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By building on the stochastic search approach (George and McCulloch, 1993) we
propose a strategy for performing constrained variable selection. We discuss hierarchi-
cal and grouping constraints; and introduce anti-hierarchical constraints, in which the
inclusion of a variable forces another to be excluded from the model. We prove consis-
tency results about model receiving maximal posterior probability and about the median
model (Barbieri and Berger, 2004), and discuss extension to generalized linear models.

S1 Implementation of the method

In this section we will briefly sketch some guidelines for implementation of the method,
summarizing material from Section 2 of the main paper.

We first give a general method for fixing the constraints. We note that in the present
formulation constraints specification depends on the column ordering of the variables in
the data matrix.

Without loss of generality suppose the groups are ordered so that the first group
runs from the first to the j1-th column, the second from the j1 + 1-th to the j2-th and
so on. Let j0 = 1. The grouping constraints can then simply be set by fixing ηi(ji) = 1
for j = ji−1, . . . , ji and for i = 1, . . . , g; and ηi = 0 otherwise.

A general method for fixing hierarchical constraints consists in forming an rH x 2
matrix H in which in the first column one specifies the position of the father in the data
matrix, and in the second the position of the son. Then for r = 1, . . . , rH γhr1(hr2) = 1,
and zero otherwise. The anti-hierarchical constraints can be fixed similarly.

Different approaches can be used depending on how data are organized.

We now focus on the simplest Gibbs sampling strategy that can be adopted for
model fitting. Suppose prior parameters have been chosen, together with starting values
for the MCMC sampler.

The general iteration of the sampler is as follows:
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1. For j = 1, . . . , p set γj =
g
∏

k=1

η
φk(j)
k .

2. Let γold := γ.

For j ∈ {j :
g
∏

k=1

η
φk(j)
k = 1} set γj :=

(

∏

j 6=i

∏

j 6=i

(1 − γi)
ξi(j)γ

δi(j)
i

)

.

3. If γold is equal to γ, go to Step 4, otherwise go to Step 2.

4. Sample β from its full conditional

β | Y, X, σ2, η ∼ N((X ′X + D−1R−1D−1)−1X ′Y, σ2(X ′X + D−1R−1D−1)−1),
(S1.1)

where D = diag(
√

γjτ2
1j + (1 − γj)τ2

0j/σ).

5. Sample σ2 from its full conditional

σ2 | Y, X, β, η ∼ IG(
n + νγ

2
,
νγλγ + |Y − Xβ|2

2
) (S1.2)

6. For k = 1, . . . , g sample

ηk | β, σ2 ∼ Bernoulli(
wka

wka + (1 − wk)b
), (S1.3)

where a = f(β | η−k, ηk = 1)f(σ2 | η−k, ηk = 1), b = f(β | η−k, ηk = 0)f(σ2 |
η−k, ηk = 0) and where η−k stands for the vector η to which the k-th component
was removed.

S2 Choice of prior parameters

For an informed choice of the prior variance of the coefficients, the same comments in
George and McCulloch (1997) apply here: let ∆i = ∆Y/∆Xi, where ∆Y is the size of
an insignificant change in Y and ∆Xi the size of a maximum feasible change in Xi. ∆i

is usually referred to as the “threshold of practical significance”, since it is believed that
whenever |βi| ≤ ∆i then there is negligible linear relationship between Xi and Y . One
can then choose the prior variance so that ∆2

i = log(τ2
1i/τ2

0i)/(1/τ2
0i − 1/τ2

1i), and τ2
1i is

large enough. In general we want to set τ2
0i small enough so to ensure a posterior estimate

close to zero whenever the variable is not relevant in the model, and τ2
1i big enough so

to avoid too much shrinkage towards zero of the posterior estimate if the variable is
in fact relevant. The value of τ2

1i depends then on the order of magnitude of Xi. We
have to note however that setting τ2

0i/τ2
1i too small may slow down the convergence of

the MCMC chain, so a long is recommended in order to get accurate estimates of β.
Standardization can also be used in order to allow for smaller values of τ2

1i. A different
possibility is given by setting τ0i

∼= 0 and τ1i large (diffuse prior). This is along the
lines of the “spike and slab” approach described in Mitchell and Beauchamp (1988), who
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put a prior probability mass at zero (i.e., τ2
0i = 0). If τ2

0i is exactly zero, or too close,
then different sampling strategies (for instance, MC3) may be adopted in order to avoid
computational problems and assure convergence of the chain. See for instance Carlin
and Chib (1995); Geweke (1996).

If there is no prior information about the probability of inclusion of each group,
wk can be chosen as the indifference probability wk = 0.5. In models with a very large
number of predictors, lower values may be more appropriate in order to give higher
support to more parsimonius models. For the same reason, another possible choice is
anyway to let wk decrease with the size of the group. If we set equal to p1 the probability
of inclusion of a group made up of a single variable, the probability of inclusion of group

Gk may be set equal to p
card(Gk)
1 . Note that, due to the model specification, the inclusion

of transformations and interactions is directly penalized independently of the choice of
wk. This feature of the approach enhances interpretability.

Two common choices are available for the prior correlation matrix. Prior indepen-
dence is often assumed, in which case R is the identity matrix. Posterior correlations are
shrunk towards zero. Another possibility is to have R ∝ (X ′X)−1, in which case poste-
rior correlations are equal to the design correlation. For further discussion see George
and McCulloch (1997); Zellner (1986).

Finally, νγ can be as usual interpreted as the prior sample size, and νγλγ/(νγ −2) as
a prior estimate for σ2. One might let νγ and λγ depend on γ, by having νγλγ/(νγ − 2)
be decreasing with respect to

∑

γj , since it is expected that models in which a larger
number of variables is included will be characterized by a smaller residual variance.

We stress that a careful tuning, as in all stochastic variable selection methods, is
very important for a quick convergence of the MCMC sampler.

S2.1 Default Priors

Since the main aim of this paper is to cast constrained variable selection in a simple and
computationally efficient framework, we proposed the hierarchical model in its simplest
form. Such model can be easily generalized to allow for general priors, and additional
levels in the hierarchy can be used in order to learn prior parameters.

A particularly relevant setting though is the one given by the use of default priors.
The common approach is to combine an improper prior for the intercept and variance
of the error term with Zellner’s g-prior (Zellner, 1986), thereby having π(σ) ∝ σ−1 and
fixing R = σ2(hX ′X)−1. This would result in a variable specific g-parameter gj, set
equal to h/(γjτ1jr + (1 − γj)τ

2
0j). The tuning parameter h can be chosen so that gj is

equal to one between 1/n, 1/p2, or the smallest between the two. See Fernandez et al.
(2001) for further discussion. Liang et al. (2008) suggest moreover a class of hyperpriors
for g which still allow for closed form expressions for the marginal likelihoods. In a
similar spirit an hyperprior can be put on wk as suggested by Ley and Steel (2009).
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S3 Real Data Examples

S3.1 Titanic Data

We illustrate extension to GLM in the context of log-linear models, in which a large
number of high-order interactions naturally arise and in which the hierarchical structure
shall often be preserved.

Data come from British Board of Trade (1990), who recorded class (1st, 2nd, 3rd
or Crew), Sex, Age (adult or child) and survival status for 2201 persons on board of the
Titanic, in their investigation of the sinking. Interest in these data stems from the fact
that the “women and children first” policy seem not to have been respected for the third
class, as reflected by the survival rates.

The class is recoded into three dummy variables (corner point reparameterization),
which are grouped, and the other three dummies form three individual groups.

The saturated model includes all the main effects plus interactions up to the fourth
order, and can be formulated as:







Yijkh ∼ Poisson(λijkh)
log(λijkh) = β0 + β1class1i + . . . + β6survivalh

+β14class1i ∗ sexj + . . . + β3456class3i ∗ sexj ∗ agek ∗ survivalh.

We fix τ0 = 0.045 and τ1 = 10 and fit the proposed log-linear model on these data
forcing a hierarchical structure, the presence of the main effect of survival status; and
allowing for interactions up to the fourth order. The posterior median model and model
with highest posterior probability coincide, and agree in selecting a log-linear model with
main effects, all second-order interactions and all the third-order interactions except the
one between Sex, Age and Survival.

There is very low uncertainty here in model choice. The selected model has posterior
probability 0.51, while the second most likely model only 0.20.

In order to further validate the model we use frequentist measures. The chosen
model has likelihood ratio test statistic 1.68, on 4 degrees of freedom (p-value=0.79).
The model with best likelihood ratio test statistic, with all second-order interactions but
only two of the four third-order interactions, has likelihood ratio test statistic 21.95, on
7 degrees of freedom (p-value=0.003). Moreover, stepwise methods would lead to select
our same model in this case.

S3.2 Spam Data

In order to illustrate the potentiality of our method with many variables and many con-
straints, we show application to Spam identification with the the Spambase data set.
We have n = 4601 emails, 39% of which are spam, and p = 57 variables, data and a full
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description are available on the UCI Machine Learning Repository
(http://www.ics.uci.edu/ mlearn/MLRepository.html). The binary response records
whether an email is spam or not, and the explanatory variables record frequency of oc-
currence of certain flag words and of special characters. A complete list is in Table
1.

It is natural to expect high-order interactions between the occurrence of certain
words in this data set. We proceed by randomly splitting the data set in a training set
of 3221 observations and a test set of the remaining 1380.

We consider the possibility of including any of the 54 standardized explanatory
variables, transformations up to the power of four, all two way interactions, all two way
interactions between the squared variables, and all two way interactions between the
squared and the original variables. The resulting number of variables is 5940.

As usual we will not include a power of any order without all the preceeding, and an
interaction without the original variables. There is a very large number of complex con-
straints, which can not be easily exploded. Nevertheless, the hierarchical constraints are
easily specified by forming a 5940 by 5940 binary matrix δ containg the δi(j) parameters.
For i = 55, . . . , 108 we set δi(i − 54) = 1 in order to impose the constraints between the
original and the squared variables, for i = 109, . . . , 162 we set δi(i − 54) = 1 in order to
impose the constraints between the cubes and the squares (and, automatically, between
the cubes and the originals); and so on.

In order to penalize more complex models, we set wk = 0.05. The prior variances are
set as τ1 = 5 and τ0 = 0.3. As noted also in Gustafson and Lefebvre (2008), with such a
large model space a true scaling of the posterior is unlikely to occur with few thousands
of iterations of the Gibbs sampler. Common sampling schemes are not feasible in the
presence of a very large model space. In order to sample from the model we adapt here
a parallel search strategy developed in a different context by Corander et al. (2006).

A number m of parallel Gibbs samplers are run, each of which is started from a
different point of the model space. In this way, several local neighborhoods are explored.
The parallel chains interact so that none is trapped around a local maximum of the like-
lihood. More in detail, define a binary process Zt, where t indicizes the chain iterations.
Whenever Zt = 0, the chains run in parallel. When Zt = 1, the chains interact in that
each is allowed to jump to the state of one of the other chains according to the scheme:

π(θt+1j = θti) =
π(θti)f(Y | θti, X)

∑m
i=1 π(θti)f(Y | θti, X)

,

where θti is a short hand notation for the vector of parameters sampled at the t-th
iteration of the i-th chain, and f(Y | θti, X) is the likelihood. In this way, chains trapped
in local modes are allowed from time to time to jump to regions of the model space with
higher posterior probability. The process is such that P (Zt = 1) = (q log t)−1 for t ≥ 1
and P (Z0 = 1) = 0. Corander et al. (2006) give more details about the advantages of the
parallel search strategy, and about consistent estimation of the posterior probabilities
after implementation of the parallel sampling scheme.
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For these data we use m = 20 chains, q = 5. Among the starting solutions for the
regression coefficients we include the maximum likelihood estimates for the model with
only the untransformed variables, and the estimates obtained for the full model with the
elastic net penalized likelihood of Zou and Hastie (2005). Among the initial values for η
we use the full and empty models, and the model selected by the elastic net.

The median model is made of 360 variables, 43 of which are the original untrans-
formed, together with 36 squares, 2 cubes and no fourth powers. All the remaining
selected covariates are interactions. A summary (without the interactions) is in Table 1.

There is very little uncertainty for the chosen model. This can be appreciated for
instance from a barplot of π(γj | Y ) in Figure 1, which shows that the posterior inclusion
probabilities are mostly close to zero or to 1 (x-axis: variable index, y-axis: corresponding
π(γj | Y ); the indexes are sorted in decreasing order of π(γj | Y )). There are only 78
π(γj | Y ) between 0.3 and 0.7. For instance, there is some uncertainty related to the
words “make”, which is included only with inclusion probability 0.63 and “mail”, which
is excluded but has inclusion probability 0.46.

0
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Figure 1: Posterior probability of γ indicators, SPAM data.

The selected model is interpretable. For instance, the frequency of occurrence of the
semicolon is discarded, while the frequency of occurrence of the name of the owner of the
mailbox is included with very high probability. Of course, emails addressing the receiver
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by name are much less likely to be spam. Other words with markedly negative log-odds
are “hp” and “meeting”. With very high probability we also include the frequency of
words “order”, “technology”, and “000”, which may be common words in spam emails.

There are many squared variables included in the model. Some of them have a log-
odds coefficient with different sign than the original variable, others have a regression
coefficient concordant with the coefficient of the original variable. Parameters of the
first kind include “remove”, “technology”, “business” and the frequency of the character
$. Parameters of the second include “hp”, “lab”, “000”. This facts can be easily inter-
preted. For instance, a larger number of occurrences of the word “hp” should raise the
probability of the email not being spam more than linearly. On the other hand, words
like “technology” and “business” are often used with high frequency and a larger number
of occurrences of those words should not have an high impact on the prediction of the
response.

Many words interact with the name of the owner and the word “hp”. Other inter-
actions form a part of a sentence, like: “our” and “meeting”. When the two words are
used together, it is less likely for the mail to be spam and the negative coefficient for
the interaction catches this feature. Another interesting interaction is between “hp” and
“technology”. In fact, a large frequency of the word technology may indicate a spam, but
if the word is used in conjuction with “hp”, the company of the owner of the mailbox, it
is much less likely for the email to be spam. This is reflected on the negative coefficient
of the interaction, whereas “technology” has got positive coefficient. Not surprisingly,
even if the frequency of occurrence of “000” is very important in the model, there are
only 6 interactions with this variable.

Finally, we use the selected model for prediction on the test set. The results are
shown in Table 2, where 1-nn and 3-nn stand for the k-nearest neighbours method of
Cover and Hart (1967), with respectively k = 1 and k = 3. Note that no variable
selection is available for the k-nn methods. For all the other methods, a (constrained or
unconstrained) SSVS is used.

The prediction performance of the constrained model is good, even if not markedly
better than the other classification methods. There is a small advantage of using trans-
formed variables and interactions (the proportion of correctly classified emails raises
from 90.4% to 91.6%). If the transformations are used without constraints, the pre-
diction performance is not as good likely due to over adaptation to the training set.
Moreover the resulting model is not easily interpretable and not as parsimonious, since
it uses 711 variables. The logistic model with hierarchical contraints can be used not
only for prediction but also for explaining why an email is spam.

S3.3 Doctor Visits Data

GLM with noncanonical link functions are often used in practice. We illustrate here
an example from the doctor visits data described in Chapter 3 of Cameron and Trivedi
(1998). The response is the number of consultations with a doctor or specialist in the
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previous two weeks, and there are nine predictors: sex, age, age squared, income, health
insurance (recoded with three dummy variables), number of illness in the previous two
weeks, number of days of reduced activity in the past two weeks because of illness,
general health questionnaire score using Goldberg’s method, chronic conditions (recoded
with two dummy variables). There are n = 5190 observations. We use a corner point
reparameterization for the categorical variables, and put grouping constraints on the
resulting dummies. We also force a hierarchical constraint between age and age squared.

The data were analyzed also in Wang and George (2007), who propose the following
model:

f(yi | µi, α) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(

α−1

α−1 + µi

)α−1
(

µi

α−1 + µi

)yi

with (noncanonical) log link function for the mean µj . The dispersion parameter α is
fixed as its estimated value under the full model.

After MCMC sampling with 20000 iterations and a burn-in of 10000 the median
model and the model receiving highest posterior probability coincide; and select sex,
age, age squared, illness, days of reduced activity and health score. These results are
perfectly in agreement with Wang and George (2007), with the only difference that the
model chosen with their preferred method contains the squared age alone in the model,
as there is no requirement for a hierarchical structure, while we choose both age and its
square because of our constraints.

S4 Proof of Theorem 1

We begin with one preparatory lemma:

Lemma 1. Let Mk be an indicator for the k-th model in the collection of possible models.

Let XMk
denote the matrix made of the columns of X corresponding to the variables used

by model Mk, and assume 1
n
X ′

Mk
XMk

→ CMk
, where CMk

is positive definite. Denote

also with β∗
Mk

the vector of true parameters for model Mk. Note also that with βMk
we

refer to the subset of parameters included in model Mk. By conditioning on Mk we mean

that model Mk is deemed to be the true model. We have that

Pr(
√

n(βMk
− β∗

Mk
) ≤ t | Mk, Y ) → Pr(N(0, σ2C−1

Mk
) ≤ t)

for any t ∈ R, that is βMk
converges in distribution to the true vector of parameters.

Further, √
n(E[βMk

| Mk, Y ] − β∗
Mk

)
d→ N(0, σ2C−1

Mk
),

where note that E[βMk
| Mk, Y ] is a random variable as a function of Y , and

d→ denotes

convergence in distribution.

Proof. It is well known (see for instance Gelman et al. (1995)) that if Mk is assumed
as the true model, the posterior π(βMk

| Mk, Y ) can be asymptotically approximated
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by a N(β∗
Mk

, J(β∗
Mk

)−1), where J(β∗) = (X ′
Mk

XMk
)/σ2

Mk
is the Fisher information.

The only conditions needed are that β∗
Mk

is not on the boundary of the parameter
space, and that the likelihood is a continuous function of β. The two conditions are
met by the proposed model. The first result follows since by assumptions we have that
limn J(β∗

Mk
)/n = CMk

/σ2. The second result follows immediately.

Note that since τ1j > 0 and wk > 0, we essentially are considering the model with
all the variables inside. Lemma 1 implies that we have

βj | Y
P→ β∗. (S4.4)

We will repeatedly use the fact that if each element of a finite dimensional vector
of random variables converges in probability, then also the vector will converge (see e.g.
(Ferguson, 1996, Theorem 6’)).

Without loss of generality, let νγ and λγ not depend on γ; and suppose Gk0 is a “fa-
ther” group, that is, a group of variables for which there are no hierarchical constraints:
∏∏

δj(i)φk0(i) = 0. Suppose for simplicity there are no anti-hierarchical constraints in
the model.

It is straightforward to check that Pr(ηk0 = 1 | Y ) =
∫

Pr(ηk0 = 1 | β)dF (β | Y ).
Let the prior correlation R be the identitity matrix. With straightforward computations
it can be proved that:

Pr(ηk0 = 1 | β) =

wk0

p
∏

j=1

(

1/τ1je
− 1

2τ2
1j

β2
j

)φk0
(j)

wk0

p
∏

j=1

(

1/τ1je
− 1

2τ2
1j

β2
j

)φk0
(j)

+ (1 − wk0)
p
∏

j=1

(

1/τ0je
− 1

2τ2
0j

β2
j

)φk0
(j)

=
1

1 +
1−wk0

wk0

p
∏

j=1





τ1j

τ0j
e

β2
j

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j





φk0
(j)

.

If the prior correlation is an arbitrary positive definite matrix, it can be then seen
that this only adds an exponential term:

1

1 +
1−wk0

wk0

p
∏

j=1





τ1j

τ0j
e

β2
j

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j





φk0
(j)

∑

η

∏

j:φk0
(j)=1

∏

i6=j

e
1
2

βj

(τ0j−τ1j )

τ0j τ1j
r−1

ji

βi
γiτ1i+(1−γi)τ0i P (η | ηk0 = 1)

,

where r−1
ji is the ji-th element of R−1, and we average over all the possible allowed

configurations for η (recall that γi is function of the vector η).

Suppose now that the k0-th group is not to be included in the true model. This
implies that β∗

j = 0 for all variables belonging to group Gk0 . We need to prove that
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Pr(ηk0 = 1 | Y ) < 1/2 asymptotically. By (S4.4), βj
P→ 0 for all j such that φk0(j) = 1.

It is then straightforward to see that Pr(ηk0 = 1 | Y ) converges to:

1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1

(

τ1j

τ0j

) . (S4.5)

The parameters are tuned by hypothesis so that the previous expression is below 1/2.

If the group corresponding to ηk0 must be included in the true model, then β∗
j 6= 0

for at least one variable belonging to group Gk0 . Let j0 be one of the indices for which
β∗

j 6= 0. We need to prove that Pr(ηk0 = 1 | Y ) > 1/2 asymptotically.

Define

θj =
∑

η

∏

i6=j

e
1
2β∗

j

(τ0j−τ1j )

τ0j τ1j
r
−1
ji

β∗

i
γiτ1i+(1−γi)τ0i P (η | ηk0 = 1).

Since by hypothesis β∗
j r−1

ij β∗
i ≥ 0 for every i and j, it is seen that θj ≤ 1 for every j. We

then have:

Pr(ηk0 = 1 | Y ) → 1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1

(

τ1j

τ0j

)

∏

j:φk0
(j)=1∩β∗

j
6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j θj

(S4.6)

≥ 1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1∩β∗

j
6=0

(

τ1j

τ0j

)

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

≥ 1

1 +
(1−wk0

)τ1j0

wk0
τ0j0

∏

j:φk0
(j)=1∩β∗

j
6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

,

where at the first step we used the fact that θj ≤ 1 and then repeatedly used the condition
that τ2

0j ≤ τ2
1j .

Last expression is not smaller than 1/2 if and only if

(1 − wk0)τ1j0

wk0τ0j0

∏

j:φk0
(j)=1∩β∗

j
6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j < 1/2 ⇐

∏

j:φk0
(j)=1∩β∗

j
6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j < 1 ⇔

∑

j:φk0
(j)=1∩β∗

j
6=0

(β∗
j )2

2

(τ2
0j − τ2

1j)

τ2
0jτ

2
1j

≤ 0 ⇐

τ2
0j ≤ τ2

1j ,
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which is true by hypothesis. Note that at the second step we used condition (7).

The same results directly follow also for groups for which there are variables with
hierarchy constraints, since the probability of selecting the group will only have additional
multiplicative terms depending on the probabiliy of selecting the groups in which there
are the father variables. Similarly, anti-hierarchical constraints will only lead to the
presence of additional multiplicative terms depending on the probability of not selecting
groups in which there are the corresponding variables.

The thesis follows: Pr(Mme = M0 | Y ) → 1.

To prove the second part, note that τ0j
∼= 0 implies that whenever ηk = 0 all the

corresponding βs are zero with probability approaching 1.

By looking at expressions (S4.5) and (S4.6), it is straightforward to check that
Pr(ηk = 1 | Y ) converges to 1 if the k-th group shall be included in the final model and
to 0 otherwise since τ0j is infinitesimal.

Without loss of generality assume the true model M0 is identified by the inclusion
in the model of the first k0 groups and exclusion of the remaining groups.

lim
n

Pr(M0 | Y ) = lim
n

Pr(∩k0

k=1ηk = 1 ∩g
k=k0+1 ηk = 0 | Y ), (S4.7)

and the right hand side converges to 1 because each element of the vector converges.

S5 Sample WinBUGS Code for Example 1

model

{

for(j in 1:N) {

Y[j] ~ dnorm(mean[j] , S);

mean[j] <- beta0 + beta1*X[j,1]+ beta2*X[j,1]*X[j,1]

+ beta3*X[j,2] + beta4*X[j,2]*X[j,2] + beta5*X[j,1]*X[j,2];

}

beta0 ~ dnorm(0, tau1);

p1 <- (1-eta1)*tau0+eta1*tau1;

eta1 ~ dbern( w1);

beta1 ~ dnorm(0, p1);

p2 <- (1-gamma2)*tau0+gamma2*tau1;

gamma2 <- eta1*eta2;

eta2 ~ dbern( w2);

beta2 ~ dnorm(0, p2);
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p3 <- (1-eta3)*tau0+eta3*tau1;

eta3 ~ dbern( w3);

beta3 ~ dnorm(0, p3);

p4 <- (1-gamma4)*tau0+gamma4*tau1;

gamma4 <- eta3*eta4;

eta4 ~ dbern( w4);

beta4 ~ dnorm(0, p4);

p5 <- (1-gamma5)*tau0+gamma5*tau1;

gamma5 <- eta1*eta3*eta5;

eta5 ~ dbern( w5);

beta5 ~ dnorm(0, p5);

S ~ dchisqr( ds );

}
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Table 1: Selected model (without list of interactions), SPAM data
Name Original Square Cube

1 word freq make 1 0 0
2 word freq address 1 1 0
3 word freq all 1 0 0
4 word freq 3d 1 1 0
5 word freq our 1 1 0
6 word freq over 1 1 1
7 word freq remove 1 1 0
8 word freq internet 0 0 0
9 word freq order 1 1 0

10 word freq mail 0 0 0
11 word freq receive 0 0 0
12 word freq will 1 1 0
13 word freq people 0 0 0
14 word freq report 0 0 0
15 word freq addresses 1 1 0
16 word freq free 1 1 1
17 word freq business 1 1 0
18 word freq email 0 0 0
19 word freq you 0 0 0
20 word freq credit 1 0 0
21 word freq your 1 1 0
22 word freq font 1 1 0
23 word freq 000 1 1 0
24 word freq money 1 1 0
25 word freq hp 1 1 0
26 word freq hpl 1 1 0
27 word freq george 1 1 0
28 word freq 650 0 0 0
29 word freq lab 1 1 0
30 word freq labs 1 1 0
31 word freq telnet 1 1 0
32 word freq 857 1 1 0
33 word freq data 1 1 0
34 word freq 415 1 1 0
35 word freq 85 1 1 0
36 word freq technology 1 1 0
37 word freq 1999 1 1 0
38 word freq parts 0 0 0
39 word freq pm 1 0 0
40 word freq direct 1 0 0
41 word freq cs 1 1 0
42 word freq meeting 1 1 0
43 word freq original 1 1 0
44 word freq project 1 1 0
45 word freq re 1 1 0
46 word freq edu 1 1 0
47 word freq table 0 0 0
48 word freq conference 1 1 0
49 char freq ; 0 0 0
50 char freq ( 1 0 0
51 char freq [ 1 0 0
52 char freq ! 1 1 0
53 char freq $ 1 1 0
54 char freq # 1 1 0
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Table 2: Prediction on the test set, SPAM data
Correct Spam Correct NonSpam Correct

Logistic model, with constraints 91.6% 94.9% 86.6%
Logistic model, only original variables 90.4% 95.8% 82.2%
Logistic model, without constraints 87.4% 91.5% 84.8%

1-nn 85.4% 88.7% 80.3%
3-nn 85.1% 90.2% 77.3%

1-nn, only original variables 90.0% 91.5% 87.7%
3-nn, only original variables 89.6% 91.8% 86.0%



Bibliography

Barbieri, M. and J. Berger (2004). Optimal predictive model selection. Annals of Statistics 32,
870–897.

British Board of Trade, p. (1990). Report on the loss of the Titanic - British Board of Trade
Inquiry Report. Gloucester, UK: Allan Sutton Publishing.

Cameron, A. and P. Trivedi (1998). Regression Analysis of Count Data. Cambridge Press.

Carlin, B. and S. Chib (1995). Bayesian model choice via Markov Chain Monte Carlo methods.
Journal of the Royal Statistical Society (Ser. B) 57, 473–484.

Corander, J., M. Gyllenberg, and T. Koski (2006). Bayesian model learning based on a parallel
MCMC strategy. Statistics and Computing 16, 355–362.

Cover, T. and P. Hart (1967). Nearest neighbor pattern classification. IEEE transactions on
information theory IT-13, 21–27.

Ferguson, T. (1996). A course in large sample theory. Chapman & Hall.

Fernandez, C., E. Ley, and M. Steel (2001). Benchmark priors for Bayesian model averaging.
Journal of Econometrics 100, 381–427.

Gelman, A., J. Carlin, H. Stern, and D. Rubin (1995). Bayesian Data Analysis. Chapman and
Hall.

George, E. and R. McCulloch (1993). Variable selection via Gibbs sampling. Journal of the
American Statistical Association 88, 881–889.

George, E. and R. McCulloch (1997). Approaches for Bayesian variable selection. Statistica
Sinica 7, 339–373.

Geweke, J. (1996). Variable selection and model comparison in regression. In J. Bernardo,
J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics 5, pp. 609–620. Oxford Press.

Gustafson, P. and G. Lefebvre (2008). Bayesian multinomial regression with class-specific pre-
dictor selection. Annals of Applied Statistics 2, 1478–1502.

Ley, E. and M. Steel (2009). On the effect of prior assumptions in Bayesian model averaging
with applications to growth regression. Journal of Applied Econometrics 24, 651–674.

Liang, F., R. Paulo, G. Molina, M. Clyde, and J. Berger (2008). Mixtures of g-priors for
Bayesian variable selection. Journal of the American Statistical Association 103, 410–423.

S15



S16 Alessio Farcomeni

Mitchell, T. and J. Beauchamp (1988). Bayesian variable selection in linear regression. Journal
of the American Statistical Association 83, 1023–1032.

Wang, X. and E. George (2007). Adaptive Bayesian criteria in variable selection for generalized
linear models. Statistica Sinica 17, 667–690.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior
distributions. In P. Goel and A. Zellner (Eds.), Bayesian inference and decision techniques:
essays in honor of Bruno de Finetti, pp. 233–243. North-Holland.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society (Ser. B) 67, 301–320.


