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Abstract: Multi-fidelity computer experiments are widely used in many engineering

and scientific fields. Nested space-filling designs (NSFDs) are suitable for conduct-

ing such experiments. Two classes of NSFDs are currently available. One class is

based on special orthogonal arrays of strength two, and the other consists of nested

Latin hypercube designs; both of them assume all factors are continuous. We pro-

pose an approach to constructing new NSFDs based on powerful (t, s)-sequences.

The method is simple, easy to implement, and quite general. For continuous fac-

tors, this approach produces NSFDs with better space-filling properties than exist-

ing ones. Unlike the previous methods, it can also construct NSFDs for categorical

and mixed factors. Some illustrative examples are given. Other applications of the

constructed designs are briefly discussed.
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1. Introduction

A large, expensive computer program, like a finite element analysis model,

can be executed at various degrees of fidelity, resulting in computer experiments

with multiple levels of cost and accuracy. Observations from such experiments are

often used for building a statistical emulator to predict the output from the most

accurate experiment involved (Kennedy and O’Hagan (2000); Qian et al. (2006);

Qian and Wu (2008)). Efficient data collection is critical to conducting such

experiments. Throughout, consider a situation involving u computer experiments

y1, y2, . . . , yu, where y1 is the most accurate, y2 is the second most accurate, and

so on.

Space-filling designs achieve uniformity in low dimensions: when projected

into low dimensions, the design points are evenly scattered in the design region.

Let D1 ⊂ · · · ⊂ Du denote a set of nested space-filling designs (NSFDs) with

u components, where each Di is a space-filling design. It is appealing to use a

set of of such Di’s for obtaining observations from y1, . . . , yu, with Di associated
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with yi. The space-filling properties of the designs enable the possibility of fully

exploring the design space. The nesting among the Di’s makes it easier to model

the systematic differences among the yi’s and implies more observations are taken

for less expensive experiments.

Currently, NSFDs constructed by using nested Latin hypercubes (Qian (2009);

Husslage, Dam and Hertog (2005)) and some special orthogonal arrays of strength

two (Qian, Ai and Wu (2009); Qian, Tang and Wu (2009)) are available. These

designs are for continuous factors and achieve uniformity in one- or two-dimen-

sional projections. In this article we propose an approach to constructing NSFDs

by exploiting structures in powerful (t, s)-sequences. This approach has several

advantages over existing NSFD constructions. First, the constructed designs

have better space-filling properties than existing ones; more discussion on this is

given in Sections 2 and 3. Second, the constructions can produce designs for any

number of continuous, categorical, or mixed factors. Third, the designs can be

generated in a very flexible manner.

The remainder of the article is organized as follows. Section 2 gives some

definitions, properties and useful notation. Sections 3−5 give the constructions

of three types of NFSDs. We conclude with a short summary in Section 6.

2. Definitions and Notation

Let Z+ ={0, 1, 2, . . .}. For an integer b≥1, Zb denotes the set {0, 1, . . . , b−1}

and Ωb denotes the set {1, . . . , b}. For a real number x, ⌊x⌋ denotes the largest

integer smaller than or equal to x. Throughout, any continuous factor is assumed

to take values in [0, 1].

Definition 1. For b ≥ 2, an elementary interval E ⊂ [0, 1)s in base b is any set

of the form

E =

s
∏

i=1

[

ai

bdi
,
ai + 1

bdi

)

, (2.1)

where ai, di are integers with di ≥ 0, 0 ≤ ai < bdi for i = 1, . . . , s. Note that the

set E has vol E = b−
Ps

i=1
di .

Definition 2. For b ≥ 2 and 0 ≤ t ≤ m, a (t,m, s)-net in base b is a set of bm

points D ⊂ [0, 1)s so that every elementary interval E in base b with vol E = bt−m

contains exactly bt points from D.

Definition 3. A sequence of points in [0, 1)s is called a (t, s)-sequence in base

b if for all k ≥ 0 and m > t, the set of points in the sequence with indices n,

kbm < n ≤ (k + 1)bm, form a (t,m, s)-net in base b.
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Points from a (t, s)-sequence achieve what is widely believed to be the best

possible uniformity in terms of the rate of decrease of the star discrepancy,

O((log N)s/N) (Niederreiter (1992)). The star discrepancy of a set of points

in [0, 1)s is the maximum difference between the empirical and Uniform(0, 1)s

distribution functions. Mullen, Mahalanabis and Niederreiter (1995) provide a

survey of the known methods of constructing (t, s)-sequences. In general, a (t, s)-

sequence exists and is not too difficult to construct for every s ≥ 1, b ≥ 2, and a

minimal t ≥ 0. The sequences used in the examples of this article are constructed

using the method given in Section 4.5 of Niederreiter (1992).

Owen (1995) proposed the idea of scrambling (t,m, s)-nets. Let A be a

(t,m, s)-net in base b with entries {Ai = (A1
i , . . . , A

s
i )

′ : i = 1, . . . , bm}, and let

X denote the scrambled version of A with entries {Xi = (X1
i , . . . ,Xs

i )′ : i =

1, . . . , bm}. Here Aj
i and Xj

i denote element j of Ai and Xi, respectively. This

use of superscripts does not cause any confusion since we do not use powers of

Ai and Xi. Observe that each Aj
i can be written as

Aj
i =

∞
∑

k=1

aj
i,kb

−k (2.2)

where aj
i,k ∈ Zb. The basic idea of the scrambling is as follows. Each dimension

of A is randomized independent of the other dimensions. For each dimension,

the interval [0, 1] is chopped into b equal length pieces and these are randomly

shuffled. At each additional stage, each of the individual pieces from the previous

stage is chopped into b more equal length pieces and those pieces are randomly

shuffled. Now the details are developed, following Loh (2003). First generate a

set of random permutations of Zb,

{πj , πj;a1
, πj;a1,a2

, πj;a1,a2,a3
, . . . : 1 ≤ j ≤ s, ak ∈ Zb, k = 1, 2, ...}, (2.3)

where these permutations are mutually independent and each of them is uni-

formly distributed over its b! possible values. Then take the entry Xj
i to be

Xj
i =

∞
∑

k=1

xj
i,kb

−k, (2.4)

where xj
i,1 = πj(a

j
i,1) and xj

i,k = π
j;aj

i,1,...,a
j
i,k−1

(aj
i,k) for k ≥ 2.

For a geometrical illustration of this scheme, see Owen (1997). Owen (1995)

shows that X is still a (t,m, s)-net with probability one, and the points in X are

marginally Uniform(0, 1)s.
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Figure 3.1. Four (0, 1, 2)-nets in base 4 contained in one (0, 2, 2)-net in base 4.

3. Construction of NSFDs for Continuous Factors

In this section we present the construction of NSFDs for continuous factors

based on a (t, s)-sequence. This construction is simple, following the definition

of (t, s)-sequences. It is known that it is possible to obtain nested designs from

(t, s)-sequences Owen (1997). From the definition of a (t, s)-sequence in Section

2, we find the following.

Proposition 1. Suppose there is a (t, s)-sequence in base b, and t < m1 < m2.

Then, there are bm2−m1 disjoint sets of points Ak ⊂ B so that each Ak is a

(t,m1, s)-net in base b and B is a (t,m2, s)-net in base b.

Proof. Take B to be the collection of points in the sequence with indices n,

lbm2 < n ≤ (l+1)bm2 for some l ∈ Z+. Then, B is a (t,m2, s)-net in base b. Take

Ak to be the collection of points in the sequence with indices n, lbm2 + kbm1 <

n ≤ lbm2 + (k + 1)bm1 for 0 ≤ k < bm2−m1 . Then, the Ak’s are disjoint (t,m1, s)-

sequences in base b contained in B.

It is clear from the above that not only can we obtain a pair of nested nets

with one containing the other but we can also slice a large net into several small

nets.

Example 1. Figure 3.1 shows four (0, 1, 2)-nets in base 4 contained in one

(0, 2, 2)-net in base 4. Notice that each elementary interval in base 4 with volume

1/4 contains exactly one point from each of the subsets and every elementary

interval in base 4 with volume 1/16 contains exactly one point from the combined

subsets.

Using these constructions, the set of designs, D1 ⊂ · · · ⊂ Du, can be gener-

ated in a very flexible manner. The nested designs should be able to accommo-

date more or less observations than expected while retaining good space-filling
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Figure 3.2. Left Panel: A (0, 2, 2)-net in base 6 with first 6 points and
representative elementary intervals indicated. Right Panel: Randomized
(0, 2, 2)-net in base 6 with first 6 points and representative elementary inter-
vals indicated.

properties. Further, the set of nested designs should be able to accommodate ad-

ditional designs with good space-filling properties at arbitrary locations within

the nesting structure. In particular, suppose that the design Di consists of the

points from a fixed (t, s)-sequence with indices kib
mi < n ≤ (ki +1)bmi . A design

Di+1 with Di ⊂ Di+1 can be generated by taking the points from the (t, s)-

sequence with indices ki+1b
mi+1 < n ≤ (ki+1 + 1)bmi+1 , where mi+1 > mi and

ki+1 = ⌊kib
mi−mi+1⌋. A design Di−1 with Di−1 ⊂ Di can be generated by taking

the points from the (t, s)-sequence with indices ki−1b
mi−1 < n ≤ (ki−1 + 1)bmi−1 ,

where mi−1 < mi and ki−1 = kib
mi−mi−1 +j for some j ∈ {0, 1, . . . , bmi−mi−1−1}.

Now we discuss how the randomization procedure given in Section 2 can

affect nesting among the Di’s. It is apparent that if the Di’s are scrambled

independently, the resulting designs would no longer be nested. A salient feature

of the permutations in (2.3) is that they are defined with respect to the coefficients

of Xj
i in the expansion (2.4), not the value of Xj

i directly. This property implies

that if the Ai’s are scrambled by using the same set of π’s, the resulting designs

will still be nested. Throughout, the same set of permutations is used whenever

it is necessary to scramble nested (t,m, s)-nets. Similar ideas were used in Yue

(1999) for scrambling a union of nets.

Example 2. Consider the (0, 2, 2)-net in base 6 from a (0, 2)-sequence in base 6

shown in Figure 3.2. Representative elementary intervals in base 6 of volumes 1/6

and 1/36 are indicated. Notice that the first 6 points form a (0, 1, 2)-net in base

6 and all 36 points form a (0, 2, 2)-net in base 6. Now consider the randomized

version of the net shown in Figure 3.2. Notice that the first 6 points are still a

(0, 1, 2)-net in base 6, the set of all points is still a (0, 2, 2) net in base 6, and the



1068 BEN HAALAND AND PETER Z. G. QIAN

points of the randomized net have less pattern in their arrangement than those

of the original un-randomized net.

As mentioned previously, NSFDs based on (t, s)-sequences have excellent

space-filling properties. NSFDs constructed in Qian (2009), Qian, Ai and Wu

(2009), and Qian, Tang and Wu (2009) have the property that one- or two-

dimensional projections are uniform for all designs within the nesting struc-

ture. In contrast, the NSFDs constructed in this section can achieve unifor-

mity in higher dimensions and have uniform low-dimensional projections for

increasingly large sets of dimensions as one moves through the nesting struc-

ture. Also, it is well-known that Sobol’ sequences have a nesting structure

(Santner, Williams and Notz (2003)). Note that Sobol’ sequences are (t, s)-

sequences in base 2 with a larger than optimal value of t. All results here apply

immediately to Sobol’ sequences.

4. Construction of NSFDs for Categorical Factors

Computer models with only categorical factors appear in areas like combina-

torial chemistry. This section presents the construction of NSFDs for categorical

factors. This serves as a building block for the construction of NSFDs with mixed

factors in Section 5.

For a c-level categorical factor, we denote the c levels by 0, 1, . . . , c− 1. The

basic idea of the construction is to map the values of nested designs constructed

in Section 3 to form nested orthogonal arrays, i.e., large orthogonal arrays with

high strength containing smaller ones with lower strength. Orthogonal arrays

have good balance properties among the factors. An orthogonal array of N

runs with s factors each with c levels and strength r, denoted OA(N, s, c, r), is

an N × s matrix in which any r columns contain all possible combinations of

symbols equally often. For r ≥ s, OA(N, s, c, r) denotes a full factorial.

The following is a result which Owen (1995) pointed out. We present it here

and provide a proof.

Proposition 2. Using a (t,m, s)-net in base b, an OA(bm, s, bq, ⌊(m−t)/q⌋) can

be produced for q = 1, . . . ,m − t by applying the element-wise mapping ⌊bqXj
i ⌋.

Proof. Let X̃ denote the matrix consisting of the mapped Xj
i ’s. Note that

X̃j
i ∈ Zbq . Arbitrarily take r = ⌊(m − t)/q⌋ columns from X̃ , call them R, and

consider a partition of [0, 1)s into bqr elementary intervals each of which is of the

form
(

∏

j∈Rc

[0, 1)

)

×

(

∏

j∈R

[aj

bq
,
aj + 1

bq

)

)

, (4.1)
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where ak ranges over 0, 1, . . . , bq−1 for k = 1, . . . , r. Each of these elementary in-

tervals contains exactly bm/bqr points from the net that correspond to the bm/bqr

rows of X̃ where the r selected columns have the level combination a1, . . . , ar.

Proposition 3. Using a (t, s)-sequence in base b, bm2−m1 disjoint OA(bm1 , s,

bq, ⌊(m1 − t)/q⌋)’s ⊂ OA(bm2 , s, bq, ⌊(m2 − t)/q⌋) can be produced for q =

1, . . . ,m1 − t, where m2 > m1.

Proof. By Proposition 1, there exist bm2−m1 (t,m1, s)-nets in base b contained

in a (t,m2, s)-net in base b. Apply the element-wise mapping ⌊bqXj
i ⌋ to each

point. The conclusion follows from Proposition 2.

Similar to the constructions following Proposition 1, it is easy to construct

NSFDs for categorical factors based on Proposition 3.

Example 3. Consider a computer model with four categorical factors, each

with 4 levels. Suppose that the model needs to be conducted at three levels of

accuracy, with 4 runs for y1, 16 runs for y2 and 64 runs for y3. Figure 4.3 shows

an OA(64, 4, 4, 3) constructed by Proposition 3. This array is divided into four

OA(16, 4, 4, 2)’s given in four blocks, each of which is further divided into four

OA(4, 4, 4, 1)’s as separated by the solid lines. The design sets for the yi’s are as

follows: for y1 use Runs 1-4 in block 1; for y2 use all runs in block 1; for y3 use

all runs in the four blocks.

2 0 3 3 2 1 0 1 2 3 2 2 2 2 1 0
0 1 2 0 0 0 1 2 0 2 3 1 0 3 0 3
3 3 1 1 3 2 2 3 3 0 0 0 3 1 3 2
1 2 0 2 1 3 3 0 1 1 1 3 1 0 2 1
2 1 1 2 2 0 2 0 2 2 0 3 2 3 3 1
0 0 0 1 0 1 3 3 0 3 1 0 0 2 2 2
3 2 3 0 3 3 0 2 3 1 2 1 3 0 1 3
1 3 2 3 1 2 1 1 1 0 3 2 1 1 0 0
2 3 0 0 2 2 3 2 2 0 1 1 2 1 2 3
0 2 1 3 0 3 2 1 0 1 0 2 0 0 3 0
3 0 2 2 3 1 1 0 3 3 3 3 3 2 0 1
1 1 3 1 1 0 0 3 1 2 2 0 1 3 1 2
2 2 2 1 2 3 1 3 2 1 3 0 2 0 0 2
0 3 3 2 0 2 0 0 0 0 2 3 0 1 1 1
3 1 0 3 3 0 3 1 3 2 1 2 3 3 2 0
1 0 1 0 1 1 2 2 1 3 0 1 1 2 3 3

Figure 4.3. The designs used for Example 3, OA(4, 4, 4, 1)’s ⊂ OA(16, 4, 4, 2)’s
⊂ OA(64, 4, 4, 3).
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5. Construction of NSFDs for Mixed Factors

In this section we discuss how to construct NSFDs for mixed factors.

Recent work of Han et al. (2009) and Qian, Wu and Wu (2008) demonstrates

that computer codes can include categorical factors as well. For example,

the computational fluid dynamics code used for the data-center experiment

in Schmidt, Cruz and Iyengar (2005) includes categorical variables “diffuser lo-

cation” and “return air vent location.” Computer models in marketing and social

sciences often involve qualitative factors such as gender and commuting method.

Suppose that y1, . . . , yu involve both continuous factors w and categorical

factors z. For Di, the design for yi, let Dw
i and Dz

i denote the continuous and cat-

egorical parts of Di. The designs, D1 ⊂ · · · ⊂ Du, should have several properties.

First, the Dw
i ’s and Dz

i ’s should be respectively nested, as done in Propositions

1 and 3. Second, it is important to consider the interplay between w and z in ob-

taining observations from the experiment yi. Note that yi may perform distinctly

under different level combinations of z or with different value ranges of w. There-

fore, for every level combination of z, the corresponding points in Dw
i should have

good space-filling properties. This idea was also used in Qian and Wu (2009) for

constructing sliced space-filling designs based on orthogonal arrays. Similarly,

for every possible range of values of w, the corresponding points in Dz
i should

achieve some uniformity.

Here is some additional notation. Let card S denote the cardinality of a

finite set S. Recall that, for an integer s ≥ 1, Ωs denotes the set {1, . . . , s}. For

a subset Si of Ωs and an s-dimensional vector a, let a|Si
denote the sub-vector

of a consisting of the entries in the dimensions specified by Si.

Lemma 1. Suppose that X is a (t,m, s)-net in base b, and that Ωs is divided

into two components S1 and S2, with s1 = card S1 and s2 = card S2. Then we

have:

(a) X|
S1

and X|
S2

are (t,m, s1) and (t,m, s2)-nets in base b, respectively;

(b) for k = 1 or 2 and each fixed elementary interval E∗ in Rsk in base b with

volume b−r and r ∈ {0, 1, . . . ,m − t}, the points {xi|Sc
k

: xi|Sk
∈ E∗} form a

(t,m − r, sc
k)-net in base b where Sc

k = Ωs�Sk and sc
k = card Sc

k.

Proof. (a) For k = 1 or 2, let E =
∏

j∈Sk

[

aj/b
dj , (aj + 1)/bdj

)

be an elementary

interval in Rsk in base b with volume b
−

P

j∈Sk
dj = bt−m. Then,

(

∏

j∈Sc
k

[0, 1)

)

×

(

∏

j∈Sk

[

aj

bdj
,
aj + 1

bdj

)

)

(5.1)
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is an elementary interval in Rs in base b with volume bt−m and so contains exactly

bt points from X.

(b) Write E∗ =
∏

j∈Sk

[

aj/b
dj , (aj + 1)/bdj

)

. Then, b
−

P

j∈Sk
dj = b−r. Consider an

arbitrary elementary interval in Rsc
k in base b, F ∗ =

∏

j∈Sc
k

[

aj/b
dj , (aj + 1)/bdj

)

,

with volume b
−

P

j∈Sc
k

dj
= b−(m−t−r). Then F ∗ ×E∗ is an elementary interval in

Rs in base b with volume bt−m and so contains exactly bt points from X.

Proposition 4. Suppose that X, S1 and S2 are as defined in Lemma 1. We

obtain a new design, Y , by applying the element-wise mapping ⌊bqXj
i ⌋ for all

entries of X with j ∈ S1, where q ∈ {1, . . . ,m − t}. Then, we have:

(a) Y |
S1

is an OA(bm, s1, b
q, ⌊(m − t)/q⌋) and Y |

S2
is a (t,m, s2)-net in base b;

(b) for any elementary interval E∗ in Rs2 in base b with volume b−r, where r ∈

{1, . . . ,m−t−q}, the points {yi|S1
: yi|S2

∈ E∗} form an OA(bm−r, s1, b
q, ⌊(m−

t − r)/q⌋);

(c) for any fixed set of v components with v ∈ {1, . . . , ⌊(m − t)/q⌋} of Y |
S1

, call

them S∗, and any fixed level combination E∗ ∈ Zv
bη , the points {yi|S2

: yi|S∗
=

E∗} form a (t,m − vq, s2)-net in base b.

Proof. (a) It follows immediately from Lemma 1 and Proposition 3.

(b) From Lemma 1, {xi|S1
: xi|S2

∈ E∗} form a (t,m − r, s1)-net in base b.

Applying the element-wise mapping to this design gives an OA(bm−r, s1, b
q, ⌊(m−

t − r)/q⌋).

(c) Note that the points {yi|S1
: yi|S∗

= E∗} correspond to the points

{xi|S1
: xi|S1

∈ E}, where E is an elementary interval in Rs1 in base b given

by

E =

(

∏

j∈S∗

[aj

bq
,
aj + 1

bq

)

)

×

(

∏

j∈S1∩S
c
∗

[0, 1)

)

. (5.2)

Because of Lemma 1, {yi|S2
: yi|S∗

= E∗} form a (t,m − vq, s2)-net in base b.

Now we are ready to present the construction of NSFDs with mixed factors.

Suppose there is a (t, s)-sequence in base b, S1 and S2 are as defined in Proposition

4, m2 > m1 > t, and q ∈ {1, . . . ,m1−t}. Apply the element-wise mapping ⌊bqXj
i ⌋

for j ∈ S1. Let Y denote the resulting design.

Proposition 5. For the constructed Y ,
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(a) Y |S1
consists of bm2−m1 distinct OA(bm1 , s1, bq, ⌊(m1 − t)/q⌋)’s ⊂ OA(bm2 ,

s1, bq, ⌊(m2 − t)/q⌋);

(b) Y |S2
consists of bm2−m1 disjoint (t,m1, s2)-nets in base b contained in a

(t,m2, s2)-net in base b;

(c) for any fixed set of v components of Y |
S1

with v ∈ {1, . . . , ⌊(m1 − t)/q⌋}, call

them S∗, and any fixed level combination E∗ ∈ Zv
bq , the points

{yi|S2
: yi|S∗

= E∗, (k − 1)bm1 < i ≤ kbm1} (5.3)

form bm2−m1 disjoint (t,m1 − vq, s2)-nets in base b as k ranges over {1, . . .,

bm2−m1} contained in the (t,m2−vq, s2)-net in base b given by {yi|S2
: yi|S∗

=

E∗};

(d) for any elementary interval E∗ in Rs2 in base b with volume b−r and r ∈

{1, . . . ,m1 − t − q}, the points

{yi|S1
: yi|S2

∈ E∗, (k − 1)bm1 < i ≤ kbm1} (5.4)

form bm2−m1 distinct OA(bm1 , s1, b
q, ⌊(m1 − t − r)/q⌋)’s as k ranges over

{1, . . . , bm2−m1} contained in the OA(bm2 , s1, b
q, ⌊(m2 − t − r)/q⌋) given by

{yi|S1
: yi|S2

∈ E∗}.

Proof. The statements follow from Propositions 1, 3, and 4.

Example 4. As an illustration of Proposition 5, consider a computer model with

two categorical factors, each at 3 levels, and two continuous factors. Suppose that

it is necessary to run three versions of the model, y1, y2, y3, with 9 runs for y1,

27 runs for y2 and 81 runs for y3. Figure 5.4 gives the design constructed by

Proposition 5 based on a randomized (1, 4)-sequence in base 3. We use the first

9 runs in block 1, all 27 runs in block 1, and all 81 runs in the three blocks of

this design for y1, y2, and y3, respectively.

According to Proposition 5, the design in Figure 5.4 has the following prop-

erties. First, the part for the categorical factors is nine OA(9, 2, 3, 2)’s ⊂ three

OA(27, 2, 3, 3)’s ⊂ one OA(27, 2, 3, 4). Second, the part for the continuous factors

is nine (1, 2, 2)-nets in base 3 ⊂ three (1, 3, 2)-nets in base 3 ⊂ one (1, 4, 2)-net

in base 3. Third, the part for the continuous factors and that for the categorical

factors have good balance with respect to one another. Of the first 27 runs in

Figure 5.4, consider only those where the first categorical variable is at level 2.

These 9 runs are indicated with right arrows in the figure and their continuous

part forms three (1, 1, 2)-nets in base 3 ⊂ one (1, 2, 2)-net in base 3 as shown in

Figure 5.5. Next, of all the runs in Figure 5.4 consider only those whose continu-

ous points lie in the elementary interval E∗ = [0, 1/3)× [0, 1). These 27 runs are

indicated with left arrows and their categorical part forms three OA(9, 2, 3, 2)’s

⊂ one OA(9, 2, 3, 3) as shown in Figure 5.5.
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1 0 0.3238 0.8999 ← + 1 1 0.8999 0.5172 1 2 0.4352 0.0867
+→ 2 2 0.9243 0.7107 2 0 0.4078 0.6358 2 1 0.3046 0.2919 ← ◦

0 1 0.4281 0.8107 0 2 0.3208 0.3688 ← × 0 0 0.9107 0.1455
1 1 0.7307 0.0388 1 2 0.5802 0.9746 1 0 0.1578 0.5252 ← ◦

+→ 2 0 0.5817 0.2354 2 1 0.1847 0.7454 ← × 2 2 0.7231 0.5625
0 2 0.1631 0.1575 ← + 0 0 0.7072 0.8306 0 1 0.5662 0.4347
1 2 0.5446 0.4779 1 0 0.0225 0.0137 ← × 1 1 0.8601 0.9446

+→ 2 1 0.0362 0.5955 ← + 2 2 0.8885 0.3061 2 0 0.5305 0.6790
0 0 0.8662 0.3883 0 1 0.5332 0.1960 0 2 0.0106 0.8848 ← ◦

1 2 0.8058 0.7798 1 0 0.4854 0.3432 1 1 0.0505 0.1222 ← ◦

× → 2 1 0.5000 0.9148 2 2 0.0483 0.4965 ← × 2 0 0.7988 0.0803
0 0 0.0667 0.7331 ← + 0 1 0.7822 0.6585 0 2 0.5112 0.2660
1 0 0.3763 0.1758 1 1 0.2284 0.8261 ← × 1 2 0.9387 0.4191

× → 2 2 0.2511 0.0672 ← + 2 0 0.9348 0.9905 2 1 0.3827 0.5519
0 1 0.9542 0.2309 0 2 0.4003 0.7690 0 0 0.2349 0.5686 ← ◦

1 1 0.2188 0.3719 ← + 1 2 0.6891 0.2045 1 0 0.6564 0.8673
× → 2 0 0.6979 0.4569 2 1 0.6362 0.0042 2 2 0.1983 0.9526 ← ◦

0 2 0.6533 0.6205 0 0 0.1897 0.3301 ← × 0 1 0.6715 0.6740
1 1 0.5965 0.7203 1 2 0.1190 0.6438 ← × 1 0 0.7473 0.2735

◦ → 2 0 0.1422 0.7987 ← + 2 1 0.7716 0.3486 2 2 0.6068 0.1244
0 2 0.7537 0.9107 0 0 0.6194 0.4925 0 1 0.1279 0.1035 ← ◦

1 2 0.0943 0.2496 ← + 1 0 0.8421 0.7567 1 1 0.4716 0.5895
◦ → 2 1 0.8267 0.1608 2 2 0.4473 0.8470 2 0 0.1043 0.4199 ← ◦

0 0 0.4611 0.0558 0 1 0.0827 0.9801 ← × 0 2 0.8359 0.5310
1 0 0.9683 0.6094 1 1 0.3668 0.3112 1 2 0.2827 0.6946 ← ◦

◦ → 2 2 0.3471 0.4053 2 0 0.2621 0.2121 ← × 2 1 0.9816 0.8617
0 1 0.2941 0.4512 ← + 0 2 0.9934 0.0332 0 0 0.3353 0.9358

Figure 5.4. The designs for Example 4. The first 27 runs where the first
categorical variable is at level 2 are indicated with right arrows and runs
where the continuous variables are in the elementary interval [0, 1/3)× [0, 1)
are indicated with left arrows.

6. Summary

By exploiting the underlying structure in (t, s)-sequences, some new NSFDs

have been constructed. They can accommodate various types of factors and have

better space-filling properties than existing NSFDs. These designs can be used

for obtaining observations from multi-fidelity computer experiments to build a

flexible prediction model. They can also be used to obtain observations for

estimating the means of the outputs of such experiments given a distribution of

inputs.

The constructed designs have other applications in statistics. They are use-

ful for sequential experimentation in computer models, calibration and validation

of computer models (Kennedy and O’Hagan (2001); Oberkampf and Trucano

(2007)), optimization under uncertainty methods (Nemirovski and Shapiro (2006);

Ruszczynski and Shapiro (2003), multi-level function estimation (Fasshauer
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0
0

1
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1 0 0 2 2 1
0 2 2 1 1 0
2 1 1 0 0 2
0 0 2 2 1 1
2 2 1 1 0 0
1 1 0 0 2 2
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Figure 5.5. Left Panel: The continuous part of the first 27 runs where the
first categorical variable is at level 2 forms three (1, 1, 2)-nets in base 3 ⊂
one (1, 2, 2)-net in base 3. Right Panel: The categorical part of the runs
where the continuous variables are in the elementary interval [0, 1/3)× [0, 1)
forms three OA(9, 2, 3, 2)’s ⊂ one OA(9, 2, 3, 3).

(2007)), linking parameters (Husslage et al. (2003)) and sequential evaluations

(Husslage, Dam and Hertog (2005)).

Acknowledgements

The authors thanks the Editor, an associate editor, and two referees for

their comments that led to improvement in the article. Haaland is supported by

Award Number T32HL083806 from the National Heart Lung and Blood Institute.

The content is solely the responsibility of the author and does not necessarily

represent the official views of the National Heart Lung and Blood Institute or the

National Institutes of Health. Qian is supported by NSF Grant DMS-0705206

and a faculty award from IBM.

References

Fasshauer, G. E. (2007). Meshfree Approximation Methods with MATLAB R©. New Jersey, World

Scientific Publishing.

Han, G., Santner, T. J., Notz, W. I. and Bartel, D. L. (2009). Prediction for computer experi-

ments having quantitative and qualitative input variables. Technometrics 51, 278-288.

Husslage, B. G. M., Dam, E. R. V. and Hertog, D. D. (2005). Nested maximin Latin hypercube

designs in two dimensions. CentER Discussion Paper 2005-79. Tilburg University, Tilburg,

The Netherlands.

Husslage, B., Dam, E. V., Hertog, D. D., Stehouwer, P. and Stinstra, E. (2003). Collaborative

metamodeling: coordinating simulation-based product design. Concurrent Engineering 11,

267-278.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex computer code

when fast approximations are available. Biometrika 87, 1-13.



NESTED SPACE-FILLING DESIGNS 1075

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. J. Roy.

Statist. Soc. Ser. B 63, 425-464.

Loh, W. L. (2003). On the asymptotic distribution of scrambled net quadrature. Ann. Statist.

31, 1282-1324.

Mullen, G. L., Mahalanabis, A. and Niederreiter, H. (1995). Tables of (t, m, s)-Net and (t, s)-
Sequence Parameters. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Com-

puting. Lecture Notes in Statistics 106, 58-86 Springer-Verlag, New York.

Nemirovski, A. and Shapiro, A. (2006). Convex approximations of chance constrained programs.
SIAM J. Optim. 17, 969-996.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. Society
for Industrial Mathematics, Philadelphia.

Oberkampf, W. L. and Trucano, T. (2007). Verification and validation benchmarks. Sandia
National Laboratories (SAND 2007-0853), Albuquerque.

Owen, A. B. (1995). Randomly permuted (t, m, s)-nets and (t, s)-sequences. Monte Carlo and

Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statist. 106, 299-
317. Springer, New York.

Owen, A. B. (1997). Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal.

34, 1884-1910.

Qian, P. Z. G. (2009). Nested Latin hypercube designs. Biometrika 96, 957-970.

Qian, P. Z. G., Ai, M. and Wu, C. F. J. (2009). Construction of nested space-filling designs.
Ann. Statist. 37, 3616-3643.

Qian, P. Z. G., Tang, B. and Wu, C. F. J. (2009). Nested space-filling designs for computer
experiments with two levels of accuracy. Statist. Sinica 19, 287-300.

Qian, P. Z. G. and Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating low-
accuracy and high-accuracy experiments. Technometrics 50, 192-204.

Qian, P. Z. G. and Wu, C. F. J. (2009). Sliced space-filling designs. Biometrika 96, 945-956.

Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008). Gaussian process models for computer experi-
ments with qualitative and quantitative factors. Technometrics 50, 383-396.

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K. and Wu, C. F. J. (2006). Building
surrogate models based on detailed and approximate simulations. ASME Transactions, J.

Mechanical Design 128, 668-677.

Ruszczynski, A. and Shapiro, A. (eds) (2003). Stochastic Programming. Handbooks in Operations

Research and Management Science 10. Elsevier, Amsterdam.

Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer

Experiments. Springer, New York.

Schmidt, R. R., Cruz, E. E. and Iyengar, M. K. (2005). Challenges of data center thermal
management. IBM J. Research and Development 49, 709-723.

Yue, R.-X. (1999). Variance of quadrature over scrambled unions of nets. Statist. Sinica 9,
451-473.

Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison,
WI 53706, USA.

E-mail: haaland@stat.wisc.edu

Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison,
WI 53706, USA.

E-mail: peterq@stat.wisc.edu

(Received November 2008; accepted April 2009)

file:haaland@stat.wisc.edu
file:peterq@stat.wisc.edu

	1. Introduction
	2. Definitions and Notation
	3. Construction of NSFDs for Continuous Factors
	4. Construction of NSFDs for Categorical Factors
	5. Construction of NSFDs for Mixed Factors
	6. Summary

