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Abstract: Interval-censored failure time data often arise in clinical trials and med-

ical follow-up studies, and a few methods have been proposed for their regression

analysis using various regression models (Finkelstein (1986); Huang (1996); Lin,

Oakes, and Ying (1998); Sun (2006)). This paper proposes an estimating equation-

based approach for regression analysis of interval-censored failure time data with

the additive hazards model. The proposed approach is robust and applies to both

noninformative and informative censoring cases. A major advantage of the proposed

method is that it does not involve estimation of any baseline hazard function. The

implementation of the propsoed approach is easy and fast. Asymptotic proper-

ties of the proposed estimates are established and some simulation results and an

application are provided.
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1. Introduction

Interval-censored failure time data usually refer to the data in which the
failure time of interest is observed only to belong to an interval instead of being
known exactly (Kalbfleisch and Prentice (2002); Sun (2006)). Such data arise
naturally in medical follow-up studies where the event of interest (failure) is not
observed directly but only detected by some laboratory tests; then the failure
time is known only to lie between the two monitoring times that are the last
monitoring time at which the event has not occurred and the first monitoring
time at which the event has already occurred. A well-known example of interval-
censored data is discussed in Finkelstein (1986), the event of interest being the
occurrence of breast retraction among early breast cancer patients. Another
example is the HIV data studied by Zeng, Cai, and Shen (2006), where the
failure is the first active Cytomegalovirus (CMV) infection.

A special case of interval-censored failure time data occurs if each study
subject is observed only once as in cross-sectional studies. In this case, the
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failure time of interest is known only to be either smaller or larger than the
observation time, giving either left- or right-censored observation, respectively.
This type of data is commonly referred to as case I interval-censored data or
current status data (Huang (1996); Lin, Oakes, and Ying (1998); Martinussen
and Scheike (2002)). In this paper, we study general or case II interval-censored
data that are a mixture of left-, interval-, and right-censored observations.

For regression analysis of interval-censored data, a few methods have been
proposed. For example, Finkelstein (1986) considered fitting the proportional
hazards model to general interval-censored data and Hunag (1996) studied the
efficient estimation problem for current status data using the same model. Lin,
Oakes, and Ying (1998) and Martinussen and Scheike (2002) considered regres-
sion analysis of current status data, and Zeng, Cai, and Shen (2006) discussed
regression analysis of case II interval-censored data, all using the additive hazards
model. In particular, Zeng, Cai, and Shen (2006) studied the efficient estimation
for the regression parameters and proposed to apply the full likelihood approach.
However, its implementation can be quite complicated because of the need for
estimation of the baseline cumulative hazard function, which is time consuming
especially when the monitoring variables are continuous. Betensky, Rabinowitz,
and Tsiatis (2001) developed a relatively easy estimation method for general
interval-censored data using the accelerated failure time model.

In this paper, we develop an approach that is easy to implement for case
II interval-censored data. Three situations are considered with respect to the
observed intervals or the minitoring process: in the first, we assume that there
exist only two monitoring times independent of the failure time of interest given
the covariate process; in the second, it is assumed that there exist a sequence of
monitoring times that are independent of the failure time of interest given the
covariate process; in the third, there are also two monitoring times but they may
be dependent of the failure time of interest given the covariate process. In all
these situations, we allow that the monitoring times are random and continuous,
and assume that the failure time of interest follows the additive hazards model,
that the monitoring times follow Cox-type models (Cox (1972)). A major ad-
vantage of the proposed approach is that it does not require estimation of any
nuisance baseline hazard functions.

The remainder of the paper is organized as follows. We present the proposed
approach for the first situation in Sections 2 and 3. In particular, Section 2 in-
troduces some notation and the assumed models, and some estimating equations
for regression parameters are presented in Section 3. The asymptotic properties
of the proposed estimates are given in Section 3. In Section 4, we generalize the
proposed method to the second and third situations described above. Section 5
presents some results of a simulation study, and Section 6 illustrates the proposed
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methodology in the breast cancer example. Section 7 contains some concluding
remarks.

2. Notation and Models

Let T denote the failure time of interest. Here we focus on the situation in
which there are only two monitoring variables U and V characterizing the moni-
toring process, and they are observable. Let Z denote a possibly time-dependent
p-dimensional covariate vector that is assumed to be completely observed. Unless
mentioned otherwise, we assume that failure time T is independent of monitoring
times U and V given covariate Z.

Denote by (Ti, Ui, Vi, Zi(·)) the n i.i.d. replicates of (T,U, V, Z(·)) and define
indicators δ1 i = I(Ti < Ui), δ2 i = I(Ui ≤ Ti < Vi), and δ3 i = 1− δ1i − δ2i. These
indicators determine whether the failure for subject i has occurred before Ui,
during the examination interval [Ui, Vi), or after Vi, respectively. The observed
data are (Ui, Vi, δi1, δi2, δi3, Zi(·)).

Throughout, we model the failure time with the additive hazards model.
Specifically, we assume that Ti has the hazard function

λi(t |Zi) = λ0(t) + β′
0 Zi(t) (2.1)

given the covariate process up to t, where λ0 is an unknown baseline hazard
function and β0 denotes the p-dimensional vector of regression parameters. Our
primary interest is in the estimation of β0.

Due to the strict order restriction between the monitoring variables U and
V , it is natural to regard them as recurrent events and model them with the
Cox-type hazard functions (Cox (1972))

λU
i (t |Zi) = λ1(t) eγ′

0 Zi(t), (2.2)

λV
i (t |Ui, Zi) = I(t > Ui)λ2(t) eγ′

0 Zi(t) . (2.3)

This λ1(t) and λ2(t) denote unspecified baseline hazard functions and γ0 is a
p-dimensional vector of unknown regression parameters.

Model (2.3) essentially assumes that the gap time between the two monitor-
ing times U and V follows a Cox type model conditional on U . Similar models
have been discussed for regression analysis of recurrent event data and multivari-
ate data in Kelly and Lim (2000) and Prentice, Williams and Peterson (1981),
respectively. There are several motivations for considering the models described.
First, the Cox model is the most widely used model due to its modeling flexi-
bility and it is well studied and easy to implement. Second, under the current
model setup, there is an easy procedure, as shown below, to estimate regression
coefficients without the need to estimate the baseline hazard functions. Third,



1712 LIANMING WANG, JIANGUO SUN AND XINGWEI TONG

the model assumptions can be easily checked since we have complete data for the
monitoring times.

For each i, define a 0-1 counting process N
(1)
i (t) = (1 − δ1i) I(Ui ≤ t) and,

conditional on Ui, define N
(2)
i (t) = δ3i I(Vi ≤ t) if t ≥ Ui and 0 if t < Ui. The

definition of N
(2)
i is naturally based on the order restriction between Ui and Vi,

and indicates that Vi is considered only after Ui has been observed. Following
the same arguments as those in Lin, Oakes, and Ying (1998) and under models
(2.1)∼(2.3), we obtain intensity functions for N

(1)
i (t) and N

(2)
i (t) as

λ
(1)
i (t |Zi) = λ1(t) e−Λ0(t) e−β′

0Z∗
i (t)+γ′

0Zi(t) (2.4)

λ
(2)
i (t |Ui, Zi) = I(t > Ui)λ2(t)e−Λ0(t)e−β′

0Z∗
i (t)+γ′

0Zi(t), (2.5)

where Z∗
i (t) =

∫ t
0 Zi(s) ds and Λ0(t) =

∫ t
0 λ0(s) ds .

Clearly models (2.4) and (2.5) are Cox type models similar to models (2.2)
and (2.3). Note that (2.5) is a conditional model since the starting time point
is the observed monitoring time Ui. In the next section, we use (2.2)−(2.5) to
construct estimating equations for regression coefficients β0 and γ0.

3. Estimation of Regression Parameters

To estimate β0 and γ0, for j = 0, 1, let

S
(j)
1,β(t, β, γ) = n−1

n∑
i=1

I(t ≤ Ui) e−β′ Z∗
i (t)+γ′Zi(t) Z

∗ (j)
i (t),

S
(j)
2,β(t, β, γ) = n−1

n∑
i=1

I(Ui < t ≤ Vi) e−β′ Z∗
i (t)+γ′Zi(t) Z

∗ (j)
i (t) ,

where Z
∗ (0)
i (t) = 1 and Z

∗ (1)
i (t) = Z∗

i (t). Motivated by Lin, Oakes, and Ying
(1998) who considered regression analysis of current status data using models
(2.1) and (2.2), we propose the estimating function Uβ(β, γ) as

n∑
i=1

[∫ ∞

0

{
Z∗

i (t)−
S

(1)
1,β(t, β, γ)

S
(0)
1,β(t, β, γ)

}
dN

(1)
i (t)+

∫ ∞

0

{
Z∗

i (t)−
S

(1)
2,β(t, β, γ)

S
(0)
2,β(t, β, γ)

}
dN

(2)
i (t)

]

=
n∑

i=1

(1 − δ1i)
{

Z∗
i (Ui) −

S
(1)
1,β(Ui, β, γ)

S
(0)
1,β(Ui, β, γ)

}
+

n∑
i=1

δ3i

{
Z∗

i (Vi) −
S

(1)
2,β(Vi, β, γ)

S
(0)
2,β(Vi, β, γ)

}
,

for estimation of β0 given γ.
In this expression for Uβ(β, γ), the first term is the partial likelihood score

function under (2.4) if one has only current status data and thus is unbiased.
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The second term is the partial likelihood score function obtained under model
(2.5) if one considers only current status data given by the Vi’s, and thus also has
mean 0 at γ0 and β0 due to the fact that each integral is a martingale given the
observed Ui; thus, Uβ(β, γ) is unbiased. The key idea here is to reduce general
interval-censored data to current status data, and similar ideas have been used
by Betensky, Rabinowitz, and Tsiatis (2001), among others.

For estimation of γ0, one can easily develop an estimating function that is
similar to Uβ(β, γ) utilizing (2.4) and (2.5). On the other hand, note that for Ui’s
and Vi’s, or models (2.2) and (2.3), complete data are available and thus it is more
efficient to directly estimate γ0 from them. To this end, let Ñ

(1)
i (t) = I(Ui ≤ t)

and Ñ
(2)
i (t) = I(Vi ≤ t) if t ≥ Ui and 0 if t < Ui given the observed Ui,

i = 1, . . . , n. Also take

S
(j)
1,γ(t, γ) = n−1

n∑
i=1

I(t ≤ Ui) eγ′Zi(t) Z
(j)
i (t),

S
(j)
2,γ(t, γ) = n−1

n∑
i=1

I(Ui < t ≤ Vi) eγ′Zi(t) Z
(j)
i (t) ,

for j = 0, 1, where Z
(0)
i (t) = 1 and Z

(1)
i (t) = Zi(t).

The similarity between models (2.2)∼(2.3) and models (2.4)∼(2.5) suggests
an estimating function Uγ(γ) for γ0 as

n∑
i=1

[ ∫ ∞

0

{
Zi(t) −

S
(1)
1,γ(t, γ)

S
(0)
1,γ(t, γ)

}
dÑ

(1)
i (t) +

∫ ∞

0

{
Zi(t) −

S
(1)
2,γ(t, γ)

S
(0)
2,γ(t, γ)

}
dÑ

(2)
i (t)

]

=
n∑

i=1

{
Zi(Ui) −

S
(1)
1,γ(Ui, γ)

S
(0)
1,γ(Ui, γ)

}
+

n∑
i=1

{
Zi(Vi) −

S
(1)
2,γ(Vi, γ)

S
(0)
2,γ(Vi, γ)

}
.

This estimating function is exactly the same as the partial likelihood score func-
tion under models (2.2) and (2.3) for complete data that is found in Lin (1994).

Let γ̂ be the solution to Uγ(γ) = 0. Then we can estimate β0 by β̂ defined as
the root of Uβ(β, γ̂) = 0. Let Âβ(β, γ) = −n−1 ∂Uβ(β, γ)/∂β and Aβ denote the
limit of Âβ(β, γ) at β = β0 and γ = γ0. It can be easily shown that γ̂ is consistent
and has an asymptotic normal distribution (Lin (1994); Wei, Lin and Weissfeld
(1989)). The consistency of β̂ can be similarly proved by noting that Âβ(β, γ̂) is
positive semidefinite and that its limit is assumed to be positive definite at β0.

For the asymptotic distribution of β̂, we note that n−1/2Uβ(β0, γ̂) converges
in distribution to a normal distribution with mean zero and a covariance matrix
that can be consistently estimated see in the Appendix. Then a Taylor series
expansion of Uβ(β̂, γ̂) around β0 shows that the distribution of n1/2 ( β̂−β0 ) can
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be asymptotically approximated by the normal distribution with mean zero and
a covariance matrix Σ that can be consistently estimated.

For determination of β̂ and γ̂, note that both estimating functions Uβ(β, γ)
and Uγ(γ) are similar to the partial likelihood score functions arising from right-
censored failure time data under a stratified proportional hazards models, or for
multivariate right-censored failure time data under marginal proportional hazards
models. Thus β̂ and γ̂ can easily obtained using any statistical software designed
for these situations.

4. Two Generalizations

In the previous sections we assumed that there were only two monitoring
times for each subject and, in practice, there may be more than two. Also we
assumed that monitoring times are independent of the survival time of interest
given covariates, which may not be true. In this section, we generalize the ap-
proach in Section 3 to situations where there exist k monitoring time points for
each subject, and where the monitoring times may depend on the failure time.

4.1. Inference with k monitoring variables

In this subsection, we consider the situation where the monitoring process is
characterized by k (≥ 2) monitoring variables. Let (V1, · · · , Vk) be the k moni-
toring variables and assume that they are independent of the failure time T given
the covariate process Z. Let (Vi1, · · · , Vik) be the realizations of the k monitoring
times for subject i, and Vi0 = 0 for the sake of notation convenience. General-
izing models (2.2) and (2.3), we assume that given Vil−1, the hazard function of
Vil is

λVl
i

(
t| (Vi0, · · · , Vi l−1), Z(t)

)
= I(t > Vi l−1)λl(t)eγ′

0Zi(t), l = 1, · · · , k,

where λl is the baseline hazard functions for Vl, l = 1, . . . , , k. These models deal
naturally with the order restriction between the monitoring variables, and were
studied by Prentice, Williams and Peterson (1981) for consecutive failure times.

Let δil = I(Vi l−1 ≤ t < Vi l) and N
(l)
i (t) = (1 −

∑l
h=1 δih)I(Vi l ≤ t) if

t > Vi l−1 and 0 if t ≤ Vi l−1, for l = 1, · · · , k and i = 1, . . . , , n. Similarly to
models (2.4) and (2.5), we have the intensity function

I(Vi l−1 ≤ t < Vi l)λl(t) e−Λ0(t) e−β′
0Z∗

i (t)+γ′
0Zi(t)

for N
(l)
i (t), l = 1, · · · , k and i = 1, . . . , , n. Similarly to those in Section 3,

estimation equations can be taken as

Uβ(β, γ) =
k∑

l=1

n∑
i=1

(1 −
l∑

h=1

δih)
{

Z∗
i (Vi l) −

S
(1)
l,β (Vi l, β, γ)

S
(0)
l,β (Vi l, β, γ)

}
= 0,
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Uγ(γ) =
k∑

l=1

n∑
i=1

{
Zi(Vi l) −

S
(1)
l,γ (Vi l, γ)

S
(0)
l,γ (Vi l, γ)

}
= 0,

where

S
(j)
l,β (t, β, γ) = n−1

n∑
i=1

I(Vi l−1 < t ≤ Vi l) e−β′ Z∗
i (t)+γ′Zi(t) Z

∗ (j)
i (t) ,

S
(j)
l,γ (t, γ) = n−1

n∑
i=1

I(Vi l−1 < t ≤ Vi l) eγ′Zi(t) Z
(j)
i (t) ,

for j = 0, 1 and l = 1, . . . , , k.

As in Section 3, we can obtain γ̂ by solving Uγ(γ) = 0, and then solving
Uβ(β, γ̂) = 0 for β̂ as an estimate of β. The asymptotic theory for β̂ can be
established as it was for the case of two monitoring variables. The essence of
the proposed method is to utilize the complete information about the monitoring
variables, and this idea was also used in Betensky, Rabinowitz, and Tsiatis (2001).

4.2. Inference with informative censoring

In this subsection, we consider the situation where the monitoring times
may depend on the failure time of interest. This can be the case if the observed
interval is given or is formed by the two closest monitoring times containing the
failure time. Thus we have informative interval censoring. In the following, we
consider a situation where the dependence between the monitoring times and the
failure time of interest is induced by sharing a common latent random process
in their hazard functions. We show that the approach proposed in Section 3 can
apply directly to this situation without any change.

Assume that there exists an unobservable random process b that character-
izes the dependency between the monitoring times and the failure time and that,
given the covariate process and process b, the monitoring times U and V and the
failure time T are independent. The same idea has been used by, for example,
Zhang, Sun, and Sun (2005) for current status data. We further assume that

λT
i (t |Zi(s), bi(s), s ≤ t) = λ0(t) + β′

0Zi(t) + bi(t), (4.1)

λU
i (t |Zi(s), bi(s), s ≤ t) = λ1(t) eγ′

0Zi(t)+bi(t), (4.2)

λV
i (t |Ui = ui, Zi(s), bi(s), s ≤ t) =

{
λ2(t)eγ′

0 Zi(t)+bi(t) if t ≥ ui

0 if t < ui ,
(4.3)

where bi’s are i.i.d. realizations of an unobservable stochastic process b, which is
assumed to have mean 0. We remark that the model setups (4.1)−(4.3) are quite
general since the law of random process b is totally unspecified.
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It is easy to show that (4.1) is essentially an additive hazard model since the
survival function can be derived as

Pr(T > t|Z(s), s ≤ t) = Eb(Pr(T > t|Z(s), b)) = Eb(Bi(t)) exp(−Λ(t)−β′Z∗
i (t)),

where Bi(t) =
∫ t
0 bi(s)ds and Z∗

i (t) is defined as above. The Eb term denotes the
expectation with respect to b and is not subject specific in the above expression.
Let N

(1)
i , N

(2)
i , Ñ

(1)
i , and Ñ

(2)
i be defined as in Section 3 and under models

(4.1)−(4.3), one can derive their intensity functions as

I(Ui ≥ t)Eb{e−
R t
0 bi(s)ds ebi(t)} e−Λ0(t) λ1(t) e−β′

0Z∗
i (t)+γ′

0Zi(t),

I(ui < t ≤ Vi)Eb{e−
R t
0 bi(s)ds ebi(t)} e−Λ0(t) λ2(t) e−β′

0Z∗
i (t)+γ′

0Zi(t),

I(Ui ≥ t)Eb{bi(t)}λ1(t) eγ′
0Zi(t) and I(ui < t ≤ Vi)Eb{bi(t)}λ2(t) eγ′

0Zi(t) ,

respectively. It can be seen that these intensity functions are the same as those
in (2.2)−(2.5) except for an extra Eb term.

Note that none of the Eb terms is subject specific. Since none of the baselines
nor the law of b(t) is specified, these nonparametric parts can be put together as
one function in each intensity function. Therefore, using the strategy of Sections
2 and 3, we can construct Uγ(γ) and Uβ(β, γ) exactly as in Section 3 and can
follow the estimation procedure there. It is easily shown that the asymptotic
properties of the obtained estimates given before still hold. In other words,
the proposed estimation procedure of Section 3 is robust and applies to the
informative censoring case here.

5. A Simulation Study

An extensive simulation study was carried out to assess the finite sample per-
formance of the estimation approach proposed in the previous sections, with the
focus on the case of two monitoring variables. In the study, we considered non-
informative censoring and informative censoring cases. In the non-informative
censoring case, the failure times Ti’s were generated from (2.1) and the censoring
times Ui’s and Vi’s were generated from (2.2) and (2.3), respectively, and in the
informative censoring case they were generated from (4.1)−(4.3), respectively. In
both cases we considered a two-sample problem: the one covariate was bernoulli
with success probability 0.5, and we took the baseline hazard functions λ0(t),
λ1(t), and λ2(t) to be constants as 2, 4, and 2, respectively, so the proportions
of left-, interval- and right-censored observations were 1/3 when β0 = γ0 = 0.
The true regression parameter β0 was taken to be 0.5, 0, or −0.5, and γ0 to be
0.5, 0, or −0.5, resulting in nine setups in each simulation case. Under infor-
mative censoring, we took bi(t) ≡ bi for simplicity, where bi’s were i.i.d. random
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Table 1. Simulation results for estimation of β0 and γ0.

Non-informative censoring Informative censoring
TRUE EST BIAS SSD SEE CP BIAS SSD SEE CP

γ0 = 0.0 γ̂ -0.0015 0.1460 0.1430 0.939 -0.0051 0.1498 0.1436 0.941
β0 = 0.0 β̂ -0.0117 0.6393 0.5773 0.940 0.0121 0.5802 0.5615 0.948
γ0 = 0.0 γ̂ 0.0090 0.1492 0.1430 0.943 -0.0062 0.1461 0.1438 0.952
β0 = 0.5 β̂ 0.0423 0.6829 0.6450 0.954 0.0329 0.6709 0.6384 0.947
γ0 = 0.0 γ̂ -0.0076 0.1432 0.1431 0.954 -0.0025 0.1467 0.1436 0.948
β0 = -0.5 β̂ -0.0201 0.5569 0.5171 0.945 -0.0411 0.5361 0.5073 0.945
γ0 = 0.5 γ̂ 0.0035 0.1487 0.1482 0.955 -0.0340 0.1460 0.1483 0.946
β0 = 0.0 β̂ 0.0076 0.6417 0.6263 0.960 -0.0079 0.6498 0.6093 0.946
γ0 = 0.5 γ̂ 0.0118 0.1514 0.1484 0.946 -0.0266 0.1546 0.1486 0.939
β0 = 0.5 β̂ 0.0595 0.7389 0.6955 0.940 -0.0177 0.7275 0.6826 0.951
γ0 = 0.5 γ̂ 0.0143 0.1517 0.1479 0.942 -0.0227 0.1528 0.1492 0.943
β0 = -0.5 β̂ 0.0025 0.5973 0.5670 0.948 -0.0064 0.7245 0.6733 0.937
γ0 = -0.5 γ̂ -0.0165 0.1536 0.1482 0.945 0.0276 0.1484 0.1487 0.951
β0 = 0.0 β̂ -0.0023 0.6121 0.5812 0.940 0.0397 0.5943 0.5687 0.951
γ0 = -0.5 γ̂ -0.0096 0.1539 0.1484 0.944 0.0179 0.1548 0.1486 0.942
β0 = 0.5 β̂ 0.0292 0.7071 0.6520 0.948 0.0486 0.6094 0.5696 0.942
γ0 = -0.5 γ̂ 0.0001 0.1502 0.1477 0.940 0.0252 0.1548 0.1485 0.943
β0 = -0.5 β̂ 0.0420 0.5644 0.5173 0.950 -0.0126 0.5518 0.5084 0.944

effects generated from N(0, 1)/4. The small variance of bi was taken to ensure
positive hazards when generating Ti’s in all setups.

Table 1 presents the simulation results based on 1,000 replicates for each
setup with sample size n = 100. For each setup, the results include the bias
(BIAS) given by the average of 1,000 point estimates minus the true value, the
sample standard deviation (SSD) of the 1,000 point estimates, the average of
1,000 estimated standard errors (SEE), and the 95% empirical coverage prob-
ability. It can be seen from Table 1 that the proposed approach worked very
well in both non-informative and informative censoring cases: the biases of the
proposed estimates were small, the sample standard deviation and the estimated
standard error were quite close, and the empirical coverage probabilities seemed
quite close to 95% in all setups.

It is interesting to note that the variance estimates of the regression pa-
rameters under informative censoring were not larger than those under non-
informative censoring even though there is more variability of data in the former
setting. This is not surprising, and is due to the unspecified baseline hazard
functions and the unspecified law of b as seen in Subsection 4.2. We observed
better performance of the proposed approach when sample size was increased to
n = 200 (results not shown). The program coded in Matlab is very fast: just
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Table 2. Analysis results for breast cancer data.

Parameter Point estimate Standard error Z-score P-value
γ0 -0.4261 0.1811 -2.3532 0.0186
β0 -0.0164 0.0067 -2.4368 0.0148
γ1 -0.0422 0.2891 -0.1459 0.8840
γ2 -0.6362 0.2301 -2.7647 0.0057
β0 -0.0149 0.0061 -2.4568 0.0140

over a minute for each setup with n = 100 on Dell laptop Latitude D830 with
Intel(R) core 2 Duo CPU and 3.5 GB of RAM.

6. An Illustration

This section applies the proposed approach to the breast cancer data dis-
cussed in Finkelstein (1986), among others. The study consisted of 94 early
breast cancer patients who were given either radiation therapy alone (46), or
radiation therapy plus adjuvant chemotherapy (48). During the study, patients
were supposed to be seen at clinic visits every 4 to 6 months. Actual visit times
differed from patient to patient, and times varied between visits. At the visits,
physicians evaluated features such as breast retraction, a response that has a
negative impact on overall cosmetic appearance. The goal of the study was to
compare the two treatments with respect to the time to breast retraction, and
only interval-censored data were available.

To apply the proposed method, we assume that the time to breast retraction
and the monitoring times can be described by models (4.1)−(4.3). The breast
cancer data are given in the form [Li, Ri): we have a mixture of left-, interval-,
and right-censored observations. We made an adjustment: for subject i with
[Li, Ri), if Li = 0, we took Ui = Ri and Vi to be the largest observation in
the study; if Ri = ∞, we took Vi = Li and Ui to be the smallest observation
time in the study; when Li 6= 0 and Ri 6= ∞, we took Ui = Li and Vi = Ri.
Corresponding to this adjustment, we adjusted Uγ(γ) to

Uγ(γ) =
n∑

i=1

(1 − δ3i)
{

Zi(Ui)−
S

(1)
1,γ(Ui, γ)

S
(0)
1,γ(Ui, γ)

}
+

n∑
i=1

(1−δ1i)
{

Zi(Vi)−
S

(1)
2,γ(Vi, γ)

S
(0)
2,γ(Vi, γ)

}
,

and kept Uβ(β, γ) unchanged. This essentially treats Ui as missing in the right-
censored case, and Vi as missing in the left-censoring case.

We let Zi = 1 if the ith patient was given radiation therapy alone and 0
otherwise. Table 2 shows the analysis results using the proposed method when
U and V share the same covariate effect γ0, and when they have different covariate
effects γ1 and γ2, respectively. The difference between the estimates of γ1 and
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Figure 1. Ratios of estimated survival functions in log and log-log scales.

γ2 suggests that the models with different covariate effects on U and V are more
realistic than the models with the common covariate effect. In that analysis we
obtained β̂ = −0.0149, with estimated standard error 0.0061 and the p-value
0.0140 for testing β0 = 0. These results suggest that the patients given radiation
therapy alone had a significantly lower risk to develop breast retraction than those
given radiation therapy plus adjuvant chemotherapy. This conclusion agrees with
that given by Finkelstein (1986) using the proportional hazards model.

Although the result given here is similar to that obtained using the propor-
tional hazards model, it is of interest to assess which of the two models is more
appropriate for the given data set. To this end, we determined the nonparametric
maximum likelihood estimators of the survival functions for the two treatment
groups and plotted the log ratio of the survival function estimators and the log
ratio of the log survival function estimators in Figure 1. Note that the former
should give a straight line passing the origin under the additive hazards model
and the latter should give a line parallel to x-axis under the proportional hazards
model. Although nothing is clear cut, Figure 1 suggests that the additive hazards
model is more reasonable in terms of the global effect.

7. Concluding Remarks

We have discussed regression analysis of case II interval-censored failure time data
using the additive hazards model. Some estimating equation-based approaches
were developed for estimation of regression parameters and the asymptotic prop-
erties of the proposed estimates were established. The proposed approaches apply
to both noninformative censoring and informative censoring cases. One major
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advantage of the presented method is that it does not involve estimation of any
baseline hazard function.

The proposed methodology involves modeling gap times between the adja-
cent monitoring times using the Cox model. An alternative to this is to directly
model all the monitoring times with the Cox model marginally. However, such
modeling requires stricter conditions due to the order relationship, as shown in
Yang and Ying (2001). In contrast, the gap time modeling approach is very
flexible.

The proposed approach provides an alternative to the full likelihood method
given in Zeng, Cai, and Shen (2006), who explored efficient estimation for regres-
sion analysis of case II interval-censored data. One merit of the full likelihood
method is that it does not impose distribution assumptions on the monitoring
times U and V , but it can be time-consuming and sometimes infeasible since it
involves estimation of the infinite-dimensional cumulative baseline hazard func-
tion Λ0. The advantage of the approaches proposed here lies in easy and fast
implementation. Moreover, the proposed methods can deal with the informative
censoring that is common for interval-censored data.
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Appendix

Asymptotic normality of n−1/2 Uβ(β0, γ̂), Section 3.
For i = 1, . . . , n, define

M
(1)
i (t) = N

(1)
i (t) −

∫ t

0
I(s ≤ Ui) λ∗

1(s) e−β′
0Z∗

i (s)+γ′
0Zi(s) ds ,

M
(2)
i (t) = N

(2)
i (t) −

∫ t

0
I(Ui < s ≤ Vi) λ∗

2(s) e−β′
0Z∗

i (s)+γ′
0Zi(s) ds ,

M̃
(1)
i (t) = Ñ

(1)
i (t) −

∫ t

0
I(s ≤ Ui) λ1(s) eγ′

0 Zi(s) ds ,

M̃
(2)
2i (t) = Ñ

(2)
i (t) −

∫ t

0
I(Ui < s ≤ Vi) λ2(s) eγ′

0 Zi(s) ds ,

where λ∗
1(t) = λ1(t) e−Λ0(t) and λ∗

2(t) = λ2(t) e−Λ0(t). Then M
(1)
i , and M̃

(1)
i are

martingales starting at 0, and M
(2)
i and M̃

(2)
i are martingales starting at the
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observed monitoring time Ui. Also define

A1 = E
( ∫ ∞

0
{Z∗

1(t) −
s
(1)
1,β(t, β0, γ0)

s
(0)
1,β(t, β0, γ0)

}
N

2I(U1 ≥ t)λ∗
1(t) e−β′

0Z∗
1 (t)+γ′

0Z1(t) dt
)
,

A2 = E
( ∫ ∞

0
{Z∗

1(t) −
s
(1)
2,β(t, β0, γ0)

s
(0)
2,β(t, β0, γ0)

}
N

2I(U1 < t ≤ V1)λ∗
2(t)e

−β′
0Z∗

1 (t)+γ′
0Z1(t)dt

)
,

Ã1 = E
( ∫ ∞

0
{Z1(t) −

s
(1)
1,γ(t, γ0)

s
(0)
1,γ(t, γ0)

}
N

2I(U1 ≥ t)λ1(t) eγ′
0Z1(t) dt

)
,

Ã2 = E
( ∫ ∞

0
{Z1(t) −

s
(1)
2,γ(t, γ0)

s
(0)
2,β(t, γ0)

}
N

2I(U1 < t ≤ V1)λ2(t) eγ′
0Z1(t) dt

)
,

where s
(j)
l,γ (t, γ) and s

(j)
l,β(t, β, γ) denote the limits of S

(j)
l,γ (t, γ) and S

(j)
l,β (t, β, γ),

respectively, for l=1, 2 and j =0, 1. Let Aγ =A1+A2 and B=Ã1+Ã2, and assume
that both Aγ and B are positive definite. Also let Âγ(β, γ) = n−1∂Uβ(β, γ)/∂γ

and B̂(γ) = −n−1 ∂Uγ(γ)/∂γ. Then Aγ and B are the limits of Âγ(β, γ) and
B̂(γ) at β0 and γ0, respectively.

To investigate the asymptotic normality of n−1/2 Uβ(β0, γ̂), first note that a
Taylor series expansions of Uβ(β0, γ̂) and Uγ(γ̂) around γ0 has

n−1/2 Uβ(β0, γ̂) = n−1/2 Uβ(β0, γ0) + Aγ B−1 {n−1/2 Uγ(γ0) } + op(1) .

Following Lin, Oakes, and Ying (1998), it can be shown that

n−1/2 Uβ(β0, γ0) = n−1/2
n∑

i=1

{ a1i(β0, γ0) + a2i(β0, γ0) } + op(1)

n−1/2 Uγ(γ0) = n−1/2
n∑

i=1

{ b1i(γ0) + b2i(γ0) } + op(1) ,

where

a1i(β, γ) =
∫ ∞

0

{
Z∗

i (t) −
s
(1)
1,β(t, β, γ)

s
(0)
1,β(t, β, γ)

}
dM

(1)
i (t) ,

a2i(β, γ) =
∫ ∞

0

{
Z∗

i (t) −
s
(1)
2,β(t, β, γ)

s
(0)
2,β(t, β, γ)

}
dM

(2)
i (t) ,

b1i(γ) =
∫ ∞

0

{
Zi(t) −

s
(1)
1,γ(t, γ)

s
(0)
1,γ(t, γ)

}
dM̃

(1)
i (t),
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b2i(γ) =
∫ ∞

0

{
Zi(t) −

s
(1)
2,γ(t, γ)

s
(0)
2,γ(t, γ)

}
dM̃

(2)
i (t),

which are all martingales with mean zero. Then

n−1/2 Uβ(β0, γ̂) = n−1/2
n∑

i=1

αi(β0, γ0) + op(1) ,

where αi(β, γ) = a1i(β, γ) + a2i(β, γ) + Aγ B−1 { b1i(γ) + b2i(γ) } . It thus follows
from the multivariate Central Limit Theorem or U -statistic theory (Lee (1990)
that n−1/2 Uβ(β0, γ̂) converges in distribution to a zero-mean normal random
vector.

The asymptotic covariance matrix of n−1/2 Uβ(β0, γ̂) can be consistently es-
timated by

Γ̂ =
1
n

n∑
i=1

α̂i(β̂, γ̂) α̂′
i(β̂, γ̂) ,

with α̂i(β̂, γ̂) = â1i(β̂, γ̂) + â2i(β̂, γ̂) + Âγ(β̂, γ̂) B̂(γ̂) { b̂1i(γ̂) + b̂2i(γ̂) }, where
â1i, â2i, b̂1i and b̂2i are the estimates of a1i, a2i, b1i and b2i, respectively, with
the corresponding martingale replaced by its estimate in each expression.
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