0.021) (0.021) (0.023)

The numbers in the parenthesis are standard errors of the parameter estimates.

FC = Financially constrained; FUC = Financially unconstrained.

OLS-1: OLS applying to first order differences.

GMM-1: Two-step GMM estimator with i.i.d. measurement errors

GMM-2: Two-step GMM estimator with stationary MA(1) measurement errors.

GMM-3: Two-step GMM estimator with stationary AR(1) measurement errors.

GMM-4: Two-step GMM estimator with nonstationary MA(1) measurement errors.

For financially constrained firms, all GMM estimates for β, the coefficient
of marginal q, are positive and larger than the OLS estimate, which reflects the
attenuation by measurement error of the coefficient of a mismeasured covariate.
The estimate of β from the first order difference OLS estimate (OLS-1) is smaller
than that from the OLS, consistent with the argument in Griliches-Hausman that
measurement error biases the first order difference estimator toward zero more
than it biases the within estimator. GMM estimates for β are not significantly
different from zero except for the GMM estimate under nonstationary MA(1)
measurement errors. All GMM estimates of cash flow effect γ are significantly
different from zero, indicating a robust effect of cash flow on investment for
liquidity constrained firms.

For financially unconstrained firms, all GMM estimates of cash flow effect
are significantly greater than zero, and all estimates for the coefficient of q are
negative (except for the nonstationary MA(1) measurement error situation, all
are significant.), suggesting that cash flow might be playing a more important
role in determining corporate investment than marginal q.

Compare the results for the two groups of firms, we find that the GMM
estimates of cash flow effect for financially constrained firms are approximately
twice that for financially unconstrained firms, which indicates that financially
constrained firms respond more sensitively to cash flow than financially uncon-
strained firms.

Therefore, our empirical study suggests that: (1) cash flow is a significant fac-
tor for firms’ investment, regardless of whether the firm is financially constrained
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or not; (2) financially constrained firms respond more sensitively to cash flow
than financially unconstrained firms; and (3) adjusting for measurement error in
marginal q might still lead to results unexplainable by the q theory of invest-
ment. These results confirm some of the previous findings (Fazzari, Hubbard
and Petersen (1988), etc.) that internal funds play an important role in corpo-
rate investment, even after controlling for Tobin’s marginal q, and that there is
substantial difference between the two types of firms in the effect of cash flow on
investment. Accordingly, our results provide different explantation of the effect
of measurement error than Erickson and Whited (2000).

7. Concluding Remarks

In this paper we investigated two previously proposed approaches to the mea-
surement error problem in panel data. The main results of this paper have been
to (i) provide an easy-to-compute GMM estimator based on Griliches-Hausman’s
idea of using instrumental variables; (ii) provide a weighted instrumental vari-
able estimator that is as efficient as the GMM estimator in (i); (iii) remove
the redundancy of the moment conditions constructed by Wansbeek and show
that Wansbeek’s GMM estimator is optimal; (iv) show that Griliches-Hausman’s
and Wansbeek’s methods are asymptotically equivalent and also computationally
similar so that applied users can choose one that is easy to implement; and (v)
discuss the estimability of the parameters and some extensions to both methods.

A key advantage of Griliches-Hausman’s and Wansbeek’s methods and our
extensions is that measurement error is handled without assuming a known mea-
surement error covariance matrix or requiring additional validation/replication
data, because we can use panel data as “partial” replicates under certain assump-
tions on the serial correlation structure of the measurement error (e.g., condition
(4.1)). As seen in the application, different assumptions on the serial correlation
structure of the measurement error lead to different moment conditions and dif-
ferent GMM estimators. Empirical studies may be carried out to choose between
different measurement error correlation structures.

The methods in this paper work for balanced, linear, static panel data. An
interesting future research topic is to investigate whether these methods can be
applied to unbalanced panel data, nonlinear panel data, and dynamic panel data.
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Appendix: Proofs of results

Proof of Lemma 1. Let d = dim (V0), d̃ = dim (V1), with d̃ < d. Let v1, . . . , v
ed

be a basis of V1. Enlarge
{
v1, . . . , v

ed

}
to a basis v1, . . . , v

ed
, v

ed+1
, . . . , vd of V0.

Then v
ed+1

, . . . , vd ∈ S. Now consider vectors v1+v
ed+1

, . . . , v
ed
+v

ed+1
, v

ed+1
, . . . , vd.

It is easy to show that they are linearly independent. All of them are in S, oth-
erwise there is a contradiction. Thus we have constructed a set of d linearly
independent vectors in S. Since S ⊆ V0, the maximum number of linearly inde-
pendent vectors in S should not exceed d, hence the claim is proved. If s1, . . . , sd

are linearly independent vectors in S, then they are a basis of V0, consequently
every vector in S can be expressed as a linear combination of them.

Proof of Lemma 2. For (IV.1), it is easy to verify that P ′lT = 0 if and
only if vec (P )′ (IT ⊗ lT ) = 0. For (IV.2), using the properties of the Kronecker
product, one can show that E [x′

iP
′εi] = −vec (P )′ R0ϕβ. Hence E [x′

iP
′εi] =

0 ⇔ vec (P )′ R0 = 0. Similarly we can show (IV.3).

Proof of Lemma 3. (i) Since Q1ζ = 0 ⇔ Q′
1Q1ζ = 0 and Q2ζ = 0 ⇔ Q′

2Q2ζ =
0, we have that Q′

1Q1ζ = 0 ⇔ Q′
2Q2ζ = 0. Thus if ζ is an eigenvector of Q′

1Q1

associated with the eigenvalue 0, it is an eigenvector of Q′
2Q2 associated with

the eigenvalue 0. Hence, the zero-eigenspace of Q′
1Q1 is the same as the zero-

eigenspace of Q′
2Q2. Since Q′

1Q1 and Q′
2Q2 have the same dimension, we know

that the nonzero-eigenspace of Q′
1Q1 is the same as the nonzero-eigenspace of

Q′
2Q2. Let Q1 = U1Λ1V

′
1 and Q2 = U2Λ2V

′
2 be the singular value decompositions

of Q1 and Q2, respectively. Then the rows of V ′
1 form a basis for the nonzero-

eigenspace of Q′
1Q1, and the rows of V ′

2 form a basis for the nonzero-eigenspace
of Q′

2Q2. Hence there exists a nonsingular matrix A such that V ′
2 = AV ′

1 . This
means that the set of moment conditions Q1E [g (β)] = 0 is an equivalent variant
of the set of moment conditions Q2E [g (β)] = 0. Applying the arguments in part
(ii) below we can see that the two GMM estimators have the same asymptotic
variance.
(ii) By a similar argument as in (i), there exists a r2 × r1 matrix A with rank
r2 such that V ′

2 = AV ′
1 . While Q1E [g (β)] = 0 ⇔ V ′

1E [g (β)] = 0, Q2E [g (β)] =
0 ⇔ AV ′

1E [g (β)] = 0. Assuming there is no redundancy in g (β), Ω = var (g (β))
> 0. The asymptotic variance of the efficient GMM estimator based on V ′

1E [g (β)]

= 0 is
(
C ′V1 (V ′

1ΩV1)
−1 V ′

1C
)−1

, while the asymptotic variance of the efficient

GMM estimator based on AV ′
1E [g (β)] = 0 is

(
C ′V1A

′ (AV ′
1ΩV1A

′)−1 AV ′
1C

)−1
.

By the theory of linear models,(
C ′V1

(
V ′

1ΩV1

)−1
V ′

1C
)−1

≤
(
C ′V1A

′ (AV ′
1ΩV1A

′)−1
AV ′

1C
)−1

.
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Hence the GMM estimator based on Q1E [g (β)] = 0 is at least as efficient as the
GMM estimator based on Q2E [g (β)] = 0.

Proof of Theorem 5. (i) For k = 1, . . . ,K, let Ak (xi, yi) = x′
iP

′
kyi, Bk (xi, yi) =

x′
iP

′
kxi, Ak = (1/N)

N∑
i=1

Ak (xi, yi),Bk = (1/N)
N∑

i=1
Bk (xi, yi). Then β̂Pk

= Ak/Bk.

If ei
k = Ak (xi, yi) − Bk (xi, yi) β, ek = (1/N)

N∑
i=1

ei
k = Ak − Bkβ, ei =

(
ei
1, ·, ei

K

)′
and e =

N∑
i=1

ei, then E
[
ei
k

]
= 0. Let Γ = var

(
ei

)
. By the Central Limit Theorem,

√
Ne

d→ N (0, Γ). Since β̂Pk
− β = Ak/Bk − β = ek/Bk,

√
N

(
β̂ (λ) − β

)
= λ1

√
N

(
β̂P1 − β

)
+ · · · + λK

√
N

(
β̂PK

− β
)

=
(

λ1

B1

, . . . ,
λK

BK

)√
Ne

d→N (0, V (λ))

with

V (λ) =
(

λ1

E (B1)
, . . . ,

λK

E (BK)

)
Γ

(
λ1

E (B1)
, . . . ,

λK

E (BK)

)′
.

(ii) Consider another approach: pool the K equations and use GMM to solve
for an efficient estimator. Denote the efficient GMM estimator by β̂GMM . Its
asymptotic variance is

V ∗ =
[
(E (B1) , . . . , E (BK)) Γ−1 (E (B1) , . . . , E (BK))′

]−1
.

Let w = Γ1/2
(

λ1
E(B1) , . . . ,

λK
E(BK)

)′
, and v = Γ−1/2 (E (B1) , · · ·, E (BK))′. Then

by Cauchy’s inequality,

V (λ) /V ∗ = w′wv′v ≥
(
w′v

)2 = 1,

where the equality holds if and only if w = cv for some scalar c, i.e.,

Γ1/2

(
λ1

E (B1)
, . . . ,

λK

E (BK)

)′
= cΓ−1/2 (E (B1) , . . . , E (BK))′ ,

which is (
λ1

E (B1)
, . . . ,

λK

E (BK)

)′
= cΓ−1 (E (B1) , . . . , E (BK))′ .

Now combining with the fact that
K∑

k=1

λk = 1, we can find c =
(
B′Γ−1B

)−1.

Hence the optimal weight is λ∗ =
(
B′Γ−1B

)−1
diag (B) Γ−1B, since V ∗ is the
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lower bound of the asymptotic variance of any consistent estimator based on the
set of K equations.
(iii) It is easy to verify that

β̂(λ̂) =
(
B

′
ŴB

)−1
B

′
Ŵ ′diag

(
B

) [
A1

B1

, . . . ,
AK

BK

]′
=

(
B

′
ŴB

)−1
B

′
Ŵ ′A

= β̂GMM2.

Proof of Theorem 6. It is easy to verify that (D1,MD1) satisfies conditions (1)
and (2) of part (i). We first show that (D1,MD1) is optimal. By Lemma 3(ii),
we need only check that MD1 (IT ⊗ D1) u = 0 implies M (IT ⊗ A) u = 0 for any
(A,M) ∈ S and for any u. Observe that the rows of D1 form a basis of the space{
x ∈ RT : x′lT = 0

}
. This means that each row of A is a linear combination

of the rows of D1, hence there exists a matrix C such that A = CD1. Now
observe that MD1 (IT ⊗ D1) u = 0 implies that there exists some fixed vector γ

such that (IT ⊗ D1) u = (IT ⊗ D1) R0γ. By some algebraic manipulation, we
have that M (IT ⊗ A) u = M (IT ⊗ A) R0γ = 0. Hence (D1, MD1) is optimal.
Now we show that any two pairs (A1,M1) and (A2,M2) in S generate moment
conditions that are equivalent variants of each other, hence any (A,M) ∈ S
satisfying the condition (1) and (2) of part (i) is optimal. First we observe that
A1y = 0 ⇔ A2y = 0 ⇔ y = clT , where c is some scalar. We establish (C)
for any two conformable matrices P and Q satisfying rank(PQ) = rank(Q), we
have that PQu = 0 implies Qu = 0 for any vector u. To see this, note that
ker (PQ) = [C (Q′P ′)]⊥ and ker (Q) = [C (Q′)]⊥. Now rank(PQ) = rank(Q)
implies rank(Q′P ′) = rank(Q′). Since C (Q′P ′) ⊆ C (Q′), we have that C (Q′P ′)
= C (Q′), hence ker (PQ) = ker (Q). This means that PQu = 0 if and only
if Qu = 0 for any vector u. Now let (A,M) ∈ S satisfy (1) and (2) of part
(i). By definition MRA = 0, hence there exists a matrix U such that M =
U

[
I − RA (R′

ARA)− R′
A

]
. Since M has maximum possible rank, rank (M) =

rank
(
I − RA (R′

ARA)− R′
A

)
. Hence by (C),

Mu = 0 ⇔ U
[
I − RA

(
R′

ARA

)−
R′

A

]
u = 0

⇔
[
I − RA

(
R′

ARA

)−
R′

A

]
u = 0

⇔ u ∈ C (RA) .

Therefore M1 (IT ⊗ A1) x = 0 if and only if (IT ⊗ A1) x ∈ C ((IT ⊗ A1) R0), i.e.,
there exist some vector γ such that (IT ⊗ A1) x = (IT ⊗ A1) R0γ. This is again
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equivalent to A1

(
X − Ω̃

)
= 0, where vec

(
Ω̃

)
= R0γ and vec (X) = x, hence

equivalent to A2

(
X − Ω̃

)
= 0, and eventually equivalent to M2 (IT ⊗ A2) x = 0.

Proof of Theorem 7. By virtue of Lemma 3(i), we need only check that

Hu = 0 if and only if MR (IT ⊗ AT ) u = 0, for any vector u. (A.1)

Assume first that MR (IT ⊗ AT ) u = 0. Since MR is the projection matrix for
the column space of R, there exits a vector γ̃ such that (IT ⊗ AT ) u = Rγ̃ =
(IT ⊗ AT ) R0γ̃. Let Ω̃ and U be matrices such that vec

(
Ω̃

)
= R0γ̃, vec (U) =

u. Then by the properties of the Kronecker product we have vec (AT U) =
vec

(
AT Ω̃

)
. This implies AT

(
U − Ω̃

)
= 0. Hence there exist scalars c1, . . .

cT such that U = Ω̃ + (c1, . . . , cT ) ⊗ lT . Then for any k = 1, . . . ,K,

vec (Pk)
′ vec (U) = vec (Pk)

′ vec
(
Ω̃

)
+ vec (Pk)

′ vec ((c1, · · ·, cT ) ⊗ lT )

= vec (Pk)
′ vec

(
Ω̃

)
= vec (Pk)

′ R0γ

= 0.

Hence, MR (IT ⊗ AT ) u = 0 implies Hu = 0.
Now suppose Hu = 0. Then there exist a vector θ = [θ1 θ2]

′ such that

u = Lθ = [R0 IT ⊗ lT ] [θ1 θ2]
′ = R0θ1 + (IT ⊗ lT ) θ2.

Hence

MR (IT ⊗ AT ) u = MR (IT ⊗ AT ) [R0θ1 + (IT ⊗ lT ) θ2]

= MR (IT ⊗ AT ) R0θ1 + MR (IT ⊗ AT ) (IT ⊗ lT ) θ2

= 0 + MR (IT ⊗ AT lT ) θ2

= 0.

This proves (A.1).
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