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Abstract: All conventional control charts can be viewed as charting the output of

a linear filter applied to the process data. In this paper, we present a nonlinear

filter control chart (NFC) in which the control statistic consists of a nonlinear

combination of a data process. We also present a theorem on an estimation of the

average run length for the NFC chart, and we theoretically compare the detection

power of any two such control charts. A criterion is provided for selecting an optimal

NFC chart. In particular, we discuss some special nonlinear filter control charts for

detecting dynamic changes in process mean that can be viewed as extensions of the

conventional CUSUM control charts.
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1. Introduction

Since Dr. W. A. Shewhart of the Bell Telephone Labs introduced the statisti-
cal process control (SPC) concept and developed the first statistical control chart
in the 1920s, many control chart schemes have been proposed. SPC techniques
utilize statistical methods to monitor each phase of the manufacturing process
so as to maintain and improve the product quality while decreasing variance.
There have been many applications and much development, see Montgomery
(2001). This research has focused on efficient, simpler methods for detecting
process changes accurately and quickly.

In manufacturing, data collected from sensors are contaminated by noise
that is commonly modeled as i.i.d. white noise, drifts, sinusoidal noise, or gen-
eral ARIMA time series noise. Conventional control charts can be viewed as
charting the output of a filter applied to process data and to reveal process
status. A linear filter defines a linear relationship between the purified signal
and the contaminated observation. Typically, the output of a filter is a linear
function of current and perhaps past observations. Some control charts employ
linear filters. A Shewhart individual chart uses the original process data, while
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an Exponentially Weighted Moving Average (EWMA) chart (Roberts (1959))
filters process data using a weighted average of past and current observations.
Statistics of other popular control charts, such as the Cumulative Sum (CUSUM)
chart (Page (1954)), the combined Shewhart-CUSUM chart (Lucas (1982)), the
optimal EWMA (Srivastava and Wu (1993, 1997), Wu (1994)), the generalized
likelihood ratio (Siegmund (1985), Siegmund and Venkatraman (1995), Apley and
Shi (1994, 1999)), the adaptive CUSUM (Sparks (2000)), the adaptive EWMA
(Capizzi and Masarotto (2003)), and the generalized EWMA (Han and Tsung
(2004)) invoke linear combinations of the data process. The ARMA chart (Jiang,
Tsui and Woodall (2000)) and the PID chart (Jiang et al. (2002)) use more com-
plex forms to combine past and current information for filtering.

Optimal design of a linear filter for statistical process control was proposed by
Chin and Apley (2007). The underlying ARMA process is identified by applying
an impulse signal; coefficient estimation is achieved and the optimal design is
created based on the assumed noise type, the charting method, and the desired
in-control average run length (ARL). Simulation shows that this control chart
can outperform existing control charts in some situations.

Although the linear filter-type control chart provides a good way to handle
certain kinds of noise, it has limitations. For instance, the optimal design of a
linear filter given by Chin and Apley (2007) depends heavily on the assumed
shift magnitude. The magnitude of the shift is, however, rarely pre-specified,
but is rather an unknown shift in a possible range, or even a dynamic shift that
changes over time. Thus, a linear filter may achieve the optimum performance at
a single point, but not over the mean shift range of interest. Since linear filters
are designed for detecting certain types of noise, if the actual noise encountered
is different or more complex, the performance of the filter can easily suffer.

To conquer such limitations, we propose extending conventional control charts
that use linear filters to charts that apply nonlinear filters to the data. We expect
that in presence of more complicated noise, the proposed nonlinear filter control
charts can prove more capable of handling unknown and dynamic mean shifts,
that is, it may respond to mean shifts more quickly. The most popular criterion
for evaluating the responsivity of a control chart is average run length (ARL):
the average number of samples (subgroups) taken before an alarming signal is
given.

In the next section, a nonlinear filter control chart is presented. A theo-
rem on an estimation of the average run length, a discussion on the theoreti-
cal comparison of any two control charts, and the optimal design of an NFC
chart, are given in Section 3. Section 4 gives a comparison of detection per-
formance of the nonlinear filter charts and traditional control schemes, by nu-
merical simulation. The definition and settings of two adaptive CUSUM charts
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are shown in Appendix I. The proof of Theorem 1 in Section 3 can be found at
http://www.stat.sinica.edu.tw/statistica as an on-line supplement.

2. A Nonlinear-Filter Control Chart

Here process data are first filtered by a nonlinear filter before being drawn
on a chart. We design a nonlinear filter control chart by recalling the well-known
CUSUM chart before extending it.

Let Xi (i = 1, 2, . . .) be the ith observation from an i.i.d. process. Suppose
at time τ , called a change point, the mean of Xi abruptly changes from µ0 to µ;
Thus, from time τ and on, the mean of Xi undergoes a step mean shift, δ = µ−µ0.
We assume µ and τ are unknown, and that µ0 and the standard deviation σ of
the process {Xi, i ≥ 1} are known. Without loss of generality, µ0 = 0 and σ = 1.

The first time (stopping time) outside the control limit, c > 0, for the one-
sided CUSUM chart, T , can be written as

T (δ) = inf
{

n : max
1≤k≤n

[ n∑
i=n−k+1

δ(Xi −
δ

2
)
]
≥ c

}
, (2.1)

where δ/2 > 0 is the reference value related to the magnitude of the mean shift,
δ, see Hawkins and Olwell (1998).

Moustakides (1986) and Ritov (1990) have shown that the performance of
the one-sided CUSUM control chart with a reference value of δ/2 is optimal if
the real mean shift is δ. In fact, however, we rarely know the exact magnitude of
future mean shifts. To detect an unknown mean shift quickly, we may consider
replacing δ with {|Xi|} in the CUSUM chart, since {|Xi|} contains real-time
information about the magnitude of the mean shift. Thus, we take the stopping
time of a new control chart to be:

T = inf
{

n ≥ 1 : max
1≤k≤n

[ n∑
i=n−k+1

|Xi|(Xi −
|Xi|
2

)
]
≥ c)

}
. (2.2)

Here, the control statistic,
∑n

i=n−k+1 |Xi|(Xi−|Xi|/2), is a nonlinear combination
of the observed data, {Xi}. Since

|x|(x − |x|
2

) =


x2

2 if x ≥ 0

−3x2

2 if x < 0,

we obtain the stopping time of a more general chart,

T (fα) = inf
{

n ≥ 1 : max
1≤k≤n

[ n∑
i=n−k+1

fα(Xi)
]
≥ c

}
, (2.3)

http://www.stat.sinica.edu.tw/statistica
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by taking a nonlinear function,

fα(x) =


xα

2 if x ≥ 0

−3|x|α
2 if x < 0,

(2.4)

where α > 0. We call T (fα) and fα(·), respectively, the stopping times of a
nonlinear filter control chart (NFC) and a nonlinear filter function.

Generally, the nonlinear filter is not restricted to the form of (2.4). It can
take any form. When f is a linear function, we call T (f) the stopping time of a
linear filter control chart (LFC).

If a negative mean shift is of interest, the stopping time of a general NFC
chart can be written as

T (fα) = inf
{

n ≥ 1 : min
1≤k≤n

[ n∑
i=n−k+1

fα(Xi)
]
≤ −c

}
, (2.5)

where fα(x) is

fα(x) =


3xα

2 if x ≥ 0

− |x|α
2 if x < 0.

(2.6)

Thus, a two-sided NFC control scheme can be readily constructed.
Han and Tsung (2006) proposed a reference-free Cuscore (RFCuscore) chart

that is also capable of tracing and detecting dynamic mean changes quickly with-
out knowing the reference pattern or having prior knowledge of the mean shift
magnitude. The RFCuscore chart is a special case of the nonlinear filter control
chart with α = 2.

3. Theoretical Analysis

For convenience of discussion, we use the standard quality control terminol-
ogy. Let P (·) and E(·) denote the probability and expectation functions when
there is no change in the mean, µ = µ0 = 0; let Pµ(·) and Eµ(·) be the probability
function and expectation function when the change point is at τ = 1, and the true
mean shift value is µ 6= 0. The two most frequently used operating characteristics
of statistical control charts are in-control average run length ARL0(T ) = E(T )
and out-of-control average run length ARLµ(T ) = Eµ(T ).

For comparison, all candidate charts share the same ARL0 which corresponds
to the same level of type I error rate. The chart with the smallest out-of-control
ARLµ at the desired mean shift magnitude has the highest power to detect the
pre-specified shift.
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In this section, we first present a theorem on the estimation of the ARL for a
general control chart, including NFC and LFC, with a large control limit. Then
we discuss how to compare the detection performances of any two control charts.

3.1. Approximation, estimation, and comparison of ARL’s

Let Y1, Y2, . . . be i.i.d. observations of a random variable Y , and let F and
E be its cumulative distribution function and expectation function. Suppose F

satisfies the following.
(I) The moment-generating function h(θ) = E(eθY ) < ∞ for some θ > 0.
(II) For x > E(Y ) there is a θ(x) ∈ (0, θ1) such that x = h′(θ(x))/h(θ(x)),

where θ1 = sup{θ : h(θ) < ∞}.
Let E(Y ) < 0. Since h′(0) = E(Y ) < 0, h′(θ)/h(θ) is strictly increasing

(see Durrett (1991, p.60)) and log h(θ) → +∞ as θ → θ1, it follows that there
exists at most one θ∗ ∈ (θ(0), θ1) such that h(θ∗) = 1 or log h(θ∗) = 0, where
θ(0) > 0 satisfies 0 = h′(θ(0))/h(θ(0)). That is, h(θ) attains its minimum value
at θ(0) > 0. We can call θ∗ an exponential rate of Y . The meaning of θ∗ is
given in Theorem 1.

Now we define the stopping time of a control chart as

T = inf
{

n : max
1≤k≤n

[ n∑
i=n−k+1

Yi

]
≥ c

}
, (3.1)

where c > 0 is the control limit.

Theorem 1. Suppose the conditions (I) and (II) hold. If E(Yi) < 0, then

E(T ) ∼ D(c)ecθ∗ (3.2)

for large c, where θ∗ > 0 is the exponential rate satisfying h(θ∗) = 1, 1/bc ≤
D(c) ≤ c/u, u = h′(θ∗) > 0 and b is a positive constant. If E(Yi) > 0, then for
large c,

E(T ) ∼ c

E(Yi)
. (3.3)

Here we do not consider the case that E(Yi) = 0 since it is then difficult to
estimate the ARL. The proof of Theorem 1 is in Section 3. The on-line sup-
plement is at www.stat.sinica.edu.tw. Table 3.1 shows the out-of-control ARLs
of NFC charts having α = 1.0 and α = 2.0 in the presence of mean shifts of
magnitude around θ∗. The results were obtained via Monte Carlo simulation.
The values of θ∗ of the two control charts are highlighted in boldface. We can
see that, although the formulas for E(T ) have different forms around θ∗, the
out-of-control ARL evolves quite smoothly there.
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Table 3.1. Out-of-control ARLs of two NFC charts with α = 1.0 and α = 2.0
around θ∗, in-control ARL =700.

α = 1.0, c = 5.148 α = 2.0, c = 10.295
δ ARL δ ARL

0.40000 59.8060 0.30000 94.8590
0.43600 50.2066 0.34300 74.4490
0.43610 50.1686 0.34310 74.1673
0.43620 50.1354 0.34320 74.1556
0.43625 50.0580 0.34330 74.0524
0.43630 50.0572 0.34340 74.0519
0.43635 50.0454 0.34350 73.9762
0.43640 50.0249 0.34355 73.9576
0.43650 50.0119 0.34360 73.9544
0.43660 49.9835 0.34365 73.9363
0.43670 49.9804 0.34370 73.9277
0.43680 49.9057 0.34380 73.7840
0.43690 49.8995 0.34390 73.6612
0.45000 47.0550 0.35000 71.2200
0.50000 37.9390 0.40000 56.3860

Remark 1. Large c means that the term o(1) in E(T ) = (c/E(Yi))(1 + o(1)) of
Theorem 1 is negligible. For example, if c ≥ 10, then |o(1)| < 1/c ≤ 1/10 = 0.1
for the CUSUM chart with δ = 1 and Yi ∼ N(1, 1). As can be seen, the results
of Theorem 1 can be used for many control charts in detecting the observed
process that is not necessarily normal. If {Yi} is normal and E(Y ) < 0, then the
exponential rate is 2|E(Yi)|/Var (Yi), which can be considered as signal-to-noise
ratio. In fact, we write

h(θ) = E(eθY ) = exp
{θVar (Y )[θVar (Y ) + 2E(Yi)]

2Var (Y )

}
. (3.4)

Thus h(θ∗) = 1 when θ∗ = −2E(Yi)/Var (Yi) = 2|E(Yi)|/Var (Yi).

Theorem 1 can be considered as a generalization of Basseville and Nikiforov
(1993, p.162), since Y = log[pθ(X)/pθ0(X)] where pθ(·) and pθ0(·) are two distri-
bution functions or two density functions. As an application of Theorem 1, we
discuss how to compare the detection performance of two control charts.

Let Xi, i = 1, 2, . . . be an i.i.d. process with mean Eµ(Xi) = µ ≥ 0. We
say that there is no mean shift if µ = 0. For any two linear or nonlinear filter
functions, fj(·), j = 1, 2, we can get two control charts with stopping times
T (fj), j = 1, 2. Let Fj(x) be the distribution function of fj(Xi), j = 1, 2, and
let Ej(µ) = Eµ(fj(Xi)), j = 1, 2. Assume that conditions (I) and (II) hold for
Fj(x), j = 1, 2, and that Ej(µ), j = 1, 2 are strictly increasing functions on µ ≥ 0
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with Ej(0) < 0. Thus, there exist two positive numbers, µ∗
1 and µ∗

2, such that
Ej(µ∗

j ) = 0, j = 1, 2. For a given µ < µ∗
j , let θ∗j (µ) be the exponential rate of

Fj(x) for j = 1, 2.
Suppose E0(T (f1)) = E0(T (f2)) = ARL0. It follows from (3.2) of Theorem 1

that D1(c1)ec1θ∗1(0) ∼ D2(c2)ec2θ∗2(0) for large c1 and c2, where c1 and c2 are control
limits, respectively, for T (f1) and T (f2). Thus, c1θ

∗
1(0) = c2θ

∗
2(0)(1 + o(1)) for

large c1 and c2.
Let the mean shift be µ < min{µ∗

1, µ
∗
2}. By (3.2) of Theorem 1, we have

ARLµ(T (f1)) = Eµ(T (f1)) = (1 + o(1))D1(c1) exp{c1θ
∗
1(µ)}

= (1 + o(1))D1(c1) exp
{

c2
θ∗2(0)θ∗1(µ)

θ∗1(0)
(1 + o(1))

}
,

ARLµ(T (f2)) == Eµ(T (f2))(1 + o(1))D2(c2) exp{c2θ
∗
2(µ)}.

From this, we see that ARLµ(T (f1)) > ARLµ(T (f2)) for large c1 and c2 if and
only if

θ∗1(µ)
θ∗1(0)

>
θ∗2(µ)
θ∗2(0)

. (3.5)

Similarly, for µ > max{µ∗
1, µ

∗
2}, we get from (3.3) of Theorem 1 that ARLµ(T (f1)) >

ARLµ(T (f2)) for large c1 and c2 if and only if

1
θ∗1(0)E1(µ)

>
1

θ∗2(0)E2(µ)
. (3.6)

Suppose µ∗
1 < µ∗

2. Then ARLµ(T (f1)) < ARLµ(T (f2)) for µ∗
1 < µ < µ∗

2 and
large c1 and c2. In fact, by Theorem 1, we have

ARLµ(T (f1)) = (1 + o(1))
c1

E1(µ)
= (1 + o(1))

c2θ
∗
2(0)

θ∗1(0)E1(µ)
,

since E1(µ) = Eµ(f1(Xi)) > 0 for µ > µ∗
1, and

ARLµ(T (f2)) = (1 + o(1))D2(c2) exp{c2θ
∗
2(µ)}

for µ < µ∗
2. Thus, ARLµ(T (f1)) < ARLµ(T (f2)) for large c2. Similarly, if

µ∗
1 > µ∗

2, ARLµ(T (f1)) > ARLµ(T (f2)) holds for µ∗
1 > µ > µ∗

2 and large c1 and
c2.

These comparisons are applied to the specific NFC examples that are derived
from conventional CUSUM charts in the next subsection.
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3.2. Examples

Let {Xi, i ≥ 1} be i.i.d. N(µ, 1), µ ≥ 0. Denote the expectation and variance
of gδ(X1), f1(X1) and f2(X1), respectively, by E0(µ), V0(µ), E1(µ), V1(µ), and
E2(µ), V2(µ), where gδ(x) = δ(x−δ/2), and fi(·), i = 1, 2, are the functions fα(·)
with α = 1, 2 defined in (2.4). Then

E0(µ) = E(gδ(X1)) = δ(µ − δ

2
), V0(µ) = Var (gδ(X1)) = δ2,

E1(µ) = µ[
3
2
− Φ(µ)] − ϕ(µ),

V1(µ) =
9
4

+ µ2Φ(µ)[1 − Φ(µ)] + ϕ(µ)(µ − ϕ(µ)) − 2Φ(µ)(1 + µϕ(µ)),

E2(µ) = 2µϕ(µ) + (µ2 + 1)[2Φ(µ) − 3
2
],

V2(µ) = 4Φ(µ)(µ2 + 1)2[1 − Φ(µ)] + µ2(4µϕ(µ) + 9) + 4Φ(µ) +
9
2

−4(µϕ(µ) + 1)(µϕ(µ) + 2Φ(µ)(µ2 + 1)),

where Φ(·) and ϕ(·) are the standard normal distribution and density func-
tions. It can be shown that Ej(µ), j = 0, 1, 2, are all strictly monotonically
increasing functions on µ ≥ 0, with E0(0) = −δ/2, E0(δ/2) = 0, E1(0) =
−1/

√
2π,E1(0.4363) = 0, and E2(0) = −1/2, E2(0.3436) = 0. Denote the

moment-generating functions and the exponential rates of gδ(Xi) and fj(Xi), j =
1, 2, respectively, by h0(θ) and θ∗0(µ), and hj(θ) and θ∗j (µ), j = 1, 2. We then get

h0(θ) = E(eθgδ(X1)) = exp
{θδ2(θδ2 + 2δ(µ − δ/2))

2δ2

}
,

h1(θ) = E(eθf1(X1)) = exp
{4µθ + θ2

8

}
Φ(µ +

θ

2
),

+exp
{12µθ + 9θ2

8

}
[1 − Φ(µ + 3

θ

2
)],

h2(θ) = E(eθf2(X1)) =
1√

1 − θ
exp

{ θµ2

2(1 − θ)

}
Φ(

µ√
1 − θ

)

+
1√

3θ + 1
exp

{ −3θµ2

2(3θ + 1)

}[
1 − Φ(

µ√
3θ + 1

)
]
.

Obviously, h(θ∗0(µ)) = 1 for θ∗0(µ) = (δ−2µ)/δ = |2E(gδ(Xi)|/Var (gδ(Xi)) when
0 ≤ µ ≤ δ/2. It is rare for the exponential rate θ∗j (µ), j = 1, 2, to have a closed
form, but θ∗j (µ), j = 1, 2, strictly monotonically decrease on 0 ≤ µ ≤ 0.4363
and 0 ≤ µ ≤ 0.3436, respectively, with θ∗1(0) = 1.04, θ∗1(0.4363) = 0, θ∗2(0) =
0.449 and θ∗2(0.3436) = 0. Note that E1(0) = −1/

√
2π, V1(0) = 5/4 − 1/2π,
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E2(0) = −1/2, V2(0) = 7/2, and therefore θ∗1(0) = 1.04 6= 2|E1(0)|/V1(0) and
θ∗2(0) = 0.449 6= 2|E2(0)|/V2(0).

Using Theorem 1, we can get the approximate ARL’s for the CUSUM chart
with stopping time T (gδ), and the NFC charts with stopping times, T (fj), j =
1, 2. Thus

ARLµ(T (gδ)) ∼ D0(c)ec(δ−2µ)/δ, ARLµ(T (gδ)) ∼
c

δ(µ − δ/2)
,

respectively, for 0 ≤ µ < δ/2 and µ > δ/2, and

ARLµ(T (fj)) ∼ Dj(c)ecθ∗j (µ), ARLµ(T (fj)) ∼
c

Ej(µ)
,

respectively, for 0 ≤ µ < µ∗
j and µ > µ∗

j , j = 1, 2, where µ∗
1 = 0.4363 and

µ∗
2 = 0.3436.

Note that the ARLs for the CUSUM chart, ARLµ(T (gδ)), are consistent
with the known results when the control limit is large (see Srivastava and Wu
(1997)).

Suppose that the control limits of T (f1), T (f2), and T (gδ)) have a large
common in-control ARL0. By checking (3.5) and (3.6) for the three charts, we
can make comparisons.

Remark 2. (1) ARLµ(T (f1)) <ARLµ(T (f2)) for 0.6597 < µ < 1.7162, and
ARLµ (T (f1)) > ARLµ (T (f2)) for 0 < µ < 0.6597 and µ > 1.7162.

(2) For δ = 1, ARLµ(T (gδ) > ARLµ(T (f1)) for 0 < µ < 0.7645, ARLµ(gδ) <

ARLµ(T (f1)) for µ > 0.7645, ARLµ(T (gδ)) > ARLµ(T (f2) for 0 < µ < 0.7164
and µ > 3.5437, and ARLµ(T (gδ)) < ARLµ(T (f2)) for 0.7164 < µ < 3.5437.

The one-sided CUSUM control chart with a reference value of δ/2 is optimal:
ARLµ(T (gδ) is the smallest if the real mean shift is δ. It follows from Remark 2 (2)
that both ARLµ(T (f1)) and ARLµ(T (f1)) are shorter than ARLµ(T (gδ) when
the real mean shift µ satisfies 0 < µ < 0.7645 < δ = 1 and µ > 3.5437 > δ = 1,
respectively. The optimality of the CUSUM control chart thus depends on the
choice of reference value δ/2.

Although these theoretical comparisons are based on the condition that the
control limits, and therefore the common ARL0, are large, the simulation results
in the next section produce results consistent with Remark 2.

Remark 3. Take the nonlinear filter fα defined in (2.4) and let {Yi(α) =
fα(Xi), i ≥ 1}, where {Xi, i ≥ 1} is i.i.d. normal. We have E(eθY1(α)) = +∞ for
α > 2 and any θ > 0. That is, condition (I) and therefore result (3.2) in Theorem
1 do not hold for {Yi(α), i ≥ 1} when α > 2. Thus, (3.5) and (3.6) cannot be
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used for the case of α > 2. However, the results in the next section show that
the two nonlinear filter control charts with stopping times T (fα) for α = 2.5 and
α = 3, respectively, have good detection performance in the presence of dynamic
mean shifts.

3.3. Design of an optimal NFC chart

The nonlinear filter control chart provides great flexibility in functional
forms, although the optimal design of such a control chart is challenging. Theo-
retically, any function could be a candidate for the optimal choice. Here, we only
consider filter functions in

D0 = {f : Eµ(f(Xi)) satisfies conditions (I) and (II) with E0(f(Xi)) < 0}.

If a NFC chart, defined at (2.3) with f∗(·) in D0, has the best performance in
detecting the unknown mean change in the range (0, R), where 0 < R ≤ ∞, we
call it the optimal filter function. Based on Section 3.1 and the inequalities (3.5)
and (3.6), we can conclude that the exponential rate and the expectation of the
optimal filter function, f∗(·) satisfy

a

∫ µf∗∧R

0

θ∗f∗(µ)
θ∗f∗(0)

dµ + b

∫ R

(µf∗+ε)∧R

1
θ∗f∗(0)Eµ(f∗(X1))

dµ

= min
f∈D0

{
a

∫ µf∧R

0

θ∗f (µ)
θ∗f (0)

dµ + b

∫ R

(µf+ε)∧R

1
θ∗f (0)Eµ(f(X1))

dµ

}
, (3.7)

where a, b, are two given positive constants with a + b = 1, ε is a small positive
number, µf satisfies Eµf

(f(X1)) = 0, Eµ(f(X1)) < 0 for 0 ≤ µ < µf , and
Eµ(f(X1)) > 0 for µ > µf . Here, a and b represent, respectively, the weight
of “small mean change, 0 < µ < µf” and “large mean change, µ > µf”. The
optimal filter function f∗(·) defined in (3.7) usually depends on a, b, ε and R.

While (3.7) provides a unified criterion for selecting an optimal control chart
for either NFC or LFC, it is not easy to obtain the optimal NFC chart since the
functions θ∗f (µ)/θ∗f (0) and θ∗f (0)Eµ(f(Xi)) usually have no closed form. If the set
D0 could be reduced, obtaining the optimal NFC chart becomes possible. For
example, let {Xi, i ≥ 1} be i.i.d. N(µ, 1), where µ ≥ 0. Let

D0 = D0(R, ε) = {fδ : fδ(x) = δ(x − δ/2), |x| < ∞, 0 < δ < 2(R − ε)},

where R > 0, ε > 0. Obviously, for any fixed δ > 0, fδ(X1) satisfies conditions (I)
and (II). Since θ∗fδ

(µ) = (δ−2µ)/δ for 0 ≤ µ < δ/2, µfδ
= δ/2 and Eµ(fδ(X1)) =

δ(µ − δ/2) for µ > δ/2, it follows that

a

∫ µf∧R

0

θ∗f (µ)

θ∗f (0)
dµ + b

∫ R

(µf+ε)∧R

1
θ∗f (0)Eµ(f(X1))

dµ
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= a

∫ δ/2

0
(1 − 2µ

δ
)dµ + b

∫ R

(δ/2+ε)∧R

1
δ(µ − δ/2)

dµ

=
aδ

4
+

b

δ
[ln(R − δ

2
) − ln ε] , H(δ).

We further have H ′(0) = −∞,H ′(2(R − ε)) = a/4 − b/(4ε(R − ε)), and

H ′′(δ) =
2b

δ3
[ln(R − δ

2
) − ln ε] +

b(4R − δ)
δ2(2R − δ)2

> 0

for 0 < δ < 2(R − ε). If aε(R − ε) ≤ b, then H(2(R − ε)) = inf0≤δ≤2(R−ε) H(δ).
Thus, the optimal filter function in D0(R, ε) is f∗(x) = (2R − ε)(x − R − ε). If
aε(R− ε) > b, then H(δ∗) = inf0≤δ≤2(R−ε) H(δ), and therefore, the optimal filter
function is f∗(x) = δ∗(x − δ∗/2), where δ∗ is the unique solution to

H ′(δ) =
a

4
− b

δ2
[ln(R − δ

2
) − ln ε] − b

δ(2R − δ)
= 0

for 0 ≤ δ ≤ 2(R − ε).

4. Simulation and Comparison

In this section, we further demonstrate that the nonlinear filter control charts
are superior at detecting dynamic mean shifts.

We chose nine control charts for comparison, a two-sided CUSUM chart with
δ = 1, six two-sided nonlinear filter charts with α = 1.0, 1.5, 1.8, 2.0, 2.5, and 3.0,
denoted by NFCα, and two adaptive CUSUM charts proposed by Sparks (2000)
because they are specifically designed for detecting shifts within a range. Ac-
cording to the Sparks (2000)’s recommendation, we build two adaptive CUSUM
charts, ACUSUM1 and ACUSUM2, for comparison purposes. The definitions
and settings of the two adaptive CUSUM charts are shown in Appendix I.

Observations, Xi, i ≥ 1, were i.i.d. normal N(µ, 1). The possible mean shift
values were µ = 0.05, 0.1, . . . , 6. As for the dynamic mean shifts, we assumed
that Xi, i ≥ 1, were mutually independent and Xk ∼ N(µpk, 1), with four types
of dynamic mean shifts {µpk} studied, respectively, in Figures 4.2−4.4. Figure
4.1 compares simulation results for step shifts in process mean, while Figures
4.2−4.5 contain results for four types of dynamic mean shifts. For dynamic
mean shifts, the definition of the first time (stopping time) outside the control
limit was the same as (2.3). Note that the results of Theorem 1 are not true
for the stopping time of the dynamic mean shift, since Yk = fα(Xk), k ≥ 1, had
different distributions, where Xk ∼ N(µpk, 1) and fα is defined in (2.4).

The numerical ARLs were obtained from 1,000,000 Monte Carlo simulations.
Although ARL is a popular criterion, it is deficient in evaluating the charting
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Figure 4.1. Comparison of ARLµ’s of the nine control charts with ARL0 =
700.

performance for a range of anticipated mean shifts. To handle such a situation,
Han and Tsung (2006) proposed the relative mean index (RMI) for a control



A NONLINEAR FILTER CONTROL CHART FOR DETECTING DYNAMIC CHANGES 1089

Figure 4.2. Comparison of ARLs of the nine control charts with ARL0 =
700, pk = 3/4 + 1/4(1/2)k−1.

chart as

RMI(a, b] =
1
n

n∑
i=1

[
ARLµi(T ) − ARL∗

µi

ARL∗
µi

], (4.1)
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Figure 4.3. Comparison of ARLs of the nine control charts with ARL0 =
700, pk = 5/4 − 1/4(1/2)k−1.

where µi and 1 ≤ i ≤ n are the mean shifts in the anticipated range (a, b]
(0 < a < b) within which the control chart performance is evaluated, ARLµi(T )
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Figure 4.4. Comparison of ARLs of the nine control charts with ARL0 =
700, pk = 1 + cos(kπ/4).

is the ARL of a control chart when the real mean shift is µi. Here ARL∗
µi

denotes
the smallest value of ARL of all control charts in comparison when the mean shift,
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Figure 4.5. Comparison of ARLs of the nine control charts with ARL0 =
700, pk = 1 + (−1)k/2.

µi, occurs. Obviously, the smaller RMI(T ), the better the control chart is at
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detecting mean shifts on the whole. Rather than using ARL at a specific shift
magnitude as a criterion, the proposed RMI can take all the possible mean shifts
within a range into consideration.

Figures 4.1−4.5 give the detailed numerical results of the out-of-control av-
erage run length. Here, all control charts were two-sided, and their common
in-control ARL0 was fixed at 700. RMI((0, 0.5]), RMI((0.5, 2]), RMI((2, 6]),
and RMI((0, 6]) are the relative mean index (RMI) of the small, medium and
large mean shifts, respectively. The smallest RMI values for a specific mean
shift are highlighted in boldface.

We first compare the results in Remark 2 with the Monte Carlo simulation
results of the NFC charts.

Remark 4. (1). In Figure 4.1, for step shifts in the process mean, we have
ARLµ(T (f1)) < ARLµ(T (f2)) for 0.55 < µ < 1.36, and ARLµ(T (f1)) > ARLµ

(T (f2)) for 0 < µ < 0.55 and µ > 1.36.

(2). In the presence of step changes in the process mean, for δ = 1, α = 1, and
α = 2, we have ARLµ(TC(1)) > ARLµ(T (f1)) for 0 < µ < 0.70, ARLµ(TC(1)) <

ARLµ(T (f1)) for µ > 0.70, ARLµ(TC(1)) > ARLµ(T (f2)) for 0 < µ < 0.64 and
µ > 3.02, and ARLµ(TC(1)) < ARLµ(T (f2)) for 0.64 < µ < 3.02.

Compared with Remark 2, we conclude that the theoretical results for large
control limits are basically consistent with the simulation results for ARL0 = 700.

For step mean shifts, Bagshaw and Johnson (1975) showed that the optimal
conventional CUSUM chart for detecting a mean shift µ is the CUSUM chart with
δ = µ/2. Therefore, in Figure 4.1, besides the ARLs of the nine control charts,
the ARLs of the conventional two-sided CUSUM control chart with stopping
time TC , with a reference value of µi/2 when the real mean shift is µi, are also
shown. Obviously, the NFC charts with α = 1.8 and α = 3, respectively, perform
the best in detecting small and large mean shifts. The adaptive CUSUM chart,
ACUSUM2, has higher capability in detecting medium mean shifts. However,
with regard to RMI((0, 6]), the NFC chart with α = 2.0 has better overall
performance than the CUSUM chart and the adaptive CUSUM charts.

In Figures 4.2−4.5, we show the performance of six NFC charts, one conven-
tional CUSUM chart, and two adaptive CUSUM charts in the presence of four
types of dynamic changes. Figures 4.2 and 4.3 show the effects of two types of
damping mean shifts, (3/4 + 1/4(1/2)k−1)µi and (5/4 − 1/4(1/2)k−1)µi. Obvi-
ously, these mean shifts increase and decrease, and finally stabilize at µi/4 and
5µi/4. In Figure 4.4, a cyclic mean shift, (1+ cos(kπ/4))µi is considered. Figure
4.5 shows how the control charts can detect “zigzag” mean shifts.

In Figure 4.2, the NFC chart with α = 1.8 and the NFC chart with α = 3.0,
respectively, had the best performances in detecting small and large mean shifts.
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With regard to medium mean shifts, the conventional CUSUM chart beats all
other charts with its smallest RMI values. However, judging from RMI((0, 6]),
the NFC chart with α = 2.0 enjoyed the best overall performance. Similar
conclusions can be drawn from Figure 4.3. The NFC charts still outperformed
the other two types of control charts in detecting small, large and overall mean
shifts.

In Figure 4.4, the advantage of the NFC control charts still remains. For
small and medium mean shifts, nearly all of the NFC charts performed better
than the competing control charts. The NFC chart with α = 1.8 had the highest
capability in detecting small and medium mean shifts. As to large mean shifts,
the conventional CUSUM chart had the best performance. However, with respect
to the overall performance, the NFC chart with α = 2.5 was the best. Therefore,
in detecting cyclic mean shifts, NFC charts appear preferable to the conventional
CUSUM chart and the adaptive CUSUM charts.

With regard to “zigzag” mean shifts, Figure 4.5 shows that NFC charts can
detect small and large mean shifts. The NFC chart with α = 3.0 was the best
for detecting large mean shifts, while the NFC chart with α = 1.8 performed
the best in the presence of small mean shifts. Although the conventional control
chart was most suitable for detecting medium mean shifts, the NFC chart with
α = 2.0 was the best for detecting a mean shift over the range (0, 6].

In summary, we found NFC charts more capable of detecting constant or
dynamic shifts in process mean. In particular, for step mean changes, the NFC
chart with α = 2.0 had better overall detection capability than either CUSUM
or adaptive CUSUM charts. For damping mean shifts, we recommend using the
NFC control chart with α = 2.0. For cyclic mean shifts, (1 + cos(kπ/4))µi, two
NFC control charts with α = 1.8 and α = 2.5 were better choices.
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Appendix I.

The control statistics of the two-sided adaptive CUSUM chart proposed by
Sparks (2000) are

δ̂U
t = max(αxt−1 + (1 − α)δ̂U

t−1, δ
U
min),

ZU
t = max

(
0, ZU

t−1 +
[xt − δ̂U

t /2]
h(δ̂U

t )

)
,
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δ̂L
t = min(αxt−1 + (1 − α)δ̂L

t−1, δ
L
max),

ZL
t = min

(
0, ZL

t−1 +
[xt − δ̂L

t /2]

h(−δ̂L
t )

)
,

where xt is the original observation of the process, δ̂L
t and δ̂U

t are the one-step-
ahead forecast of the mean shift at time t, δL

max and δU
min, respectively, denote the

smallest downside and upside mean shifts that are of interest, h(δ) is the control
limit of the conventional CUSUM chart when its reference value is k = δ/2, and
the in-control ARL is a pre-specified value, here it is 700. ZL

t and ZU
t are the

plotted statistics. The control chart signals whenever ZL
t < −hz or ZL

U > hz.
The value of hz is chosen to achieve a specified in-control ARL of the adaptive
CUSUM chart.

Sparks (2000) recommended using α = 0.1, δL
max = −0.5, δU

min = 0.5, δ̂L
1 =

−1, δ̂U
1 = 1 for detecting smaller shifts, and α = 0.1, δL

max = −0.75, δU
min =

0.75, δ̂L
1 = −1, δ̂U

1 = 1 for detecting larger shifts. We denote them, respectively,
as ACUSUM1 and ACUSUM2.
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