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S1 Proof of Theorem in the Paper “A Nonlinear Fil-
ter Control Chart for Detecting Dynamic Changes

Let Y1,Ys, ... be i.i.d., F(z) = P(Y; < x) and FE(.) denotes the expectation. Suppose the
distribution, F'(x), satisfies the following two conditions:

(I) The moment-generating function is h() = E(e?Y") < oo for some 6 > 0.

(IT) For z > E(Y;) there is a 6(z) € (0,6;) such that z = h'(0(x))/h(0(z)), where
01 = sup{0 : h(#) < co}.

Let E(Y;) < 0. Since A'(0) = E(Y;) < 0, h'(0)/h(0) is strictly increasing (see
Durrett(1991), p.60) and log h(6) — 400 as 8 — 6y, it follows that there exits at most
one 0* € (6(0),0;1) such that h(6*) = 1 or logh(6*) = 0, where (0) > 0 satisfies
0 = h'(0(0))/h(0(0)). That is, h(#) attains its minimum value at §(0) > 0. We can call
0* an exponential rate of F'(x) of random variable Y;. The meaning of 6* is given in
Theorem 1.

Let u = h/(6*) and 0(u) = 0*. It is clear that u > 0, and log h(f(x)) < 0 for z < u
and log h(0(x)) > 0 for z > u. Thus,

o)~ wlogh(B(2)) > 0° (S1.1)

for x > 0. In fact, if
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we have H(1/u) = 0 and

Hz) = (1) —logh(6(:)) + 27

~log h(B()):

It follows that H'(x) > 0 for > 1/u and H'(x) < 0 for 0 < < 1/u. Thus, (S1.1) is
true. Since H'(x) > 0 for z > 1/u, we can take

b=inf{z > 1/u: 0(=) — zlog h(6(2)) > 26%} (S1.2)
T T
such that
1 1 .
6(L) — 210g n(6(1)) > 20 (S1.3)
X xr
for x > b.

Now we define the stopping time of a control chart, T,

n

=i : | > .
T = inf{n 1?I?§n[_7§+1n} > c}, (S1.4)

where ¢ > 0 is the control limit. For this chart, we have the following theorem.
Theorem 1. Suppose the conditions (I) and (II) hold. If E(Y;) <0, then
E(T) ~ D(c)e” (S1.5)

for large c, where 8* > 0 is the exponential rate satisfying h(0*) =1, 1/bc < D(c) < ¢/u,
u=h'(0*) >0 and b is the positive constant defined in (S1.2). If E(Y;) > 0, then

E(T) ~ B (51.6)
for large ¢, where x ~ y means that ©/y — 1 as x,y — oo.
Proof of Theorem 1. In order to prove (S1.5) we need only to prove
e Jbe < B(T) < e Ju (51.7)

for large c. Some results of large deviations theory will be used in the proof. We first
prove the upward inequality of (S1.7). Choose A € (6*,61) and v > h'(A)/h(\) and let
m = tu~tcexp{c(vA/u —logh(\)/u)} for t > 0 and my = ku~'c for k > 0, we have

n mi
P(T >m) = P( Z Y; <e, 1§k§n,1§n§m)§[P(ZY,»<C)]m/m1
i=n—k+1 i=1
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for large ¢, where the last equality holds since the events
m;
{ > v}
i=mj_1+1

1 < j <k, are mutually independent and have an identity distribution. Let n = ¢/u. It
follows from Theorem 9.5 of Chapter 1 in Durrett (1991) that

P(ZE >c) = P(iYi > nu)

i=1

Y

exp{—n(vA —log h(A) + o(1/n))}
= exp{—c(’l))\/u — log h()\)/u + 0(1/0))}

for large ¢, and therefore
mi
P Yi <em/m
i=1

[1 = exp{—c(vA/u —log h(\) /u + o(1/c))}]™/™

<
imy m/m —t
= (1 - meo(l) e

as ¢ — oco. That is, P(T > m) < et for large c¢. Thus, by the properties of exponential
distribution, we have

E(T) < g exp{e(vA/u — log h(X)/u)}

for large ¢. Since A > 6* and v > h'(\)/h(\) are arbitrary, the upward inequality of
(S1.7) is true. To prove the downward inequality of (S1.7), let

Un = { Z Y, <ec, 1<k <min{n,bc—1}, 1 <n<m}
i=n—k+1

and

n
Vin ={ Z Yi<ec, be<k<n,bc<n<m}
i=n—k+1

for large ¢, where b is defined in (S1.2). Obviously, {T' > m} = U, V,,. For k > 1, take

x > 0 such that z¢c = k and 1/2 = #'(8(1/x))/h(0(1/x)). By Chebyshev’s inequality, we
have

60(1/z)k/-73p( zn: Y; > c¢)
i=n—k+1
. k
eg(l/x)k/mP(ZYi > k/z) < E(exp{0(1/x) ZY}}) = h(9(1/$))k

i=1 =1
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P( ) Yi<e) = 1-exp{-k[0(1/x)/x —logh(6(1/z))]}

= 1—exp{—cl0(1/x) —zlogh(O(1/z))]} >1—e ",
where the last inequality follows from (S1.1). Thus, take m = te®?” /bc for t > 0. We
have

m min{n,bc}

L1 7y vie<o
k=1

n=1 i=n—k+1

> [1 _ e*CG*]bcm et

P(Un)

Y

)

as ¢ — +o0o. The first inequality follows from Theorem 5.1 in Esary, Proschan and
Walkup (1967). Similarly, taking xc = k and using (S1.3) we have ( Note that « > b if
k>bc)

P( zn: Y; <c¢)

be i=n—k+1

P( zn: Y; < k/x)

be i1=n—k+1

IV
s
=

P(Vin)

3
Il
i~
o
x~
Il

[
s
=

I
o
S
=
Il

n

3

> [ TI0—exp{—cl0(1/2) — zlogh(6(1/x))]}]
n=bc k=bc
> [1- e—209*](m—bc)2 1,

as ¢ — 4oo. Hence, P(T > m) > P(U,,)P(V,,) — et as ¢ — +o0. This proves the
downward inequality of (S1.7).

To prove (S1.6), we first mention some known results (see Chapters V and VIII
in Petrov’s book (1975)). Let ®(-) be a standard normal distribution and F,(z) the
distribution function of the sum S,, = (nD?)~Y23"}'_| (Y, — E1)), where D? = Var(Y;))
and Ey = E(Y;)). Then

Fo(z) — ®(2) = o [O(@H ()] S1.8
e D= Jama OO o) (51.8)
as |z| — +oo and |z|>/y/n — 0, and

Aa?

|Fy(2) — ®(z)] < (S1.9)

~ agy/n(1+ |z[)?
for every 2 and n > 1, where A is a constant, a® = E(Y; — E1))? and ag = (D;)?/3. The
following elementary facts also will be used:

2
e /2

V2mx

1-®(z) <
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for x > 0, and

1-o ol
_ ) = + _
(@)= "5 1+ 0(3)
for large x. Let
Am =A Z Yi<eg 1<k<n,1<n<m}. (51.10)
1=n—k-+1

Obviously, {T > m} = A,, and

Z?:n_k-;-l(yi - Ey) < c—kEq
D} JiDt

2 (Vi — By) < e=mE
mD? mD?

An = {

1<k<n,1l<n<m}

c A{

Let N = ¢/F; +dv2clnc and n = N + k, where d = D, /(E;)%/2. Tt follows that

1
1+ Di/vVEi\/2lne/c+ Erk/c
E
—DflAN\/N-I-k ~ —V2In¢ — —o0,
1

—F F
C 1n _ _Dii N—i—k{l— }

Divn

IA

as ¢ — oo since ((E1/D1)AN)*(N) — 2Inc as ¢ — oo, where Ay = [1 — (1 +
-1

D1y E1+/2lnc/c)~!]. Thus, by (S1.8), we have

Nt = i, Y;—nE)  c—En
P(T>n) < P(== < )
n§+1 n§+1 Dl\/ﬁ Dl\/ﬁ

(1 1) i e~ ((B1/D1)AN)*(N+k)/2
+o0
—~ 2rE/DiANVN
exp{—3(E1/D1An)*(N))}
vV QWEl/DlAN\/N(l — e—%(El/DMlN)Q)
1

IN

IN

(1+0(1))

IN

(1 + 0(1))4\/77'E1(1HC)3/2

for large ¢, and therefore,
al 1

ZP(T >n) + 1By o)

n=1

N

IN

E(T)

1
+ 4/ E1(Inc)3/2

¢/E1 4+ dv2clne+ o

IN

IN

ﬁ) (S1.11)
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for large c¢. This proves the upward inequality of (S1.6).
On the other hand, let M = ¢/E; — dv/6¢Inc, where d = Dy /(E;)*/?. Since

coBik =B e (S1.12)

Dk — DiVM
for k < M and ¢ — oo, it follows that @(%) ~1—(2V3rIncc®)™1 as ¢ — oco. Let
1
le = (Ine)?,
Am,lc = { Z Yn,k:,i <ec¢, 1< k < lc»lc <n< m}
i=n—k+1
and

n
Brg.={ Y  Yari<e le<k<nl <n<m}
i=n—k+1

for m > l.. Obviously, A, = Ap, 1, Bm,i, for m > [.. Then,

M
Z P(Bm,lc)
C — Elk‘

M Z?:n—k—‘—l(}/; - El) <
Dk’

> > P{
m=l.+1 Dl\/E
lo<k<mn/l.<n<m}
M m n n
Z-, 7k+1(yvi _El) Cc— Elk
> P =" <
SR O VB Vo DivE

1n=l.+1 k=l.+1
c— Elk) > (M- lc)[é(c - ElM)](M—lc)(M—lC+1)/2
o DivM

Y
M>
i::s
=
iy
kS,
<

1k=l.+1
1

1
))NM*lc*O(\/T—C

for large c. Here, the second inequality follows from Theorem 5.1 in Esary, Proschan and

Walkup (1967) and the third inequality from (S1.8). Similarly, by using (S1.9) we have
(1—0(1/3))% ~ 1= 0(2/c) for m < . and

1—-0(1/(lec®)) > P(Ap) >
le

1 _
PlAmi,) 2 (1= O(5) Mk w1 - 0(5

)

for I, <m < M as ¢ — oo. Thus
lC M

E(T) > Y PAw)+ > P(AmiBmi,)
m=l.+1

m=1
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le M
> > P(An)+ Y. P(Ani)P(Bmy,)
m=1 m=l.+1
> L(1=0(%) + (1= 0(5)( e~ 0(=))
, 1
~ c/El—QdVClnc—O(m) (S1.13)

for large ¢. From (S1.10) and (S1.11) we see that (S1.6) is true. This completes the
proof of Theorem 1.
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