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Abstract: Nonparametric profile monitoring (NPM) is for monitoring, over time, a

functional relationship between a response variable and one or more explanatory

variables when the relationship is too complicated to be specified parametrically. It

is widely used in industry for the purpose of quality control of a process. Existing

NPM approaches require the assumption that design points within a profile are

deterministic, and are unchanged from one profile to another. In practice, however,

different profiles can have different design points and, in some cases, they are ran-

dom. NPM is particularly challenging in such cases because it is difficult to properly

combine data in different profiles purposes of data smoothing and process monitor-

ing. In this paper, we propose an exponentially weighted moving average (EWMA)

control chart for handling this problem based on local linear kernel smoothing. In

the proposed chart, the exponential weights used in the EWMA scheme at different

time points are integrated into a nonparametric procedure for smoothing individual

profiles. Because of certain properties of the charting statistic, this control chart is

fast to compute, easy to implement, and efficient in the detection of profile shifts.

Some numerical results show that it works well.
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1. Introduction

In many applications, quality of a process is characterized by the functional
relationship between a response variable and one or more explanatory variables.
Profile monitoring checks the stability of this relationship (or profile) over time.
In some calibration applications the profile can be described adequately by a
linear regression model, while in other applications more flexible models are nec-
essary. This paper focuses on nonparametric profile monitoring (NPM) when the
profile is too complicated to be specified parametrically.

In the literature, some existing references focus on linear profile monitor-
ing. See, for instance, Kang and Albin (2000), Kim, Mahmoud, and Woodall
(2003), Mahmoud and Woodall (2004), Zou, Zhang, and Wang (2006), Zou et
al. (2007), and Mahmoud et al. (2007), among several others. Extensions to
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multiple and/or polynomial profile models are discussed by Zou, Tsung, and
Wang (2007), and Kazemzadeh, Noorossana, and Amiri (2008). Recently, non-
linear profile models have been considered by some people, including Lada, Lu,
and Wilson (2002), Ding, Zeng, and Zhou (2006), Colosimo and Pacella (2007),
Williams et al. (2007), and Williams, Woodall and Birch (2007). NPM is dis-
cussed by Zou, Tsung, and Wang (2008), and Zou, Qiu, and Hawkins (2009).
For an overview on profile monitoring, see Woodall et al. (2004).

The control charts mentioned above require the assumptions that design
points within a profile are deterministic, and that they are the same from one
profile to another. These assumptions are (approximately) valid in certain cali-
bration applications of the manufacturing industry. In some other applications,
however, they may be invalid. For instance, when data acquisition takes the
random design scheme, design points within a profile are i.i.d. random variables
from a given distribution. Another common example occurs when observations
within different profiles have missing values at different time points (e.g., the
vertical-density profile (VDP) data considered in Walker and Wright (2002)).
Furthermore, we demonstrate in this paper by both theoretical and empirical re-
sults that, even for applications where an equal design scheme (i.e., design points
are the same from profile to profile and they are deterministic) is possible, one
may get a better profile monitoring by using a random design scheme, as long as
the two design schemes involve similar measurement effort.

Here we propose a novel control chart for handling the NPM problem when
the profile design points are arbitrary. The proposed chart is based on local lin-
ear kernel smoothing of individual profile data and on the exponentially weighted
moving average (EWMA) process control scheme. It incorporates the exponen-
tial weights used in the EWMA scheme at different time points into the local
linear kernel smoother. We show that this chart is effective in detecting profile
shifts when profile design points are arbitrary. It is also fast to compute and easy
to implement. The chart is described in detail in Section 2. Its numerical per-
formance is investigated in Section 3. In Section 4, we demonstrate the method
using a semiconductor example. Several remarks conclude the article in Section
5. Some technical details are provided in the Appendix.

2. Methodology

The proposed methodology is described in stages. In Section 2.1, we briefly
introduce the statistical process control (SPC) problem and the EWMA control
chart. In Section 2.2, an EWMA control chart accommodating nonparametric
regression of individual profiles is introduced for monitoring nonparametric pro-
files with arbitrary design. Adaptive selection of its weighting and bandwidth
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parameters, used in EWMA and nonparametric regression, are discussed in Sec-
tions 2.3 and 2.4, respectively. Certain computational issues are addressed in
Section 2.5. A self-starting version is given in Section 2.6. Finally, some practi-
cal guidelines regarding design and implementation of the proposed control chart
are provided in Section 2.7.

2.1. Statistical process control and the EWMA control chart

SPC is for monitoring sequential processes (e.g., production lines in manu-
facturing industry) to make sure that they work stably. When the process works
stably, it is in the in-control (IC) state, and it becomes out-of-control (OC) other-
wise. In the literature, SPC is often divided into two phases. In Phase I, a set of
process data is gathered and analyzed. Any unusual “patterns” in the data lead
to adjustments and fine tuning of the process. Once all such assignable causes are
accounted for, we are left with a clean set of data, gathered under stable operat-
ing conditions and illustrative of the actual process performance. This set is then
used for estimating the IC distribution of the process measurements. In Phase
II, the estimated IC measurement distribution from Phase I data is used, and the
major goal of this phase is to detect any shift in the measurement distribution
from the IC distribution after an unknown time point. Performance of a Phase II
SPC procedure is often measured by the average run length (ARL), which is the
average number of samples obtained at sequential time points that are needed
for the procedure to signal a shift in the measurement distribution. The IC ARL
value of the procedure is usually controlled at a certain level, and the procedure
performs better if its OC ARL is smaller when detecting a given shift, this in
parallel to the type-I and type-II error probabilities in hypothesis testing. In the
literature, most SPC control charts are for Phase II process monitoring and that
is also our focus.

Let {Xk, k = 1, 2, . . .} be the sequential, Phase II, univariate, process mea-
surements. Then, the EWMA control chart is based on Sk = (1−λ)Sk−1 +λXk,
for k = 1, 2, . . ., where S0 = 0, and λ ∈ [0, 1] is a weighting parameter. It signals a
shift at the kth time point if Sk > L, where L is a control limit chosen to achieve
a given IC ARL value. Obviously, Sk = λXk+λ(1−λ)Xk−1+· · ·+λ(1−λ)k−1X1.
Thus, Sk is a weighted average of all observations, more recent observations re-
ceive more weight, and weights change exponentially over time.

2.2. Monitoring nonparametric profiles when design points are arbi-
trary

We are concerned with Phase II profile monitoring. At the kth time point,
the profile is assumed to follow the nonparametric model

ykj = g (xkj) + εkj , j = 1, . . . , nk, k = 1, 2, . . . , (2.1)
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where {xkj , ykj}nk
j=1 are the kth profile data, xkj is the jth design point in the

kth profile, g is a smooth nonparametric profile function, and the εkj ’s are i.i.d.
random errors with mean 0 and variance σ2. Without loss of generality, we as-
sume that xkj ∈ [0, 1], for all k and j. In cases for which the design points
Xk = {xk1, xk2, . . . , xknk

} are unchanged from one profile to another, the non-
parametric EWMA chart of Zou, Tsung, and Wang (2008), called the NEWMA
chart hereafter, first averages observed responses ykj ’s across different profiles at
each design point, then detects potential profile shifts using the generalized like-
lihood ratio (GLR) test statistic. This idea cannot be applied when the response
is observed at different design points in different profiles. A naive modification
to Zou et al.’s method is to first obtain a nonparametric estimate of g from each
profile data, and then to predict response values using the estimated g at some
points {z1, z2, . . . , zn} in the design interval that are unchanged from one pro-
file to another. With this, the NEWMA chart can be applied to the predicted
response values. However this naive approach, called the NAEWMA chart here-
after, may not be efficient since only nk observations are used for estimating g

in the kth profile, nk could be very small, and thus the predicted response val-
ues could have large bias and variance. As an alternative, we consider using a
weighted local likelihood at any point z ∈ [0, 1] that combines the exponential
weighting scheme used in EWMA at different time points with a local linear
kernel smoothing procedure (cf., Fan and Gijbels (1996)). Thus,

WL(a, b; z, λ, t) =
t∑

k=1

nk∑
j=1

[ykj − a − b(xkj − z)]2Kh (xkj − z) (1 − λ)t−k,

where t is the current time point for profile monitoring, Kh(·) = K(·/h)/h, K

is a symmetric density kernel function, λ ∈ [0, 1] is a weighting parameter, and
h is a bandwidth. Then the local linear kernel estimator of g(z), defined as the
solution to a in the minimization problem mina,b WL(a, b; z, λ, t), is

ĝt,h,λ(z) =

t∑
k=1

nk∑
j=1

U
(t,h,λ)
kj (z)ykj

t∑
k=1

nk∑
j=1

U
(t,h,λ)
kj (z)

, (2.2)

where

U
(t,h,λ)
kj (z) = (1 − λ)t−kKh(xkj − z)

[
m

(t,h,λ)
2 (z) − (xkj − z)m(t,h,λ)

1 (z)
]
,

m
(t,h,λ)
l (z) =

t∑
k=1

(1 − λ)t−k
nk∑
j=1

(xkj − z)lKh(xkj − z), l = 0, 1, 2. (2.3)



PROFILE MONITORING WITH ARBITRARY DESIGN 1659

From the expression for WL(a, b; z, λ, t), we can see that this estimator makes
use of all available observations up to the tth time point, and different profiles
are weighted as in a conventional EWMA chart.

If the process under monitoring is IC up to the tth time point, then ĝt,h,λ in
(2.2) should be close to the IC profile function, denoted as g0. Thus, a charting
statistic for profile monitoring can be defined based on the difference between
ĝt,h,λ and g0. For simplicity, we first assume that g0 and the error variance σ2 are
both known. In such cases, a more convenient way to define the charting statistic
is to use ξ̂t,h,λ(z), the estimator defined by (2.2), after the ykj are replaced by
ξkj = [ykj − g0(xkj)]/σ for all k and j. Then, ξ̂t,h,λ(z) should be uniformly close
to 0 when the process is IC up to the tth time point. A natural charting statistic
for profile monitoring is given by

Tt,h,λ = c0,t,λ

∫
[ξ̂t,h,λ(z)]2Γ1(z) dz,

where

ct0,t1,λ =
a2

t0,t1,λ

bt0,t1,λ
, at0,t1,λ =

t1∑
k=t0+1

(1 − λ)t1−knk,

bt0,t1,λ =
t1∑

k=t0+1

(1 − λ)2(t1−k)nk,

and Γ1 is some pre-specified positive density function. In the expression for
Tt,h,λ, the scale parameter c0,t,λ is used for unifying its asymptotic variance (see
Theorem 1 below and its proof in the Appendix). In practice, we can use the
following approximation:

Tt,h,λ ≈
c0,t,λ

n0

n0∑
i=1

[
ξ̂t,h,λ(zi)

]2
, (2.4)

where zi, for i = 1, . . . , n0, are some pre-specified i.i.d. design points from Γ1.
Then the control chart triggers a signal if Tt,h,λ > L, where L > 0 is a control
limit chosen to achieve a specific IC ARL. Hereafter, this chart is referred to as
the nonparametric profile control (NPC) chart.

It should be pointed out that it is computationally faster to use the zi rather
than the original design points xkj in approximating the statistic Tt,h,λ. As shown
in Section 2.5 below, Tt,h,λ can be calculated in a recursive manner when the zi

are used in the approximation, and it does not enjoy such a feature when xkj

are used. Further, from theoretical properties of Tt,h,λ given in Theorem 2 and
certain empirical results presented in Section 3, selection of the zi and n0 has
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little effect on the performance of the NPC chart as long as n0 is not too small.
See related discussion in Section 2.7 about practical guidelines on selection of
certain procedure parameters.

As a remark, one may define Tt,h,λ alternatively by

c0,t,λ

n0

n0∑
i=1

[ĝt,h,λ(zi) − g0(zi)]
2 . (2.5)

Namely, we can first compute profile estimators ĝt,h,λ from the original data and
then construct the control chart accordingly. It can be shown that (2.5) and (2.4)
are asymptotically equivalent under regularity conditions given in Appendix A.
However, in finite-sample cases, properties of (2.5) depend on g0. As a compar-
ison, (2.4) transforms the testing problem of H0 : g = g0 versus H1 : g 6= g0 to
the one of H0 : g = 0 versus H1 : g 6= 0. Therefore, it is invariant to g0. Its IC
distribution and all quantities related to this distribution do not depend on g0

either. A direct benefit of this property is that the control limit L can be simply
searched from a process with zero IC profile and unity error standard deviation.

We give some asymptotic properties of the charting statistic Tt,h,λ that can
justify the performance of the NPC chart to a certain degree, and that shed
some light on practical design of the chart as well. Our theorem establishes the
asymptotic null distribution of Tt,h,λ, in which design points xkjs are assumed to
be i.i.d. with a density Γ2 in each IC profile.

Theorem 1.Under conditions (C1)−(C5) and (C7) given in Appendix A, when
the process is IC, (Tt,h,λ − µ̃h) /σ̃h

L−→ N(0, 1), where

µ̃h =
∫

[K(u)]2du

h

∫
Γ1(x)
Γ2(x)

dx, σ̃2
h =

2
∫

[K ∗ K(u)]2du

h

∫
Γ2

1(x)
Γ2

2(x)
dx.

The next result details the asymptotic behavior of Tt,h,λ under the OC model

ykj =

{
g0(xkj) + εkj , if 1 ≤ k ≤ τ ,

g1(xkj) + εkj , if k > τ,
(2.6)

where τ is an unknown shift time point, and g1(x) = g0(x)+δ(x) is the unknown
OC profile function. Let

ζδ =
1
σ2

∫ [
δ(u) +

h2η1

2
δ′′(u)

]2

Γ1(u)du, η1 =
∫

K(t)t2dt,

ζ1 =
∫

δ2(u)Γ1(u)du, ζ2 =
∫

[δ′′(u)]2Γ1(u)du.
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Theorem 2.Under conditions (C1)−(C4), (C5’), (C6), and (C7) given in Ap-
pendix A, and ζ2 < M for some constant M > 0, we have
(i) if c0,t,λhζ1 → 0, then (Tt,h,λ − µ̃h − c0,t,λζδ) /σ̃h converges in distribution to

N(0, 1);
(ii) if ζ2 → 0, then Tt,h,λ has a nontrivial power (i.e., the power will not converge

to zero) when δ ∝ c
−4/9
0,t,λ and h = O(c−2/9

0,t,λ ).

From Theorem 2, we notice that the asymptotic power of the test statistic
Tt,h,λ depends on δ and its second order derivative. The charting statistic of the
NEWMA chart has similar leading terms in its asymptotic expression. However,
compared to NEWMA, Tt,h,λ can use a smaller bandwidth in local linear kernel
smoothing because it uses observations from different profiles in its smoothing
process. The NPC chart based on Tt,h,λ is more effective when the profile shift
has large curvature (i.e., δ′′ is large), since small h would diminish the effect of
(h2η1/2)δ′′(u) in the expression for ζδ. Thus we can get a better profile monitoring
by using a random design scheme instead of an equal design scheme when the
curvature of δ is large. In Section 2.4, we discuss how to select the bandwidth h
adaptively in the NPC chart to accommodate different magnitudes of δ′′.

2.3. Adaptive selection of the weighting parameter

It is well known that optimal selection of the weighting parameter λ used
in EWMA charts depends on the target shift: small λ are effective for detect-
ing small shifts and large λ are effective for detecting large shifts; an EWMA
chart with a given λ cannot have a “nearly minimum” ARL for both small and
large shifts (e.g., Lucas and Saccucci (1990)). This assertion also holds for our
proposal.

Proposition 1.Under conditions (C1)−(C4) given in Appendix A, h → 0, nk →
∞, n0h

3/2 → ∞, nkh
3 → ∞, and nkh

5 → 0, if (a2
τ,t,λ/b0,t,λ)hζ1 → 0 and ζ2 < M

for some constant M > 0, then

Tt,h,λ
D≈ µ̃h + h−1/2w +

a2
τ,t,λ

b0,t,λ
ζδ,

where
D
≈ denotes asymptotic equality in distribution, and w is normal with mean

zero and variance σ̃2
h.

The proof of this proposition is analogous to that of Theorem 2 in Appendix
B and is omitted. For simplicity, consider the case nk = n. From expressions of
aτ,t,λ and b0,t,λ, we have

a2
τ,t,λ

b0,t,λ
=

2 − λ

λ[1 − (1 − λ)2t]
[1 − (1 − λ)t−τ ]2.
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Then by Proposition 1, intuitively, if ζδ is small it would require a large value
of t − τ to signal, and this also depends heavily on the factor (2 − λ)/λ. When
λ is chosen smaller, (2 − λ)/λ is larger. Consequently, the small shift would be
detected quicker. On the other hand if ζδ is large, then we can expect the run
length t − τ to be relatively small as long as λ is chosen relatively large. If λ is
chosen small in such a case, then 1 − (1 − λ)t−τ would approach 1 too slow to
detect shifts effectively.

Motivated by the AEWMA chart suggested by Capizzi and Masarotto (2003),
here we suggest an adaptive procedure for choosing the weighting parameter λ.
The underlying idea is to adapt weights used for past profiles to the goodness-
of-fit of the current profile, so that the related chart can detect shifts of different
sizes more efficiently. To be specific, let ψ be a score function used for determining
the adaptive weights. Capizzi and Masarotto (2003) propose several candidates
for ψ. For simplicity, we suggest using

ψl0,λ0(u) =

{
1 − (1−λ0)l0

u , if u ≥ l0,

λ0, if u < l0,

where 0 < λ0 ≤ 1 and l0 > 0 are two parameters, λ0 defines the minimum
weight, and l0 is used for balancing detection ability of the control chart for large
and small shifts. Apparently, a large (small) l0 would generate a small (large)
adaptive weight, making the control chart more sensitive to small (large) shifts.
Further discussion on selection of λ0 and l0 is given in Section 2.7. Then the
NPC chart with the adaptive weight, denoted as NPC-W, signals when

Tt,h,ψl0,λ0
(T ∗

t,h) > L, (2.7)

where the control limit L > 0 is chosen to achieve a specific IC ARL, and T ∗
t,h

is defined in the same way as Tt,h,λ except that only the current profile data
{(xtj , ytj), j = 1, . . . , nt} are used. It is easy to check that T ∗

t,h is actually Tt,h,1;
it is therefore easy to compute. The NPC-W chart thus essentially combines the
EWMA and Shewhart procedures in a natural way. It is worth mentioning that
implementation does not require much extra computational effort compared to
that of the NPC chart, because recursive formulas given in Section 2.5 for com-
puting Tt,h,λ only require nonparametric regression of individual profiles. From
numerical examples in Section 3 we see that, after choosing λ0 and l0 properly,
the NPC-W chart provides balanced protection against various shifts.

2.4. Adaptive selection of the bandwidth parameter

Like many other smoothing-based tests, performance of the NPC chart de-
pends on selection of the bandwidth parameter h. Optimal selection of h remains
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an open problem, and it is widely recognized that the optimal h for nonparamet-
ric curve estimation is generally not optimal for testing (e.g., Hart (1997)). A
uniformly most powerful test usually does not exist due to the fact that nonpara-
metric regression functions are of infinite dimension, but the term (h2η1/2)δ′′(·)
in Theorem 2 tells us that appropriate selection of h would improve testing power.
Intuitively, a smaller h is more effective in detecting shifts with large curvature
(i.e., large δ′′), and a larger h would perform better when shifts are flat or smooth
(i.e., small δ′′). This motivates the adaptive selection procedure described below.

For the lack-of-fit testing problem, Horowitz and Spokoiny (2001) suggested
choosing a single h based on the maximum of a studentized conditional moment
test statistic over a sequence of smoothing parameters, and proved that the re-
sulting test would have certain optimality properties. Because this method is
easy to use and has good performance in various cases, we use it here. Let the
set of admissible smoothing parameter values be

H = {hj = hmaxγ
−j : hj ≥ hmin, j = 0, . . . , Jn}, (2.8)

where 0 < hmin < hmax are the lower and upper bounds, and γ > 1 is a parameter.
The number of values in H is Jn ≤ logγ(hmax/hmin). The charting statistic of
the NPC chart with adaptive bandwidth, denoted NPC-B, is

T̃t,H,λ = max
h∈H

Tt,h,λ − µ̃h

σ̃h
, (2.9)

where µ̃h and σ̃2
h are, respectively, the asymptotic expectation and variance of

Tt,h,λ, given in Theorem 1. The next proposition establishes the consistency of
T̃t,H,λ against smooth alternatives.

Proposition 2. Under conditions (C1)−(C4), (C6), assuming that hmin and
hmax both satisfy condition (C5), ζ1 > M1(c−1

0,t,λ ln ln c0,t,λ)8/9, and ζ2 < M2,
where M1 and M2 are positive constants, then T̃t,H,λ is consistent under model
(2.6) in the sense that its power converges to 1 as t increases.

From the proof, given in Appendix B, we can see that T̃t,H,λ would “auto-
matically” maximize the asymptotic power function c0,t,λh1/2ζδ. Thus, it adapts
to different magnitudes of δ′′; consequently, T̃t,H,λ is more robust to various po-
tential shifts than is Tt,H,λ with a given bandwidth.

2.5. Some computational issues

For on-line process monitoring, which generally handles a large number of
profiles, fast implementation is important, and some computational issues are
worth our careful examination. For the proposed charts, computation of Tt,h,λ
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might be time-consuming, and substantial amount of storage of past profile ob-
servations is required as well. Here we provide updating formulas for computing
the charting statistic that greatly simplify the computation and lessen the storage
requirement. Let

m̃
(t,h)
l (z) =

nk∑
j=1

(xtj − z)lKh(xtj − z), l = 0, 1, 2,

q̃
(t,h)
l (z) =

nk∑
j=1

(xtj − z)lKh(xtj − z)ytj , l = 0, 1.

Then, m
(t,h,λ)
l (z) in (2.3) can be recursively updated by

m
(t,h,λ)
l (z) = (1 − λ)m(t−1,h,λ)

l (z) + m̃
(t,h)
l (z), l = 0, 1, 2,

where m
(0,h,λ)
l (zi) = 0, for l = 0, 1, 2. Let q

(t,h,λ)
l (z), l = 0, 1, be two working

functions defined by the recursive formula

q
(t,h,λ)
l (z) = (1 − λ)q(t−1,h,λ)

l (z) + q̃
(t,h)
l (z), l = 0, 1,

where q
(0,h,λ)
l (z) = 0, for l = 0, 1. Then we have

ĝt,h,λ(z) =
[
M (t,h,λ)

]−1
{

(1−λ)2M (t−1,h,λ)ĝt−1,h,λ+
[
q̃
(t,h)
0 m

(t,h,λ)
2 −q̃

(t,h)
1 m

(t,h,λ)
1

]
+(1 − λ)

[
q
(t−1,h,λ)
0 m̃

(t,h)
2 − q

(t−1,h,λ)
1 m̃

(t,h)
1

]}
, (2.10)

where M (t,h,λ)(z) = m
(t,h,λ)
2 (z)m(t,h,λ)

0 (z) − [m(t,h,λ)
0 (z)]2. On the right side of

(2.10), dependence on z in each function is not made explicit in notation for
simplicity.

Using the above updating formulas, implementation of the NPC chart can be
briefly described as follows. At time point t, we compute m̃

(t,h)
l (z), for l = 0, 1, 2,

and q̃
(t,h)
l (z), for l = 0, 1, at n0 pre-determined z locations (see related discussion

in Sections 2.2 and 2.7 about selection of n0 and {zi, i = 1, 2, . . . , n0}). Then,
m

(0,h,λ)
l (zi), for l = 0, 1, 2, and q

(0,h,λ)
l (zi), for l = 0, 1, are updated. Finally,

ĝt,h,λ(z) is computed from (2.10) and the test statistic Tt,h,λ is computed from
ĝt,h,λ(z), after replacing ykj by ξkj . This algorithm only requires O(n0nkh) oper-
ations for monitoring each profile, which is of the same order as the computation
involved in conventional local linear kernel smoothing. If nk and n0 are both
large, we could further decrease the computation to the order of O(nkh) using
the updating algorithm proposed by Seifert et al. (1994). See Fan and Marron
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(1994) for a similar algorithm. Clearly, using the proposed updating formulas,
required computer storage does not grow with time t. In addition, compared to
the NPC chart with fixed weight and bandwidth parameters, implementation of
the NPC-W chart does not require much extra computational effort, and imple-
mentation of the NPC-B chart requires Jn times both computational effort and
computer storage.

2.6. A self-starting version

The NPC chart makes explicit use of the IC regression function g0 and the
error variance σ2 (model (2.1)) and, in practice, both might be unknown. In
such cases, they need to be estimated from an IC data set. If such IC data are of
small to moderate size, then there is considerable uncertainty in the estimates,
which in turn distorts the IC run length distribution of the control chart. Even
if the control limit of the chart is adjusted properly to attain a desired IC run
length behavior, its OC run length would still be severely compromised (e.g.,
Jones (2002)). To avoid such problems, a large and thus costly collection of IC
profile samples would be necessary (see Jensen et al. (2006) for related discus-
sion). Zou, Tsung, and Wang (2008) provide a general guideline on how many IC
profile samples are necessary to obtain good run length behavior for the NEWMA
chart; according to them at least forty IC profile samples with more than fifty
observations in each profile sample are required to obtain satisfactory results in
various cases. In this section, we present a self-starting version of the NPC chart
that can substantially reduce the required IC profile samples.

The basic idea of the self-starting version is to replace g0 and σ2, both of
which are used in defining ξkj , with some appropriate estimators constructed
from past profile data. If the chart does not give a signal of profile shift at
time point t, then g0(x) can be estimated by the conventional local linear kernel
estimator constructed from t historical profile samples, denoted as ĝ

(t)
0 (x). The

variance σ2 can be estimated recursively by

σ̂2
t =

t−1∑
k=1

nkσ̂
2
t−1 +

nt∑
j=1

[ytj − ĝ
(t−1)
0 (xtj)]2

t∑
k=1

nk

.

Then, the self-starting version, denoted NPC-S, is the control chart based on
the charting statistic T̂t,h,λ that is constructed in the same way as Tt,h,λ in (2.4),
except that ξkj needs to be replaced by ξ̃kj = [ykj − ĝ

(k−1)
0 (xkj)]/σ̂k−1, for all k

and j.
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It is worth mentioning that, in practice, it is not necessary to update ĝ
(t)
0 (xkj)

and σ̂2
t after t is large enough. It is straightforward to show that when the process

is IC,

ĝ
(t)
0 (x) = g0(x) + Op((Nth)−1/2) + O(h4),

σ̂2
t = σ2

(
1 + Op(N

−1/2
t ) + Op((Nth)−1)

)
,

where Nt =
t∑

k=1

nk. Thus, when t is sufficiently large, say t ≥ t0, the approxima-

tions of ĝ
(t)
0 (x) and σ̂2

t to g0 and σ2 would be good enough, and we could simply
use ĝ

(t0)
0 (x) and σ̂2

t0 for all profiles with t ≥ t0 in process monitoring. There
are two benefits with this modification: it reduces computation and storage re-
quirement with very little loss of efficiency; it may reduce the “masking-effect”
(Hawkins (1987)) to a certain extent. For the last, when the potential shift oc-
curs after time t0, the estimates ĝ

(t0)
0 (x) and σ̂2

t0 are not contaminated by the OC
observations, which is not the case if these estimates are updated at every time
point.

It can be seen that the NPC-S chart accommodates adaptive selection of
the weight and bandwidth parameters. The resulting chart, denoted NPC-SWB,
offers balanced protection against shifts of different magnitudes, and adapts to
the smoothness of the IC and OC profile functions. Formulation of the NPC-
SWB chart can be readily obtained by incorporating (2.7) and (2.9) into T̂t,h,λ.
Performance is investigated in Section 3.

2.7. Practical guidelines

On choosing nk and xkj: In certain applications, design points xkj are deter-
mined by the industrial process itself, and we cannot do much about choosing
them. In some others (cf., Zou, Tsung, and Wang (2008)), they need to be spec-
ified before process monitoring. As demonstrated by Theorem 2, random design
has some benefits compared to the design in which different profiles share the
same design points, because observations from different profiles provide infor-
mation about more details of the regression function g in the former case. If
available, random design is a good choice. This amounts to determining a proper
design distribution Γ2, from which design points xkj are generated for individual
profiles. The number of design points nk can also be random, although in many
applications nk = n would be the most convenient scheme to use. The value of
n can be chosen smaller than the one used in the NEWMA chart of Zou, Tsung,
and Wang (2008) because, in computing Tt,h,λ, roughly c0,t,λ = [(2 − λ)/λ]n
observations are actually used.
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On choosing n0 and zis: Based on our numerical experience, selection of n0

and zis does not affect the performance of the NPC chart much, as long as n0 is
not too small and the zi’s cover the key parts (e.g., peaks/valleys or oscillating
regions) of g0 well. In the numerical examples of Section 3, results do not change
much when n0 ≥ 40.
On choosing l0 and λ0 used in the NPC-W chart: From Section 2.3,
λ0 is the minimum weight used by the chart NPC-W, and l0 is the parameter
that controls the chance for the chart to use that minimum weight; the chart
uses the minimum weight λ0 if Tt,h,1 < l0. We suggest using the upper α0

percentile of Tt,h,1 as the value of l0; this could be obtained by simulation before
profile monitoring. An appropriate method for determining α0 is to set α0 =
c/ARL0, where c > 1 is a constant and ARL0 is the desired IC ARL value.
Since the reciprocal of ARL0 can be regarded as a rough estimate of the false
alarm probability, it is reasonable to choose α0 to be c/ARL0 so that the chart
NPC-W can achieve the given IC ARL value. With respect to λ0, it should
be chosen smaller than the commonly used value 0.2 in the EWMA literature
(cf., Lucas and Saccucci (1990)). Based on our numerical experience and the
results in Capizzi and Masarotto (2003), we recommend using λ0 ∈ [0.05, 0.1]
and 5 ≤ c ≤ 15.
On choosing H used in the NPC-B chart: The parameters γ, Jn, hmax,
and hmin should satisfy certain conditions to bring in the corresponding asymp-
totic results, see Appendix A for related discussion. Based on simulations, we
noticed that the proposed control chart was actually quite robust to them; this
is consistent with the findings in Horowitz and Spokoiny (2001). Theoretical
arguments and numerical studies suggest using 1 < γ < 2, Jn could be 4, 5 or 6,
hmax = Mc

−1/7
0,t,λ , and hj = hmaxγ

−j , for j = 1, . . . , Jn, where 0.5 ≤ M ≤ 2 is a

constant. Note that the recommended value hmax = Mc
−1/7
0,t,λ is partially due to

(C5) of Appendix A.
On the NPC-S chart: As suggested by Hawkins, Qiu, and Kang (2003), we
recommend collecting three to ten IC profile samples before using the NPC-S
chart. These preliminary profile samples are mainly for stabilizing the variation
of T̂t,h,λ.

3. Simulation Study

We present some simulation results about the proposed NPC chart. Through-
out, the kernel function was chosen to be the Epanechnikov kernel function
K(x) = 0.75(1 − x2)I(−1 ≤ x ≤ 1). The IC ARL was fixed at 200. The er-
ror distribution was assumed to be Normal. For simplicity, we assumed that
nk = n = 20 for all k, xkj ∼ Uniform(0, 1), for j = 1, . . . , n, zi = (i − 0.5)/n0,
for i = 1, . . . , n0, and n0 = 40. All the ARL results in this section were obtained
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from 50,000 replications, unless indicated otherwise. In addition, we focused on
the steady-state OC ARL behavior of each chart (Hawkins and Olwell (1998)),
and assumed that τ = 30 (cf., the OC model (2.6)). When computing the ARL
values, any simulation run in which a signal occured before the (τ + 1)th profile
was discarded. As a side note, our numerical results (not reported here to save
space) show that steady-states of the related charts considered in this section
were reached when τ was as small as 10 in all cases considered.

To compare the NPC chart with alternative methods turns out to be diffi-
cult. One possible alternative method is the NEWMA chart proposed by Zou,
Tsung, and Wang (2008), in which design points are equally spaced and they are
unchanged from profile to profile. To make the procedures comparable, for the
NEWMA chart, we took the design points (i−0.5)/n, i = 1, . . . , n, in each profile
sample. Another comparison is to the naive modification of the NEWMA chart
described in Section 2.2 that is called the NAEWMA chart below. Here profile
functions are first estimated from individual profile data, then response values
are predicted from these estimated profile functions at some common points
{z1, . . . , zn} in the design interval for different profiles, and the NEWMA chart is
applied to the predicted response values. For this chart, we took zi = (i−0.5)/n,
for i = 1, . . . , n, as in the NEWMA chart.

We investigated numerical performance of the NPC, NPC-W, NPC-B,
NPC-S, and NPC-WBS charts separately. Note that for charts NEWMA
and NAEWMA, the bandwidth h and the weighting parameter λ should both
be pre-specified. Therefore, we first compared the charts NPC, NEWMA, and
NAEWMA in such cases. Following the recommendations of Zou, Tsung, and
Wang (2008), h was either h1 = 1.5n−1/5

√
Var(x) or h2 = 1.5[n(2 − λ)/λ]−1/5√

Var(x). The smaller bandwidth h2 was considered because the actual number
of observations used in the NPC chart at each time point was c0,t,λ, or roughly
n(2−λ)/λ. In all three charts, λ was chosen to be 0.1 or 0.2. The IC model used
was g0(x) = 1 − exp(−x), and two representative OC models were considered:

(I) : g1(x) = 1− exp(−x) + θx; (II) : g1(x) = 1− exp(−x) + θ sin(2π(x− 0.5)).

In case (I), g1(x)−g0(x) = θx is a straight line, while g1(x)−g0(x) = θ sin(2π(x−
0.5)) in case (II). Table 1 presents the OC ARL values of the three charts in
various cases. Their control limits L are also included in the table.

From the table in case (I), larger h (i.e., h1) yields better performance for
both NPC and NEWMA charts. For a given bandwidth, the NPC chart outper-
forms the NEWMA chart uniformly, since the effective number of observations
used in the NPC chart at each time point is larger than that used in the NEWMA
chart. From the table in case (II), the NPC chart with the smaller h has better
performance; however this is not the case for the NEWMA chart, since a smaller
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Table 1. OC ARL comparison of the NPC, NEWMA, and NAEWMA charts
when IC ARL=200, λ = 0.1 or 0.2, and n = 20.

θ NPC NEWMA NAEWMA

h1 h2 h1 h2 h1 h2

λ = 0.1

0.100 75.90 (0.357) 87.40 (0.486) 89.50 (0.393) 102.00 (0.452) 101.00 (0.455) 103.00 (0.464)

0.200 27.60 (0.106) 33.10 (0.152) 32.70 (0.118) 38.50 (0.142) 39.70 (0.154) 41.00 (0.160)

0.300 14.80 (0.046) 17.40 (0.066) 17.20 (0.050) 19.70 (0.059) 20.50 (0.066) 20.90 (0.067)

0.400 9.85 (0.026) 11.40 (0.037) 11.20 (0.027) 12.60 (0.031) 13.30 (0.036) 13.60 (0.037)

(I) 0.600 5.90 (0.013) 6.68 (0.018) 6.64 (0.013) 7.33 (0.015) 7.64 (0.016) 7.76 (0.017)

0.800 4.27 (0.008) 4.80 (0.011) 4.74 (0.008) 5.19 (0.009) 5.38 (0.010) 5.44 (0.010)

1.200 2.82 (0.005) 3.12 (0.007) 3.12 (0.005) 3.37 (0.005) 3.46 (0.006) 3.50 (0.006)

1.600 2.18 (0.004) 2.37 (0.004) 2.38 (0.004) 2.56 (0.004) 2.62 (0.004) 2.65 (0.004)

0.100 68.90 (0.313) 65.30 (0.343) 72.40 (0.316) 81.60 (0.348) 94.20 (0.419) 95.60 (0.424)

0.200 23.20 (0.082) 22.20 (0.090) 24.50 (0.080) 27.60 (0.092) 31.70 (0.112) 32.20 (0.114)

0.300 12.40 (0.035) 12.00 (0.039) 13.00 (0.034) 14.30 (0.037) 16.00 (0.044) 16.20 (0.045)

(II) 0.400 8.29 (0.020) 8.03 (0.022) 8.76 (0.019) 9.53 (0.021) 10.50 (0.024) 10.50 (0.024)

0.600 5.11 (0.010) 4.96 (0.012) 5.32 (0.009) 5.75 (0.010) 6.15 (0.011) 6.20 (0.011)

0.800 3.73 (0.007) 3.65 (0.008) 3.89 (0.006) 4.16 (0.007) 4.42 (0.008) 4.43 (0.008)

1.200 2.51 (0.004) 2.42 (0.005) 2.62 (0.004) 2.78 (0.004) 2.94 (0.004) 2.95 (0.004)

1.600 1.94 (0.003) 1.90 (0.003) 2.04 (0.003) 2.15 (0.003) 2.25 (0.003) 2.26 (0.003)

L 9.49 13.05 14.39 19.02 12.88 13.32

λ = 0.2

0.100 95.60 (0.452) 108.00 (0.501) 112.00 (0.519) 125.00 (0.595) 132.00 (0.625) 135.00 (0.648)

0.200 34.60 (0.148) 41.00 (0.174) 43.20 (0.188) 51.90 (0.228) 60.00 (0.269) 62.20 (0.281)

0.300 16.60 (0.063) 19.60 (0.076) 20.10 (0.076) 23.70 (0.089) 28.40 (0.116) 29.60 (0.120)

0.400 10.00 (0.031) 11.70 (0.036) 11.70 (0.036) 13.40 (0.045) 16.10 (0.056) 16.60 (0.058)

(I) 0.600 5.39 (0.013) 6.05 (0.013) 6.03 (0.013) 6.64 (0.018) 7.69 (0.020) 7.94 (0.022)

0.800 3.69 (0.009) 4.09 (0.009) 4.09 (0.009) 4.44 (0.009) 4.98 (0.011) 5.15 (0.011)

1.200 2.35 (0.004) 2.55 (0.004) 2.56 (0.004) 2.74 (0.004) 3.00 (0.005) 3.04 (0.005)

1.600 1.80 (0.003) 1.93 (0.003) 1.94 (0.003) 2.06 (0.003) 2.21 (0.003) 2.26 (0.003)

0.100 93.10 (0.461) 85.70 (0.407) 93.90 (0.429) 105.00 (0.479) 133.00 (0.630) 135.00 (0.639)

0.200 30.30 (0.130) 27.60 (0.112) 31.30 (0.125) 35.40 (0.148) 48.60 (0.235) 55.30 (0.242)

0.300 13.80 (0.049) 13.00 (0.045) 14.20 (0.049) 16.00 (0.054) 22.50 (0.081) 23.20 (0.086)

(II) 0.400 8.31 (0.022) 7.91 (0.022) 8.57 (0.022) 9.38 (0.027) 12.30 (0.036) 12.50 (0.038)

0.600 4.54 (0.009) 4.37 (0.009) 4.68 (0.009) 5.00 (0.009) 5.98 (0.012) 6.05 (0.013)

0.800 3.17 (0.004) 3.07 (0.004) 3.26 (0.004) 3.46 (0.004) 4.00 (0.007) 4.04 (0.007)

1.200 2.08 (0.004) 2.01 (0.004) 2.14 (0.004) 2.25 (0.004) 2.50 (0.004) 2.53 (0.004)

1.600 1.61 (0.003) 1.56 (0.003) 1.66 (0.003) 1.74 (0.003) 1.91 (0.003) 1.92 (0.003)

L 10.47 13.09 15.41 19.10 15.00 15.51

NOTE: Standard errors are in parentheses.

bandwidth in the NEWMA chart results in large bias in estimating the regression
function and a reduced ability to detect profile shifts. Again in case (II), the NPC
chart outperforms the NEWMA chart uniformly. The NPC chart outperformed
the NAEWMA chart by a quite large margin in most cases, and the NAEWMA
chart also performed uniformly worse than the NEWMA chart. Simulations (not
reported here) showed that, when n0 was larger than 40, performance of the NPC
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Figure 1. OC ARL comparison of the NPC-W chart and three NPC charts
with λ = 0.1, 0.2, and 0.4.

chart did not change much.
Next we consider the NPC-W chart in which the weight parameter λ was

adaptively chosen so that the chart would be robust to shift size; the other
parameters were chosen according to the practical guidelines given in Section 2.7
and, more specifically, λ0 = 0.1 and α0 = 0.05. Since we are mainly concerned
about the robustness of the NPC-W chart to shift size, only the OC model (I)
was considered here. The bandwidth h was chosen to be h1. For comparison
purposes, the OC ARL values of three NPC charts when λ = 0.1, 0.2, and 0.4
were also computed. To measure robustness of a chart T to shift size, the relative
mean index (RMI) of Han and Tsung (2006) was used

RMI(T) =
1
m

m∑
i=1

ARLθi
(T) − MARLθi

MARLθi

,

where ARLθi
(T) is the OC ARL of T for detecting a shift of size θi, and MARLθi

is the smallest value among such OC ARL values of all charts considered. Here
θi ranged from 0.1 to 2 with step size 0.1. Obviously, small RMI(T) implies
that T has a robust performance in detecting shifts of various sizes. Figure 1
shows the OC ARL values (in log scale) and the RMI values of the four charts
considered. It can be seen that performance of the three NPC charts depends
heavily on their pre-specified λ values, as expected, and the NPC-W chart offers
a balanced protection against various shift sizes. In terms of RMI, the NPC-W
chart performs the best. With its convenient implementation, the NPC-W chart
looks to be a valuable improvement of the NPC chart.

Next, we considered the NPC-B chart. We chose γ = 1.4, hmax = 1.0[(2 −
λ/λ)n]−1/7, and hj = hmaxγ

−j , for j = 1, . . . , 4, and took g1(x) = 1− exp(−x) +
0.25 cos(θπ(x − 0.5)). By changing θ, this model can cover various cases with
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Table 2. OC ARL comparison of the NPC and NPC-B charts when IC
ARL=200, λ = 0.2, and n = 20.

θ NPC-B NPC
h = 0.6 h = 0.3 h = 0.15

0.250 8.20 (0.031) 7.84 (0.022) 8.27 (0.031) 10.8 (0.036)
0.500 9.05 (0.031) 8.95 (0.027) 9.45 (0.031) 12.2 (0.040)
0.750 11.20 (0.036) 11.40 (0.036) 10.70 (0.036) 13.9 (0.040)
1.000 14.70 (0.054) 16.20 (0.058) 14.10 (0.049) 15.9 (0.058)
2.000 32.30 (0.112) 86.30 (0.398) 35.00 (0.125) 26.9 (0.103)
3.000 31.00 (0.098) 49.00 (0.224) 50.60 (0.224) 24.4 (0.094)
4.000 63.50 (0.286) 166.00 (0.814) 174.00 (0.832) 48.0 (0.206)
5.000 75.60 (0.344) 120.00 (0.577) 125.00 (0.581) 81.4 (0.376)

L 4.27 8.75 9.61 13.32
NOTE: Standard errors are in parentheses.

different smoothness of δ(·). For comparison purposes, we considered NPC charts
with bandwidth 0.6, 0.3, and 0.15. Other parameters were chosen as in the
example leading to Table 1. OC ARL values of related charts are shown in Table
2, with their control limits L listed in the bottom line. From the table, it can be
seen that the NPC chart with a fixed bandwidth outperforms the NPC-B chart
in certain ranges of θ, but can be much worse in other ranges of θ. The NPC-
B chart is close to the best chart in all cases, since it adapts to the unknown
smoothness of δ(x), and picks an appropriate bandwidth from H.

We also investigated the numerical performance of the NPC-S chart, studying
its IC run length distribution. It is often insufficient to summarize run length
behavior by ARL, especially for self-starting control charts (Jones (2002)). As
an alternative here, we use the hazard function H1(r)/H2(r) recommended by
Hawkins and Maboudou-Tchao (2007), where H1(r) is the probability that the
run length is r and H2(r) is the probability that the run length is r or more.
For the example of Table 1 with h = h1 and L = 10.47, which corresponds
to an IC ARL of 200 when the IC model is assumed known, the IC hazard
function of the NPC-S chart based on 250,000 replications is shown in Figure
2. When computing the IC hazard function, we started monitoring after five IC
profiles were collected. In the plot, the IC hazard starts around 0.0065, then
drops quickly to values around 0.005 = 1/200, and stabilizes. Except for short
run-lengths, the geometric distribution is an excellent fit to the IC run length of
the NPC-S chart, consistent with the findings in Hawkins and Maboudou-Tchao
(2007) about a self-starting chart for monitoring multivariate Normal processes.
The sample mean and sample standard deviation of the run lengths were 196 and
194, respectively, further confirming that the NPC-S chart works well under the
IC condition. We conducted some other simulations with various combinations of
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Figure 2. Hazard curve of the NPC-S chart.

Table 3. OC ARL performance of the NPC-S and NPC-SWB charts when
IC ARL=200, λ = 0.2, and n = 20.

NPC-S NPC-SWB

θ τ = 40 τ = 80 τ = 40 τ = 80

h1 h2 h1 h2

0.100 163.00 (0.903) 176.00 (0.939) 143.00 (0.818) 161.00 (0.899) 151.00 (0.859) 132.00 (0.859)

0.200 101.00 (0.738) 116.00 (0.778) 68.20 (0.505) 88.90 (0.626) 82.50 (0.626) 54.70 (0.474)

0.300 46.10 (0.456) 60.40 (0.523) 24.90 (0.192) 34.50 (0.268) 32.20 (0.313) 19.60 (0.130)

0.400 17.50 (0.188) 26.30 (0.291) 11.70 (0.054) 15.00 (0.085) 14.00 (0.098) 10.80 (0.040)

(I) 0.600 6.01 (0.018) 7.25 (0.027) 5.66 (0.018) 6.63 (0.018) 6.20 (0.018) 5.87 (0.018)

0.800 3.88 (0.009) 4.37 (0.009) 3.77 (0.009) 4.22 (0.009) 4.14 (0.009) 3.95 (0.009)

1.200 2.38 (0.004) 2.64 (0.004) 2.38 (0.004) 2.62 (0.004) 2.38 (0.004) 2.35 (0.004)

1.600 1.81 (0.004) 1.95 (0.004) 1.81 (0.004) 1.96 (0.004) 1.64 (0.004) 1.64 (0.004)

0.100 156.00 (0.872) 161.00 (0.926) 146.00 (0.823) 142.00 (0.814) 150.00 (0.836) 132.00 (0.827)

0.200 78.70 (0.581) 82.20 (0.631) 55.20 (0.402) 54.50 (0.398) 68.00 (0.483) 48.10 (0.367)

0.300 26.10 (0.206) 26.50 (0.237) 18.30 (0.103) 17.60 (0.103) 22.90 (0.165) 17.20 (0.080)

(II) 0.400 10.90 (0.063) 10.60 (0.067) 9.44 (0.036) 8.86 (0.031) 10.70 (0.040) 9.75 (0.031)

0.600 4.92 (0.013) 4.68 (0.013) 4.77 (0.009) 4.56 (0.009) 5.34 (0.013) 5.10 (0.013)

0.800 3.30 (0.004) 3.19 (0.004) 3.24 (0.004) 3.15 (0.004) 3.62 (0.009) 3.58 (0.009)

1.200 2.13 (0.004) 2.05 (0.004) 2.09 (0.004) 2.03 (0.004) 2.11 (0.004) 2.10 (0.004)

1.600 1.60 (0.004) 1.56 (0.004) 1.61 (0.004) 1.56 (0.004) 1.43 (0.004) 1.42 (0.004)

L 10.47 13.09 10.47 13.09 4.070 4.070

NOTE: Standard errors are in parentheses.

n, h, and Γ2 to check whether the above conclusions held in other settings. These
simulation results, not reported here but available from the authors, showed that
the NPC-S chart performed satisfactorily in other cases as well, aside from cases
in which n was too small (e.g., n ≤ 5).

We examine the OC performance of the NPC-S chart as well. As demon-
strated in the literature, the OC performance of self-starting charts is generally
affected by the shift time point (e.g., Hawkins, Qiu, and Kang (2003)). We
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Figure 3. Illustrations of various etching profiles from a DRIE process.

consider shift times τ = 40 and τ = 80. The simulation results in the various
cases considered in Table 1 are presented in Table 3. From the table, it can be
seen that the NPC-S chart performs almost equally well for the two values of τ

when the shift size is large. For detecting small to moderate shifts, it generally
performs better with a larger τ , because the updated parameter estimates are
more accurate in such a case under the IC condition, as confirmed by the table.
As a comparison, in Table 3, we also present the OC ARLs of the NPC-SWB
chart that is a combination of the self-starting chart and adaptive selection of the
weight and bandwidth parameters. Its parameters were chosen to be those used
in the examples of Figure 1 and Table 2. From the table, we can see that the
NPC-SWB chart outperforms both NPC-S charts using h1 and h2 in all cases ex-
cept certain cases with moderate shifts. Thus, in practice, the NPC-SWB chart
is recommended if the extra computation involved is not a major concern.

4. A Semiconductor Application

We applied the proposed NPC chart to a dataset obtained from the semi-
conductor manufacturing industry for monitoring a deep reactive ion etching
(DRIE) process that is critical to the output wafer quality and which requires
careful control and monitoring. In the DRIE process, the desired profile is the
one with smooth and straight sidewalls and flat bottoms, and ideally the side-
walls of a trench are perpendicular to the bottom of the trench with a certain
degree of smoothness around the corners (cf., the middle shape shown in Figure
3. Various other profile shapes, such as positive and negative ones (the two left-
side and two right-side shapes in Figure 3) due to underetching and overetching,
are considered to be unacceptable. More detailed discussion about the DRIE
example can be found in Rauf et al. (2002) and Zhou et al. (2004).

The DRIE data have 21 profiles. The original data include images, like the
ones shown in Figure 3. To monitor the DRIE process, one needs samples from
individual profiles; these can be acquired by the scanning electron microscope
(SEM). Using symmetry, we focused on the left half of each profile for monitoring
purposes. Among the 21 profiles, and based on engineering knowledge, the first
18 were IC and the remaining 3 were OC. With these numbers, the IC profile
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Figure 4. The NPC-S and NAEWMA control charts for monitoring the
DRIE process. The solid and dashed horizontal lines indicate their control
limits, respectively.

function g0 and the error standard deviation σ may not be accurately estimated
from the IC data, so we used the self-starting chart NPC-S. For applications
such as the current one, a better profile monitoring is anticipated when using
a random design scheme. The corner part of the profile apparently contains
the information regarding whether the profile is OC; after a rotation of 45o, we
centered a normal distribution there so that half of the bottom trench was in its
range and about 65% of the design points were in the corner part.

For each profile, we fixed n = 20, and dimensional readings were collected by
SEM at the design points generated from the normal Γ1. Using electronic sensor
and information technologies, such a data acquisition process can be finished
automatically by a computer. In the NPC-S chart, we fixed the IC ARL at 200,
n0 at 40, and the zi’s to be equally spaced over a comparable range. All other
parameters of the NPC-S chart were chosen to be those used in the example of
Table 3. The control limit was computed to be L = 16.07 by simulation. We
took the first 10 IC profiles as preliminary data, and profile monitoring started at
the 11th profile. The charting statistic T̂t,h,λ values, t = 11, . . . , 21, are shown in
Figure 4, along with the control limit. In that figure, we also give the NAEWMA
chart and its control limit at 22.32. Parameters of the NAEWMA were λ = 0.2,
IC ARL=200, n = 20, and z1, . . . , zn the same equally spaced points. In the
plot, the NPC-S chart gives a signal of profile shift at the 20th time point, which
corresponds to the 2nd OC profile; the NAEWMA chart does not give any signal,
even after the 3rd OC profile is collected.
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It took about 3.4/1000 seconds to compute all values of the charting statis-
tic T̂t,h,λ that are plotted in Figure 4, by a Pentium 2.4MHz CPU, suggesting
convenience in on-line automatic profile monitoring.

5. Summary and Concluding Remarks

We have proposed a control chart for monitoring nonparametric profiles with
arbitrary design. It effectively combines the EWMA control chart and a non-
parametric regression test. The proposal to adaptively choose the weight and
bandwidth parameters further enhances the proposed chart. Moreover, a self-
starting version is introduced for cases when the IC regression function and error
variance are unknown. As indicated by the DRIE example, the proposed moni-
toring approach can be implemented conveniently in industrial applications. In
addition, we show that a better monitoring performance can be obtained by using
a random design instead of a fixed design.

Our proposed control chart operates under the assumption that observa-
tions within and between individual profiles are independent of each other. In
some applications, within-profile observations are spatially or serially correlated,
or between-profile observations are auto-correlated (cf., Williams et al. (2007),
Williams, Woodall and Birch (2007), Zou et al. (2007)). More research is needed
in these areas. Going further, sometimes we are interested in monitoring a multi-
variate relationship between a response variable and several predictors over time.
We are not now aware of any existing research on this topic.
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Appendix: Technical Details

Throughout, we use the additional notations

αt,h,λ(z) =
1

a0,t,λΓ2(z)

t∑
k=1

(1 − λ)t−k
nk∑
j=1

Kh(xkj − z)εkj ,

βt,h,λ(z) =
g′′1(z)

2a0,t,λΓ2(z)

t∑
k=1

(1 − λ)t−k
nk∑
j=1

(xkj − z)2Kh(xkj − z),



1676 PEIHUA QIU AND CHANGLIANG ZOU

φi(z) =
1

a0,t,λ

t∑
k=1

(1 − λ)t−k
nk∑
j=1

(xkj − z)iKh(xkj − z)εkj , i = 0, 1,

φi+2(z) =
1

aτ,t,λ

t∑
k=τ+1

(1 − λ)t−k
nk∑
j=1

(xkj − z)iKh(xkj − z)g1(xkj), i = 0, 1,

dt0,t1,λ =
t1∑

k=t0+1

(1 − λ)4(t−k)nk, et0,t1,λ =
t1∑

k=t0+1

(1 − λ)4(t−k)n2
k.

Appendix A: Regularity Conditions Used In Section 2

(C1) Density functions Γ1 and Γ2 are Lipschitz continuous and bounded away
from zero on [0,1].

(C2) g0(·) and g1(·) have continuous second order derivatives on [0,1].

(C3) The kernel function K(u) is bounded and symmetric about 0 on [−1, 1].
Furthermore, u3K(u) and u3K ′(u) are bounded, and

∫ 1
−1 u4K(u)du < ∞.

(C4) E(|ε11|4) < ∞.

(C5) n0, h, and c0,t,λ satisfy n0 → ∞, h → 0, n0h
3/2 → ∞, c0,t,λ → ∞,

c0,t,λh3/2 → ∞ and c0,t,λh8 → 0.

(C5’) n0, h, and c0,t,λ satisfy n0 → ∞, h → 0, n0h
3/2 → ∞, c0,t,λ → ∞,

c0,t,λh3 → ∞ and c0,t,λh5 → 0.

(C6) aτ,t,λ/a0,t,λ − 1 = o(min{h2, c
−1/2
0,t,λ }).

(C7) The nk’s are such that max1≤k≤t nk/min1≤k≤t nk is bounded.

Conditions (C1)−(C4) are standard in nonparametric regression. (C5) and (C5’)
are the bandwidth conditions used in Theorem 1 and Theorem 2(i), respectively.
Note that [(2 − λ)/λ]min1≤k≤t nk ≤ c0,t,λ ≤ [(2 − λ)/λ] max1≤k≤t nk for large t.
Thus, if λ → 0, we do not require nk → ∞. The conditions listed here are milder
than those in Zou, Tsung, and Wang (2008) where the number of design points
in each profile should go to infinity. (C6) is easily satisfied if t is large enough.
(C7) implies that all nk’s are of the same order, this is common in practice.

Appendix B: Proofs

To prove the theorems of Section 2, a lemma is required.

Lemma 1. For any z ∈ [0, 1], (i) under conditions in Theorem 1, we have
ĝt,h,λ(z) = αt,h,λ(z)(1 + o(h1/2)); (ii) under conditions in Theorem 2, we have
ĝt,h,λ(z) − g1(z) = αt,h,λ(z)(1 + o(h1/2)) + βt,h,λ(z)(1 + op(1)).
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Proof. We only prove the second of these because the first one can be proved
in a similar way. For simplicity, we suppress the symbol “(t, h, λ)” in m

(t,h,λ)
i (z).

After some algebraic manipulations,

ĝt,h,λ(z) − g1(z)

= a0,t,λm−1
0 (z)[φ0(z) + φ2(z)] + a0,t,λm−1

0 (z)m1(z)[m2(z) − m2
1(z)m−1

0 (z)]−1

·{m−1
0 (z)m1(z)[φ0(z) + φ2(z)] − φ1(z) − φ3(z)} − g1(z)

= a0,t,λm−1
0 (z)φ0(z) + a0,t,λm−1

0 (z)[φ2(z) − a−1
0,t,λm0(z)g1(z) − a−1

0,t,λm1(z)g′1(z)]

+m−1
0 (z)m1(z){g′1(z) + a0,t,λ[m2(z) − m2

1(z)m−1
0 (z)]−1

·[m−1
0 (z)m1(z)(φ0(z) + φ2(z)) − φ1(z) − φ3(z)]}

=: ∆1 + ∆2 + ∆3.

By Taylor expansions, it is straightforward that

∆1 = α0,t,h,λ(z)
(
1 + Op((c0,t,λh)−1/2) + O(h)

)
,

∆2 = βt,h,λ(z)
(
1 + Op((c0,t,λh)−1/2) + O(h)

)
+ O

(
aτ,t,λ

a0,t,λ
− 1

)
.

Since

a
−1/2
0,t,λ m1(z) =

∫
Γ2(u)(u − z)Kh(u − z)du + Op(c

−1/2
0,t,λ h1/2) = O(h2),

φ3(z) = g1(z)
∫

Γ2(u)(u − z)Kh(u − z)du + h2Γ2(z)g′1(z)η1 + O(h3)

+Op(c
−1/2
0,t,λ h1/2),

φ2(z) = g1(z) + O(h), m2(z) = O(h2),

we have ∆3 = Op(h3) + Op(c
−1/2
0,t,λ h1/2). Combining the above results, (C6), and

the facts that αt,h,λ(z) = Op((c0,t,λh)−1/2) and βt,h,λ(z) = Op(h2), we have (ii).

Proof of Theorem 1. Without loss of generality, take g0 = 0 (see the related
discussion after (2.5) in Section 2). By Lemma 1,

Tt,h,λ =
c0,t,λ

n0σ2

n0∑
i=1

[αt,h,λ(z)]2 (1 + o(h1/2))

=
c0,t,λ

n0

n0∑
i=1

1
a2

0,t,λ[Γ2(zi)]2

t∑
k=1

(1 − λ)2(t−k)
nk∑
j=1

[Kh(xkj − zi)]2ξ2
kj(1 + o(h1/2))

+
c0,t,λ

n0

n0∑
i=1

1
a2

0,t,λ[Γ2(zi)]2

{ t∑
k=1

(1−λ)2(t−k)
∑
j 6=l

[Kh(xkj−zi)][Kh(xkl−zi)]ξkjξkl
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+
∑
k 6=k′

(1−λ)t−k(1−λ)t−k′ ∑
j,l

[Kh(xkj−zi)][Kh(xk′l−zi)]ξkjξk′l

}
(1 + o(h1/2))

=: (T1 + T2)(1 + o(h1/2)).

Note that, as h → 0,

T1 =
c0,t,λ

a2
0,t,λ

t∑
k=1

(1 − λ)2(t−k)
nk∑
j=1

ξ2
kj

1
n0

n0∑
i=1

1
[Γ2(zi)]2

[Kh(xkj − zi)]2

=
c0,t,λη1

ha2
0,t,λ

t∑
k=1

(1 − λ)2(t−k)
nk∑
j=1

ξ2
kj

Γ1(xkj)
Γ2(xkj)

(1 + O(h) + Op((n0h)−1/2)).

It is easy to see that

E(T1) = µ̃h + o(h−1/2), Var(T1) =
d0,t,λ

b2
0,t,λh2

(1 + o(1)) = O((c0,t,λh2)−1),

where the last equality is from (C7). Thus we have

T1 = E(T1) + Op(
√

Var(T1)) =
η1

h

∫
Γ1(u)
Γ2(u)

du + op(h−1/2).

Similar to the manipulations for T1, we have

T2 =
c0,t,λ

a2
0,t,λh

{ t∑
k=1

(1 − λ)2(t−k)
∑
j 6=l

Γ1(xkj)
[Γ2(xkj)]2

K ∗ K(
xkj − xkl

h
)ξkjξkl

+
∑
k 6=k′

(1 − λ)t−k(1 − λ)t−k′ ∑
j,l

Γ1(xkj)
[Γ2(xkj)]2

K ∗ K(
xkj − xk′l

h
)ξkjξk′l

}
×(1 + O(h) + Op((n0h)−1/2))

=: (T21 + T22)(1 + O(h) + Op((n0h)−1/2)).

Since h1/2(T21 + T22) can be written as a symmetric quadratic function of ξkj ,
j = 1, . . . , nk and k = 1, . . ., with a symmetric matrix (νij)Nt×Nt that has van-
ishing diagonal elements, we can use Theorem 5.2 in de Jong (1987) to show the
asymptotic normality of h1/2(T21 + T22). The expectation of T21 + T22 is zero,
and it can be checked that

Var(h1/2T21) = h
e0,t,λ

b2
0,t,λ

σ̃2
h(1 + o(1)),

Var(h1/2T22) = h

(
1 −

e0,t,λ

b2
0,t,λ

)
σ̃2

h(1 + o(1)).
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Thus the asymptotic variance of h1/2(T21 + T22) is hσ̃2
h, after noting Cov(T21, T22)

= 0. Finally, by algebraic manipulation, we can verify that the νij ’s satisfy the
conditions given in Theorem 5.2 of de Jong (1987). Using this theorem and the
results about T1 and T2 above, we have Theorem 1.

Proof of Theorem 2.
(i). Without loss of generality, we take g0 = 0. Thus, g1 = δ. By Lemma 1, we
have

Tt,h,λ =
c0,t,λ

n0σ2

n0∑
i=1

α2
t,h,λ(zi)(1+o(h1/2))+

c0,t,λ

n0σ2

n0∑
i=1

[δ(zi)+βt,h,λ(zi)]2(1+op(1))

+
2c0,t,λ

n0σ2

n0∑
i=1

αt,h,λ(zi)βt,h,λ(zi)(1+op(1))

+
2c0,t,λ

n0σ2

n0∑
i=1

αt,h,λ(zi)δ(zi)(1+op(1))

=: T1 + T2 + (T3 + T4)(1 + op(1)).

Obviously, T1 is equivalent to Tt,h,λ under the IC condition. It is straightforward
to see that

βt,h,λ(z) =
h2

2
δ′′(z)η1(1 + op(1)).

Then we have T2 = c0,t,λζδ(1 + op(1)), and

T3 =
h2η1a0,t,λ

b0,t,λσ2

t∑
k=1

(1 − λ)t−k
nk∑
j=1

Γ1(xkj)
Γ2(xkj)

εkjδ
′′(xkj)(1 + op(1)).

Note that (
√

b0,t,λ)−1
∑t

k=1(1−λ)t−k
∑nk

j=1 Γ1(xkj)/Γ2(xkj)εkjδ
′′(xkj) is stochas-

tically bounded. Thus, by (C5’), we have T3 = op(h−1/2). Similarly,

T4 =
2a0,t,λ

b0,t,λσ2

t∑
k=1

(1 − λ)t−k
nk∑
j=1

Γ1(xkj)
Γ2(xkj)

εkjδ(xkj)

= Op((c0,t,λ

∫
δ2(u)Γ1(u)du)1/2) = op(h−1/2).

Now (i) follows, and (ii) follows directly from (i).

Proof of Proposition 2. This proposition follows from Theorems 1 and 2, and
from the proof of Theorem 4 in Horowitz and Spokoiny (2001). Here we just
highlight some key steps, the details are omitted. One important step derives
the critical value of T̃t,H,λ, denoted as Cα, for any given false alarm rate 0 <
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α < 1. By Lemmas 11 and 12 in Horowitz and Spokoiny (2001) and the proof of
Theorem 1, we can show that, for c0,t,λ → ∞, Cα ≤ 2

√
ln ln c0,t,λ − lnα . Then,

by Theorem 2, we have

Tt,h,λ =
c0,t,λ

σ2
[ζ1 + h4ζ2 + 2h2ζ3](1 + op(1)) + µ̃h + Op(h−1/2), (A.1)

where ζ3 =
∫

δ(u)δ′′(u)Γ1(u)du. When ζ1 > M1(c−1
0,t,λ ln ln c0,t,λ)8/9 for some

sufficiently large M1, by choosing h∗ in the order of (c−1
0,t,λ ln ln c0,t,λ)2/9, the term

c0,t,λζ1 on the right side of (A.1) dominates other terms, and is larger than σ̃hCα

as well. We can obtain such h∗ as h∗ = hmaxγ
−jn , where jn is the integer part of

ln[khmax/(c−1
0,t,λ ln ln c0,t,λ)2/9]/ ln γ for some constant k > 0.
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