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Abstract: The marginal proportional hazards model is an important tool in the

analysis of multivariate failure time data in the presence of censoring. We propose

a method of estimation via the linear combinations of martingale residuals. The

estimation and inference procedures are easy to implement numerically. The es-

timation is generally more accurate than the existing pseudo-likelihood approach:

the size of efficiency gain can be considerable in some cases, and the maximum

relative efficiency in theory is infinite. Consistency and asymptotic normality are

established. Empirical evidence in support of the theoretical claims is shown in

simulation studies.
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1. Introduction

Multivariate failure time data are common in biomedical studies, engineer-
ing, and financial economics. A key feature of this type of data is that the
failure times may be related to each other. To analyze the dependence of the
failure times on certain covariates, Wei, Lin and Weissfeld (1989) proposed to
use a marginal proportional hazards (MPH) model and provided an estimation
and inference procedure. The MPH model does not impose any assumption on
the interdependence among the multivariate failure times and therefore is quite
flexible. Moreover, it inherits many advantages of the well-known proportional
hazards model (Cox (1972)). The aim of this paper is to propose a general
method of estimation and inference for the MPH model.

Because of the importance of the MPH model and the growing amount of
multivariate failure time data, there is an increasing demand for appropriate data
analysis. Extensive studies on related subjects are reported in the literature;
see Wei, Lin and Weissfeld (1989), Cai and Prentice (1995, 1997), Gray and
Li (2002), Oakes (1992, 1997), Lee, Wei and Amato (1992), Prentice and Hsu
(1997), Pepe and Cai (1993), Hughes (1995), Therneau (1997), and Yang and
Ying (2001), among others. In particular, the estimation method considered in
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Wei, Lin and Weissfeld (1989) is based on a pseudo-likelihood that is a product
of marginal partial likelihoods. The method is conceptually clear, numerically
simple, and easy to implement. However, the pseudo-likelihood approach does
not best capture the interdependence of multivariate failure times and may not
produce the most accurate estimation of regression parameters. In fact, for the
MPH model considered in this paper, the pseudo-likelihood estimation can be
significantly improved in some cases. Alternative estimation methods are also
proposed and analyzed in Cai and Prentice (1995, 1997) and Gray and Li (2002).

This paper provides a general estimation and inference procedure for the
MPH model with common regression parameters across all marginal models. A
key issue here is how to properly utilize the interdependence of the failure times
to obtain more accurate estimation. For, by the nature of the MPH model, no
such dependence structure is available in the model assumptions. To tackle this
problem, we propose to use an optimal linear combination of certain martingale
residuals that are generated from marginal models. The optimal linear combina-
tion coincides with the construction of the quasi-likelihood score (Godambe and
Heyde (1987)). The resulting estimating function has a closed form expression
and the variance estimator for the regression parameter is easy to obtain as mi-
nus the derivative of the estimating function. The estimators are generally more
accurate than the maximum pseudo-likelihood estimator. Since the considered
estimating functions are in a class of martingale transformations, we can use
counting process martingale theory to prove the consistency and asymptotic nor-
mality of the estimators. The efficiency improvement over the pseudo-likelihood
approach of Wei, Lin and Weissfeld (1989) can be considerable. We raise an
example to show that, in theory, the maximum relative efficiency is infinite.
Supporting evidence can be found in the simulation studies presented in this pa-
per. Although the proposed method involves partitions that may be too flexible,
in view of the possibility of significant efficiency gain it may be worthwhile to
explore with even more computational work.

Let (Tk, Ck, Zk), 1 ≤ k ≤ K, denote the K-variate failure times, censoring
times, and the covariates of p dimensions. Set Z = (Z1, . . . , ZK) and assume Zk

does not concentrate on any p − 1 dimension hyperplane for some 1 ≤ k ≤ K.
For every k = 1, . . . ,K, Tk and Ck are assumed conditionally independent given
Z. The MPH model assumes, for 1 ≤ k ≤ K, the hazard function of Tk given Z
satisfies

λTk
(t|Z) = eβ′Zkλk(t), t ≥ 0, (1.1)

where β and λk(·) represent, respectively, the p-dimensional regression parameter
and the baseline hazard function. Wei, Lin and Weissfeld (1989) also considered
a slightly different model, in which

λTk
(t|Z) = eβ′

kZkλk(t), t ≥ 0, k = 1, . . . ,K. (1.2)
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Here each marginal model has its own regression parameters while model (1.1)
has common regression parameters across all K marginal models. A main feature
of (1.1) is that the covariate effects on the failures in all marginal models are
common and are jointly evaluated.

Model (1.1) can be used in economics, engineering and biomedical studies.
For example, it can be applied to the analysis of panel data in econometric
studies, e.g., Horowitz and Lee (2004). In finance, it can be used for analysis of
time-to-default for closely connected companies. It can also be applied to the
evaluation of treatment effects for recurrent diseases in biomedical studies under
certain conditions (e.g., specifying, among other conditions, a priori the number
of recurrences of interest) or in system reliability in engineering experiments
involving multiple components.

We note that there is considerable research devoted to modeling and es-
timating the dependence structure of multivariate failure times. For example,
Bandeen-Roche and Liang (1996) presented a frailty model to capture multi-
level dependence of failure times, which is a natural generalization of the ordinal
frailty model. Bandeen-Roche and Liang (2002) addressed conditional hazard
ratio for multivariate failure times with competing risks; see also Clayton (1978)
and Clayton (1985). These studies/methods are different from ours in the ab-
sence of modeling of within cluster failure time dependence.

The MPH model with common regression parameters is introduced in Section
2, along with the relevant notation. Section 3 describes the estimation and
inference procedures based on a linear combination of martingale residuals. A
large sample theory and an argument about the maximum size of efficiency gain
are given in Section 4. Simulation studies and an example are presented in
Section 5. All proofs are provided in the supplemental material.

2. Pseudo-Partial Likelihood Estimation

With the presence of right censoring, the K event times and their fail-
ure/censoring indices are denoted by Yk = min(Tk, Ck) and δk = I(Tk ≤ Ck), 1 ≤
k ≤ K. The observations are n independent and identically distributed (i.i.d.)
copies of (Yk, δk, Zk), 1 ≤ k ≤ K, denoted by (Yik, δik, Zik), 1 ≤ k ≤ K, 1 ≤ i ≤ n.
Throughout, the subscript i or j indicates the i or j-th observation and the sub-
script k or l indicates the k or l-th event, respectively, and therefore the range of
k and l is always {1, . . . ,K}. Set Yk(t) = I(Yk ≥ t) and Nk(t) = δkI(Yk ≤ t) for
t ≥ 0. Let Mk(t; β) = Nk(t)−

∫ t
0 eβZkYk(s)λk(s)ds. The pseudo-partial likelihood

(Wei, Lin and Weissfeld (1989)) is

L(β) ≡
K∏

k=1

n∏
i=1

{ eβ′Zik∑n
j=1 eβ′ZjkI(Yjk ≥ Yik)

}δik .
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Here the pseudo-partial likelihood means the product of the Cox partial likelihood
for each marginal model, see e.g., Clegg, Cai and Sen (1999). Let β̂I be the
maximizer of L(·). Then, β̂I is the solution of

U(β) ≡
K∑

k=1

Uk(β) = 0, (2.1)

where

Uk(β) =
n∑

i=1

∫ τk

0
[Zik − Z̄k(t; β)]dNik(t) =

n∑
i=1

∫ τk

0
[Zik − Z̄k(t; β)]dMik(t; β),

(2.2)

τk = sup{t : P (Yk > t) > 0}, and Z̄k(t; β) =
∑n

i=1 Zik eβ′ZikYik(t)∑n
i=1 eβ′ZikYik(t)

, 1 ≤ k ≤ K.

Here the Uk(·) are the Cox partial likelihood score for the marginal models.
For the model at (1.2), the pseudo-partial likelihood is the same as L(·)

except with β replaced by βk. The estimation and inference for each βk per-
tains only to the k-th marginal model, and Cox’s partial likelihood procedure
for univariate proportional hazards model applies. Simultaneous inference for
β1, . . . , βK requires taking into account the interdependence of multivariate fail-
ure and censoring times.

If (Tk, Ck), k = 1, . . . ,K, are conditionally independent of each other given
the covariates, β̂I can be shown to be semiparametric efficient. However, this
is not the case in general and there exist estimators more accurate than β̂I . In
fact, with the simple idea of constructing quasi-likelihood score (Godambe and
Heyde (1987)), an estimator more accurate than β̂I can be found. Specifically,
set Uo(β) = [U ′

1(β), . . . , U ′
K(β)]′ and let Ao = (1/n)(∂/∂β)Uo(β)|β=β̂I

and
Vo = (vkl)1≤k,l≤K , where

vkl =
1
n

n∑
i=1

{∫ τk

0
[Zik − Z̄k(t; β)]dM̃ik(t; β)

∫ τl

0
[Zil − Z̄l(t; β)]′dM̃il(t; β)

}∣∣∣
β=β̂I

,

(2.3)
with M̃ik as defined in Section 3. Notice that Uo is a pK-vector, Ao is a pK × p

matrix, vkl are p × p matrices, and Vo is a pK × pK matrix. Consider the
estimating equation

Uo(β) ≡ A′
oV

−1
o Uo(β) = 0, (2.4)

and let β̂II be the solution. Let D = (Ip, . . . , Ip)′ be a pK × p matrix, where Ip

is the p × p identity matrix. Then, under regularity conditions, the asymptotic
variances of β̂I and β̂II are (D′Ao)−1(D′VoD)(A′

oD)−1 and (A′
oV

−1
o Ao)−1, re-

spectively, and the latter is smaller than or equal to the former in the sense of
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nonnegative definiteness. The consistency of the variance estimators is shown in
Wei, Lin and Weissfeld (1989), and they point out the important fact that Vo

is a consistent estimator of the covariance matrix of Uo. A general asymptotic
theory is presented in Section 4.

The construction of Uo(·) is a result of the optimal linear combination of
estimating functions. This simple procedure may be traced back to the clas-
sical theory of quasi-likelihood (Godambe and Heyde (1987)), and it has been
used extensively in the literature: see Liang and Zeger (1986), Qu and Lind-
say (2003), and Fine, Yan and Kosorok (2004), among others. In general, for a
class of estimating functions ψ1(β), . . . , ψm(β) that are conditionally mean zero,
the optimal linear combination of the estimating functions is A′V −1Ψ, where
Ψ = (ψ′

1, . . . , ψ
′
m)′, V is the conditional variance matrix of Ψ, and A is the condi-

tional mean of (∂/∂β)Ψ. Under certain regularity conditions on the large sample
behavior of ψ1, . . . , ψm, the estimator based on this estimating function has the
smallest asymptotic variance among all estimators based on linear combinations
of Ψ. This procedure is simple, yet effective. It is an important ingredient in the
methodology of generalized estimating equations (Liang and Zeger (1986)). More
sophisticated estimators derived in the next section are based on this procedure.

3. Estimation Method Based on Linear Combinations of Martingale
Residuals

In this section, we consider a class of estimating functions that can be viewed
as linear combinations of martingale residuals and apply the optimal linear com-
bination procedure to obtain estimators with improved accuracy. Recall that
U and Uo are linear combinations of the Uk which are Cox’s partial likelihood
scores for univariate proportional hazards models. In the case of MPH model,
however, using Uk as the building blocks to construct estimating functions may
be rather restrictive, since the Uk may contain insufficient information about the
interdependence of the multivariate failure and censoring times.

To overcome this difficulty, we consider linear combinations of the martin-
gale differences dMik(t; β). Since the dMik(t; β) contain the unknown baseline
functions, they cannot be directly used as building blocks. Instead we consider
linear combination of the martingale residuals

dM̃ik(t; β) ≡ dNik(t) − eβ′ZikYik(t)

∑n
j=1 dNjk(t)∑

j=1 eβ′ZjkYjk(t)

= dMik(t; β) − eβ′ZikYik(t)

∑n
j=1 dMjk(t;β)∑

j=1 eβ′ZjkYjk(t)

that are free of the baseline functions. In this broad class of estimating functions,
more accurate estimators can be found. Notice that, in the case of univariate
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proportional hazards model, it can be shown that the optimal linear combination
of these martingale residuals is identical to the Cox partial likelihood score, as a
special case of the Hutton-Nelson solution.

Let h ≡ (h1, . . . , hK), where each hk is a p-dimensional measurable func-
tion of (t,Z) defined on [0,∞) × RpK , and set hik(t) = hk(t,Zi). Consider the
estimating function

Uh(β) ≡
K∑

k=1

n∑
i=1

∫ τk

0
hik(t)dM̃ik(t;β)

=
K∑

k=1

n∑
i=1

∫ τk

0
[hik(t) − h̄k(t; β)]dNik(t)

=
K∑

k=1

n∑
i=1

∫ τk

0
[hik(t) − h̄k(t; β)]dMik(t; β), (3.1)

where

h̄k(t; β) =
∑n

i=1 hik(t)eβ′ZikYik(t)∑n
i=1 eβ′ZikYik(t)

.

Let β̂h be the solution of Uh(β) = 0. It is seen from (3.1) that Uh can be viewed
as a linear combination of the martingale residuals dM̃ik.

The choice of h determines the accuracy of the resulting estimator. Choosing
hik(t) = Zik, Uh(·) reduces to U(·) in (2.1) and gives rise to the estimator β̂I .
Choosing hik(t) = WkZik with the optimal p×p matrix Wk, Uh(·) reduces to Uo(·)
in (2.3) and gives rise to the estimator β̂II . More accurate estimation of β requires
more computational load in the choice of h. Using the idea of optimal linear
combination presented in Section 2, we propose to use the following estimating
functions as building blocks to construct optimal linear combination.

Let A1, . . . ,Am be a partition of the space [0,∞)×RpK . For 1 ≤ s ≤ m and
1 ≤ k, l ≤ K, let

giks(t) = I{(t,Zi) ∈ As}Zik, ḡks(t; β) =

∑n
j=1 gjks(t)eβ′ZjkYjk(t)∑n

j=1 eβ′ZjkYjk(t)
,

uks(β) =
n∑

i=1

∫ τk

0
giks(t)dM̃ik(t;β) =

n∑
i=1

∫ τk

0
[giks(t) − ḡks(t; β)]dNik(t; β).

Similar to the construction of Uo, define U(β) = (u′
11, . . . , u

′
1m, . . . , u′

K1, . . .,
u′

Km)′, a pKm-vector. Similar to (2.3), the covariance of uks and uls∗ can be
estimated by

n∑
i=1

{∫ τk

0
[giks(t) − ḡks(t; β)]dM̃ik(t; β)

∫ τl

0
[gils∗(t) − ḡls∗(t; β)]′dM̃il(t; β)

}∣∣∣
β=β̂II

.
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Let V be the estimated variance matrix of U. Let A = (∂/∂β)U(β)|β=β̂II

and consider the estimating equation A′V−1U(β) = 0, with β̂ be the solution.
The standard quasi-likelihood procedure implies that this estimating function is
optimal among all linear combinations of U. Moreover, the asymptotic variance
of β̂ is consistently estimated by (A′V−1A)−1.

This estimation method offers estimators with smaller asymptotic variance.
If the partition is the trivial one, i.e., m = 1 and A1 is the entire space, β̂

is identical to β̂II . In general, the finer the partition, the more accurate the
estimation, since there are more “building blocks” for constructing the optimal
linear combination. In theory, β̂ can approximate the semiparametric efficient
estimator when the partition is fine enough, but the partition cannot be too fine
given a finite sample. Still, the computation of the proposed estimator β̂ and
its variance estimator is straightforward. In view of the improved estimation
accuracy even with a crude partition, the proposed procedure deserves study.

4. An Asymptotic Theory

The asymptotic properties of our estimator can be established following the
counting process martingale theory developed by Andersen and Gill (1982) and
others. Some notation is needed. Let β0 and λk0(·) be the true β and λk(·),
respectively. Let µk,h(t) = E(hk(t,Z)|Yk = t, δk = 1), µk(t) = E(Zk|Yk = t, δk =
1), Mk(t) = Nk(t) −

∫ t
0 eβ′

0ZkYk(s)λk0(s)ds, ξk,h =
∫ τk

0 [hk(t,Z) − µk,h(t)]dMk(t)
and ξk =

∫ τk

0 [Zk − µk(t)]dMk(t).
Similar to Theorem 8.4.1 of Fleming and Harrington (1991, p.305) and An-

dersen and Gill (1982), we set the following regularity conditions. Throughout,
⊗2 denotes outer product.
(C1) The components of h are bounded and measurable functions of (t,Z);

(C2) Z is bounded;

(C3) τk < ∞,
∫ τk

0 λk0(t)dt < ∞, and λk0(t) is continuous on [0, τk], for k =
1, . . . ,K;

(C4) Ah ≡
∑K

k=1 E(ξk,hξ′k) and Vh ≡ E
[(∑K

k=1 ξk,h

)⊗2]
are both finite and

non-degenerate.

Theorem. Under (C1)−(C4), there exists a solution, β̂h, of Uh(β) = 0 such
that n1/2(β̂h − β0) → N(0, Σh), where Σh = A−1

h VhA′
h
−1.

If K = 1, or if (Yk, δk), 1 ≤ k ≤ K, are conditionally independent given Z,
then Σh = [

∑K
k=1 E(ξ⊗2

k )]−1 when hk(Z, t) = Zk for k = 1, . . . ,K. We note that
the estimators β̂I , β̂II , and β̂ are all special cases of β̂h with different choices of
h.
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Proposition. Under (C2)−(C3), there exists an h?, satisfying (S2.1) in the
Supplement, such that

∑K
k=1 ξk,h? is the efficient score and Σ−1

h? is the minimum
Fisher information for β.

The proposition establishes h? so that Σh? achieves a minimum over h. An-
alytically, the minimization can be expressed in terms of alternating projections,
as shown in (S2.1) in the Supplement. Notice that Uh, β̂h and Σh are unchanged
if h is changed by adding any function of t. The unique solution h? can be
expressed as the solution to

hk(Z, t)+
∑

1≤l≤K
l6=k

∫ τl

0
[hl(Z, s)−µl,h(s)]

Γl,k(s, t|Z)
Γk(t|Z)

ds = Zk, t ∈ [0, τk), 1 ≤ k ≤ K,

where Γl,k(s, t|Z) = E(dMl(s)dMk(t)|Z)/(dsdt) and Γl(t|Z) = E(dMl(t)dMl(t)|
Z)/dt = P (Yl ≥ t|Z)eβ′

0Zlλl0(t), for 1 ≤ l 6= k ≤ K. These equations can be
derived from (S2.1) or through direct minimization of Σh. A natural way to
obtain semiparametric efficient estimation appears to be by solving for h?. Un-
fortunately, this involves the estimation of Γl,k(s, t|Z) and Γl(t|Z), and the curse
of dimensionality intrudes. Moreover, it is difficult to assess the stability of the
numerical solutions, especially when the Γ functions are replaced by estimators
that are possibly inaccurate. Our experience with numerical studies indicates
that this approach, although conceptually clear, is numerically difficult to carry
out.

The estimation approach that we propose is easy to implement computation-
ally. In view of the difficulty of the direct use of h?, it is worthwhile to consider
optimization over step functions over a partition A1, . . . ,Am, i.e., each compo-
nent of h is constant over each cell of the partition. The optimization is carried
out by the “variance-inverse-derivative-transpose” procedure as discussed in Sec-
tions 2 and 3. The resulting optimal estimator has asymptotic variance achieving
the minimum of Σh over all h that are step functions over the partition. In con-
trast, the variance of semiparametric efficient estimation achieves the minimum
of Σh over all h. Since measurable functions can be closely approximated by
step functions, Σh? can be closely approximated by Σh with h the optimal step
function over a partition that is fine enough, and h? is closely approximated by
this h.

The proposition establishes the semiparametric efficiency of the estimator
β̂h? , and an example shows that there can be large efficiency gain over the es-
timators β̂I or β̂II . For simplicity, consider p = 1, K = 2, and any estimator,
denoted by β̂w, as the solution of

K∑
k=1

n∑
i=1

∫ τk

0
[Zik − Z̄k(t;β)]wk(t)dNik(t) = 0,
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where wk(·) is a deterministic weight function. In theory, the maximum size of
efficiency improvement of β̂h? over the optimal β̂w can be infinitely large, and
β̂I and β̂II are two special cases of β̂w. Consider that β0 = 0, C1 = C2 = ∞.
Let Z1, Z2, T1 and ε be independent, all uniform on [0, 1]. Take T2 = T1 + aε

where a > 0 is a constant. Choose h = (h1, h2) with h1 = −h2 = (Z1 − Z2).
Observe that T2 → T1 as a → 0. This implies that E(ξ1,h + ξ2,h)2 → 0 and
E(ξ1,hξ1 + ξ2,hξ2) → E(Z1 −Z2)2 = 1/6 as a → 0. Recall that Σh = [E(ξ1,hξ1 +
ξ2,hξ2)]−2E(ξ1,h + ξ2,h)2. Therefore, as a → 0, Σh → 0, and it follows that
Σh? → 0 since Σh? ≤ Σh. On the other hand, as a → 0, the asymptotic variance
of β̂w converges to

(1/12)
∫ 1
0 [w2

1(t)) + w2
2(t)]dt

{(1/12)
∫ 1
0 [w1(t) + w2(t)]dt}2

≥ 6,

where the equality holds if and only if w1(t) = w2(t) = c for some nonzero
constant c. Then the relative efficiency of the estimator β̂h? with respect to β̂w

can be arbitrarily large when a is arbitrarily close to 0. Heuristically, when the
Tk are strongly dependent on each other and the Zk are not, the size of efficiency
improvement can be large. In our extreme case, T2 = T1, β can be identified as
0 given finite sample size.

5. Simulation Studies and Example

Extensive Monte Carlo studies with sample size n = 200 were carried out to
examine the finite sample properties of the proposed estimation method. In all
four simulation examples, K= 2, and the two baseline hazard functions were con-
stant at 1. The maximum correlation coefficient between the failure times T1 and
T2, from the Gumbel (1960) distribution used in Wei, Lin and Weissfeld (1989),
was fixed as 0.25. In our simulation, we used the Weighted Linear Combination
(WLC) method (Johnson and Tenenbein (1981)) to generate the failure times T1

and T2 that marginally are univariate exponentials with hazard rates exp(βZ1)
and exp(βZ2), respectively. Using the WLC method, the degree of dependence
between T1 and T2 is determined by the parameter ρs, Spearman’s rho with the
range [0, 1], and distinct from the correlation between T1 and T2.

In Example I, the covariates Z1 and Z2 were independent of each other,
with P (Zi = 0) = P (Zi = 1)= 1/2, i = 1, 2. Spearman’s rho was set at
0.50; the regression parameter β took values −0.5,−0.4, ..., 0.4, 0.5; the cen-
soring variables C1 = C2 were set to be constant at 2. The proportion of
censoring is generally moderate, for example, it is about 29.73% when β =
0.5 and Z1= 1. To compute the proposed estimator β̂, we chose to partition
RpK into four cells: A1 = {Z1 ≤ 0.5, Z2 ≤ 0.5}, A2 = {Z1 ≤ 0.5, Z2 > 0.5},
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Table 1. Simulation results for Example I

β β̂I β̂II β̂III β̂ V ar(β̂I)
V ar(β̂I )

V ar(β̂II )

V ar(β̂I )

V ar(β̂III )

V ar(β̂I )

V ar(β̂)
ECP by β̂ (99%)

-0.50 -0.498 -0.498 -0.493 -0.505 0.0129 1.000 1.005 1.155 0.989

-0.40 -0.392 -0.392 -0.400 -0.398 0.0132 1.000 1.004 1.182 0.986

-0.30 -0.297 -0.297 -0.291 -0.300 0.0125 1.000 1.005 1.150 0.984

-0.20 -0.199 -0.199 -0.187 -0.203 0.0112 1.000 1.006 1.149 0.986

-0.10 -0.105 -0.105 -0.098 -0.107 0.0114 1.000 1.006 1.137 0.981

0 0.002 0.002 0.009 0.000 0.0125 1.000 1.006 1.225 0.982

0.10 0.106 0.106 0.107 0.109 0.0114 1.000 1.006 1.164 0.985

0.20 0.199 0.199 0.202 0.202 0.0114 1.000 1.007 1.198 0.989

0.30 0.304 0.304 0.297 0.305 0.0116 1.000 1.008 1.192 0.984

0.40 0.400 0.400 0.402 0.406 0.0118 1.000 1.008 1.127 0.987

0.50 0.502 0.502 0.505 0.509 0.0110 1.000 1.010 1.121 0.979

Notes: 1. β̂I : the WLW estimator proposed by Wei, Lin and Weissfeld (1989).

2. β̂II : the optimal WLW estimator at (2.4).

3. β̂III : the weighted estimator proposed by Cai and Prentice (1995).

4. β̂: the proposed estimator.

5. ECP: empirical coverage probability of the (1 − α)% confidence interval for β.

A3 = {Z1 > 0.5, Z2 ≤ 0.5}, and A4 = {Z1 > 0.5, Z2 > 0.5}. The time horizon
was not partitioned. To compare with β̂, the estimators β̂I , β̂II , and β̂III were
also calculated using Newton-Raphson iterative procedures. Here β̂III is the
weighted estimator proposed by Cai and Prentice (1995) where the weight ma-
trix is estimated using the nonparametric method proposed by Prentice and Cai
(1992). The simulation results are presented in Table 1, which shows the av-
erage of the estimates, empirical variances of the WLW estimator β̂I , empirical
relative efficiencies for β̂II , β̂III , and β̂ over β̂I , and empirical coverage probabil-
ities(ECP) of the 99% confidence intervals for β using the proposed method. All
simulation results were based on 1,000 replications except for β̂III , which was
based on 500 simulation runs. As shown in the table, no efficiency improvement
of β̂II over β̂I existed, the relative efficiencies for β̂III over β̂I were negligible, the
efficiency improvement of the proposed method over β̂I was moderate, and the
empirical coverage probabilities of the intervals using the proposed method were
close to the nominal confidence levels. The reason for the moderate efficiency
gain of the proposed method was likely due to the crude partition and the weak
correlation between T1 and T2.

Example II was designed to verify the claim that the maximum efficiency
improvement is, in theory, infinity. The setup was the same as that of Example I
except that we took ρs from 0.9 to 0.9999. The partition for calculating β̂ was also
the same as Example I. Table 2 reports the results for β̂III and β̂ with ρs=0.9,
0.99, 0.999, 0.9999, and β=0. The simulation results in the absence of censorship
are also listed in the table, where the size of efficiency gain of β̂III over β̂I can be
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Table 2. Simulation results for Example II.
Censoring ρs Corr(T1, T2) β̂III β̂ V ar(β̂I)

V ar(β̂I)

V ar(β̂III)

V ar(β̂I)

V ar(β̂)

no 0.9000 0.781 0.061 0.002 0.0104 1.339 2.336
0.9900 0.932 0.072 0.000 0.0102 1.935 6.818
0.9990 0.979 0.078 0.000 0.0101 2.618 28.756
0.9999 0.994 0.078 -0.000 0.0111 3.211 134.342

c=2 0.9000 0.781 0.011 0.004 0.0117 1.013 2.608
0.9900 0.932 0.009 0.002 0.0119 1.019 11.162
0.9990 0.979 0.013 0.000 0.0120 1.021 68.135
0.9999 0.994 0.008 -0.000 0.0119 1.020 468.231

Notes: 1. β̂I : the WLW estimator proposed by Wei, Lin and Weissfeld (1989).

2. β̂III : the weighted estimator proposed by Cai and Prentice (1995).

3. β̂: the proposed estimator.

large if T1 and T2 are strongly dependent on each other. The relative efficiency of
β̂ over β̂I is much larger than that of β̂III over β̂I , and it is interesting that in the
presence of censorship the efficiency gain of β̂III over β̂I decreases quickly while
the efficiency gain of β̂ over β̂I increases. The reason may be that the weights
used in β̂III are less precisely estimated by the nonparametric estimation. In this
example, the variance estimation of the proposed method seemed to be biased
upward, but bias decreased as the sample size increased.

In Example III, we considered dependent covariates Z1 and Z2, in which Z1

was uniform on (0, 1) and Z2 = Z · I(Z > 0), where Z was normal with mean
Z1/4 and variance 0.052, given Z1. Censoring times C1 and C2 were U(1, 3)
variates, independent of each other and of T1 and T2. The space RpK was par-
titioned into A1 = {Z1 ≤ 0.3} and A2 = {Z1 > 0.3}. The time horizon was not
partitioned. Table 3 shows selected results at configurations determined by β-
values of −0.5, 0, and 0.5, and values of ρs= 0.70, 0.80, 0.90, and 0.99. In this
example, all simulation results were based on 500 replications. The relative effi-
ciencies here were all larger than those in Example I. Compared with the results
in Example I, the efficiency gains for β̂III over β̂I ranged over [1.093, 1.450], for
example. The largest efficiency improvement over β̂I was provided by β̂, ranging
up to 2.668. Compared with Example I, Example III had dependent covariate
structure and fewer partition cells. The dependence of covariates Z1 and Z2

contributes more efficiency improvement than that of the partition in this case.
Some nonconvergence occurred in using the Newton-Raphson procedure to com-
pute β̂III , presumably owing to unstable estimated weights under some sampling
configurations, while no other nonconvergence occurred to compute the other
estimators.

In Example IV, we considered different partitions to see how the relative ef-
ficiency of β̂ over β̂I changes. In this example, the setup was the same as that of



1036 YING CHEN, KANI CHEN AND ZHILIANG YING

Table 3. Simulation results for Example III.

β ρs β̂II β̂III(nonconvergence) β̂ V ar(β̂I)
V ar(β̂I )

V ar(β̂II )

V ar(β̂I )

V ar(β̂III )

V ar(β̂I )

V ar(β̂)
ECP by β̂(99%)

-0.50 0.70 -0.496 -0.506 (15.4%) -0.505 0.0996 1.243 1.173 1.287 0.982

0.99 -0.505 -0.524 (16.0%) -0.514 0.1099 1.981 1.243 2.668 0.992

0 0.70 0.010 -0.007 (23.0%) 0.001 0.0890 1.234 1.211 1.273 0.986

0.80 0.002 -0.009 (20.0%) -0.004 0.0819 1.263 1.093 1.342 0.984

0.90 -0.020 -0.037 (20.2%) -0.024 0.0895 1.462 1.231 1.601 0.978

0.99 0.005 -0.025 (18.4%) 0.000 0.0995 1.790 1.176 2.429 0.972

0.50 0.70 0.509 0.488 (33.6%) 0.501 0.0830 1.221 1.192 1.256 0.984

0.99 0.500 0.454 (30.2%) 0.491 0.0923 1.965 1.450 2.542 0.984

Notes: 1. β̂I : the WLW estimator proposed by Wei, Lin and Weissfeld (1989).

2. β̂II : the optimal WLW estimator at (2.4).

3. β̂III : the weighted estimator proposed by Cai and Prentice (1995).

4. β̂: the proposed estimator.

5. ECP: empirical coverage probability of the (1 − α)% confidence interval for β.

Example III except for partitions. Five partitions were considered. Partition I:
The space RpK was partitioned into A1 = {Z1 ≤ 0.5} and A2 = {Z1 > 0.5}, and
the time horizon was not partitioned. Partition II: The space RpK was partitioned
into A1 = {Z1 ≤ 0.5} and A2 = {Z1 > 0.5}, and the time horizon [0, +∞)was
partitioned into two intervals so that each had about the same number of obser-
vations. Partition III: The space RpK was partitioned into A1 = {Z1 ≤ 0.25},
A2 = {0.25 < Z1 ≤ 0.5}, and A3 = {Z1 > 0.5}, and the time horizon was not
partitioned. Partition IV: The space RpK was partitioned into A1 = {Z1 ≤ 0.25},
A2 = {0.25 < Z1 ≤ 0.5}, and A3 = {Z1 > 0.5}, and the time horizon was par-
titioned into two intervals so that each had about the same number of obser-
vations. Partition V: The space RpK was partitioned into A1 = {Z1 ≤ 0.5}
and A2 = {Z1 > 0.5}, and the time horizon [0, +∞)was partitioned into three
intervals, each of which contained about the same number of observations.

Table 4 lists the simulation results based on 500 replications. It indicates that
the efficiency improvement of β̂ is sizable if the degree of dependence between
T1 and T2, the degree of dependence between Z1 and Z2, or/and the number of
partition is sufficiently large. Balanced partitions for β̂ yielded larger efficiency
gains than unbalanced partitions. The efficiency improvement of β̂, based on
partition, was always larger than that of β̂II and β̂III . β̂II possessed larger
efficiency gains than β̂III only if the degree of dependence between Z1 and Z2

was strong. Additionally, there were some cases in which the efficiency gain of β̂

over the WLW method was huge. However, it should be noted that the proposed
method needs enough sample to keep the accuracy of the estimated variances,
and to obtain large efficiency gains with more partitions.

Finally, we illustrate the proposed method using a data set. The data are
the recurrence times between the insertion of a catheter and the next infection
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Table 4. Simulation results for Example IV.

Partition β ρs β̂ V ar(β̂I)
V ar(β̂I )

V ar(β̂)
ECP by β̂(99%)

I -0.50 0.70 -0.505 0.0996 1.297 0.986
0.80 -0.516 0.0910 1.391 0.986
0.90 -0.524 0.1008 1.703 0.990
0.99 -0.512 0.1128 2.415 0.986

0 0.70 0.000 0.0890 1.299 0.986
0.80 -0.005 0.0819 1.356 0.984
0.90 -0.023 0.0895 1.745 0.990
0.99 -0.005 0.0995 2.673 0.970

0.50 0.70 0.499 0.0830 1.272 0.980
0.80 0.498 0.0789 1.386 0.986
0.90 0.481 0.0816 1.653 0.986
0.99 0.498 0.0968 2.577 0.970

II -0.50 0.70 -0.511 0.0996 1.267 0.980
0.80 -0.515 0.0910 1.419 0.990
0.90 -0.522 0.1008 1.900 0.992
0.99 -0.514 0.1128 3.167 0.980

0 0.70 0.001 0.0890 1.271 0.988
0.80 0.001 0.0819 1.407 0.990
0.90 -0.021 0.0895 1.906 0.994
0.99 -0.003 0.0995 3.192 0.970

0.50 0.70 0.506 0.0830 1.244 0.980
0.80 0.508 0.0789 1.397 0.984
0.90 0.482 0.0816 1.741 0.982
0.99 0.500 0.0968 2.883 0.970

III -0.50 0.70 -0.512 0.0996 1.310 0.982
0.80 -0.521 0.0910 1.365 0.982
0.90 -0.530 0.1008 1.674 0.982
0.99 -0.513 0.1128 2.423 0.982

0 0.70 -0.007 0.0890 1.304 0.984
0.80 -0.011 0.0819 1.335 0.980
0.90 -0.031 0.0895 1.667 0.980
0.99 -0.009 0.0995 2.666 0.968

0.50 0.70 0.491 0.0830 1.276 0.980
0.80 0.492 0.0789 1.362 0.988
0.90 0.471 0.0816 1.573 0.972
0.99 0.494 0.0968 2.543 0.968

IV -0.50 0.70 -0.515 0.0996 1.277 0.980
0.80 -0.520 0.0910 1.373 0.990
0.90 -0.528 0.1008 1.850 0.988
0.99 -0.514 0.1128 3.101 0.978

0 0.70 -0.006 0.0890 1.260 0.984
0.80 -0.005 0.0819 1.340 0.984
0.90 -0.028 0.0895 1.799 0.978
0.99 -0.004 0.0995 3.127 0.966

0.50 0.70 0.498 0.0830 1.231 0.978
0.80 0.499 0.0789 1.351 0.982
0.90 0.473 0.0816 1.614 0.968
0.99 0.496 0.0968 2.826 0.960
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Table 4. (Continuous)

Partition β ρs β̂ V ar(β̂I)
V ar(β̂I )

V ar(β̂)
ECP by β̂(99%)

V -0.50 0.70 -0.519 0.0996 1.220 0.974
sample size 0.80 -0.521 0.0910 1.388 0.986

n = 200 0.90 -0.523 0.1008 1.908 0.988
0.99 -0.512 0.1128 3.431 0.984

V -0.50 0.70 -0.519 0.0352 1.287 0.984
sample size 0.80 -0.510 0.0346 1.518 0.994

n = 500 0.90 -0.496 0.0414 2.020 0.978
0.99 -0.501 0.0445 4.117 0.990

Notes: 1. β̂I : the WLW estimator proposed by Wei, Lin and Weissfeld (1989).

2. β̂: the proposed estimator.

3. ECP: empirical coverage probability of the (1 − α)% confidence interval for β.

of kidney patients who were using a portable dialysis machine (McGilchrist and
Aisbett (1991)). 38 patients were observed, 10 male. For each patient, two
recurrence times Y1 and Y2 were recorded. The catheter could be removed for
other reasons so that there are some censored data. The data are given in Table 5.

One question is whether there is a difference in recurrence times between
male and female. Here the response is recurrence time Yi, with covariate Zi

as 1 if male, 2 if female. The covariate space RpK was first partitioned into
A1 = {Z1≤1.5, Z2≤1.5}, A2 = {Z1≤1.5, Z2 >1.5}, A3 = {Z1 >1.5, Z2≤1.5},
and A4 = {Z1 >1.5, Z2 >1.5}, and the time horizon was not partitioned. The es-
timate β̂ of sex effect using the proposed method was −1.327 and the approximate
95% and 99% confidence intervals were [−2.165,−0.488] and [−2.429,−0.224], re-
spectively. Thus the sex effect was significant at the 1% level. To check sensitivity
to partitioning, some other partitions were applied. If the space was partitioned
into A1 = [0, t11)×{Z1 ≤ 1.5, Z2 ≤ 1.5}, A2 = [t11, +∞)×{Z1 ≤ 1.5, Z2 ≤ 1.5},
A3 = [0, t12) × {Z1 ≤ 1.5, Z2 > 1.5}, A4 = [t12, +∞) × {Z1 ≤ 1.5, Z2 > 1.5},
A5 = [0, t21) × {Z1 > 1.5, Z2 ≤ 1.5}, A6 = [t21, +∞) × {Z1 > 1.5, Z2 ≤ 1.5},
A7 = [0, t22)× {Z1 > 1.5, Z2 > 1.5}, and A8 = [t22, +∞)× {Z1 > 1.5, Z2 > 1.5},
and time partitioned so that each subinterval had about the same number of
observations, β̂ = −1.671, and the estimated variances of β̂ was 0.1050. The cor-
responding approximate 95% and 99% confidence intervals were [−2.306,−1.036]
and [−2.506,−0.837], respectively. Again, there was a sex effect. When parti-
tioning time into three intervals with almost the same number of observations,
we found β̂ = −1.641, and the estimated variance of β̂ was 0.1384. The corre-
sponding approximate 95% and 99% confidence intervals were [−2.370,−0.912]
and [−2.599,−0.683], respectively. When only time was partitioned into two
subintervals, β̂ = −1.587. The corresponding approximate 95% and 99% confi-
dence intervals were [−2.369,−0.805] and [−2.615,−0.560], respectively. All four
partitions thus led to the same result.
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Table 5. Recurrence times between the insertion of a catheter and the next
infection of kidney patients.

Patient Recurrence times Event type ∗

number Y1 Y2 1st 2nd Sex ∗∗

1 8 16 1 1 1
2 23 13 1 0 2
3 22 28 1 1 1
4 447 318 1 1 2
5 30 12 1 1 1
6 24 245 1 1 2
7 7 9 1 1 1
8 511 30 1 1 2
9 53 196 1 1 2

10 15 154 1 1 1
11 7 333 1 1 2
12 141 8 1 0 2
13 96 38 1 1 2
14 149 70 0 0 2
15 536 25 1 0 2
16 17 4 1 0 1
17 185 177 1 1 2
18 292 114 1 1 2
19 22 159 0 0 2
20 15 108 1 0 2
21 152 562 1 1 1
22 402 24 1 0 2
23 13 66 1 1 2
24 39 46 1 0 2
25 12 40 1 1 1
26 113 201 0 1 2
27 132 156 1 1 2
28 34 30 1 1 2
29 2 25 1 1 1
30 130 26 1 1 2
31 27 58 1 1 2
32 5 43 0 1 2
33 152 30 1 1 2
34 190 5 1 0 2
35 119 8 1 1 2
36 54 16 0 0 2
37 6 78 0 1 2
38 63 8 1 0 1

* Event type: 1=infection occurs, 0=censored;

** Sex: 1=male, 2=female.
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