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Abstract: Procedures controlling error rates measuring at least k false rejections,

instead of at least one, are often desired while testing a large number of hypotheses.

The k-FWER, probability of at least k false rejections, is such an error rate that

has been introduced, and procedures controlling it have been proposed. Recently,

Sarkar (2007) introduced an alternative, less conservative notion of error rate, the

k-FDR, generalizing the usual notion of false discovery rate (FDR), and proposed

a procedure controlling it based on the k-dimensional joint distributions of the null

p-values and assuming MTP2 (multivariate totally positive of order two) positive

dependence among all the p-values. In this article, we assume a less restrictive form

of positive dependence than MTP2, and develop alternative procedures based only

on the bivariate distributions of the null p-values.
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1. Introduction

Often in practice when a large number of null hypotheses are being simul-
taneously tested, one is willing to tolerate a few false rejections but wants to
control the occurrence of too many of them, say k or more. The k-FWER, prob-
ability of falsely rejecting at least k null hypotheses, is an appropriate error rate
in this context. A number of procedures controlling it have been proposed in the
literature; see, for example, Sarkar (2008) for references. Sarkar (2007) recently
proposed using the k-FDR, the expected ratio of k or more false rejections to
the total number of rejections, which generalizes the false discovery rate (FDR)
of Benjamini and Hochberg (1995, BH). He developed two k-FDR procedures
utilizing the kth order joint null distributions of the p-values, one under indepen-
dence or the MTP2 positive dependence (Karlin and Rinott (1980)), generalizing
the BH FDR procedure, and the other under any form of dependence among the
p-values, generalizing the FDR procedure of Benjamini and Yekutieli (2001, BY).
Sarkar and Guo (2009) also considered a mixture model involving independent
p-values, and provided a simple, intuitive upper bound to the k-FDR. Based on
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this, they introduced conservative point estimates of the k-FDR and through
them, newer stepup k-FDR procedures. The k-FDR control of these procedures
was proved for independent test statistics.

Here we go back to the work of Sarkar (2007) and develop alternative k-FDR
procedures relaxing both the MTP2 condition and the use of the k-dimensional
joint distributions of the null p-values. More specifically, we assume the positive
dependence condition, a weaker version of the MTP2, under which a stepwise
procedure, stepdown or stepup, with the critical values of the BH procedure
(to be simply referred to as the BH stepwise procedure) known to control the
FDR (Benjamini and Yekutieli (2001) and Sarkar (2002)), and generalize this BH
stepwise procedure to a k-FDR stepwise procedure based only on the bivariate
distributions of the null p-values. The positive dependence condition assumed is
slightly weaker than considered originally in the above two papers. We offer two
such generalizations in the positive dependence case, one more conservative than
the other but easier to implement, both reducing to the same procedure under
independence. Often in practice, as in microarray analyses or fMRI studies, the
p-values tend to be clumpy dependent in the sense that they are more positively
dependent within small groups, strongly or weakly, but are independent between
these groups. Two alternative stepwise procedures controlling the k-FDR are
presented in this case.

We numerically compare each of our proposed k-FDR stepwise procedures
with the corresponding BH stepwise procedure, knowing that an FDR procedure
can also serve as a k-FDR procedure, albeit more conservatively, and that the
minimum we expect of a k-FDR procedure is to perform better than the corre-
sponding FDR procedure. For appropriately chosen values of k, the proposed
k-FDR stepwise procedures are seen to be uniformly more powerful than the
corresponding BH stepwise procedure under independence or a weak positive de-
pendence among the p-values. With increasing positive dependence among the
p-values, our k-FDR stepwise procedures unfortunately lose their edges over the
corresponding FDR procedure. However, in case of clumpy dependence among
the p-values, the proposed k-FDR procedures are seen to improve their perfor-
mances, maintaining their power dominance over the corresponding BH stepwise
procedure even under high positive dependence among the p-values.

An alternative stepdown k-FDR procedure is proposed that performs better
than the stepdown part of the above stepwise procedure under independence.
Finally, we develop a generalized BY procedure that uniformly outperforms the
original BY procedure as a k-FDR procedure under any form of dependence.

The paper is organized as follows. With some background information and
result given in Section 2, we present the developments of our k-FDR procedures
under positive dependence, clumpy dependence, and independence situations in
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Section 3. The findings from some numerical studies on the performances of our
procedures are given in Section 4. Section 5 deals with the proposed k-FDR
procedure under arbitrary dependence. Most of the technical details and a graph
showing the power performance of the above alternative stepdown procedure are
placed as a Web Appendix in http://www.stat.sinica.edu.tw/statistica.

2. Preliminaries

Let H1, . . . ,Hn be the null hypotheses being simultaneously tested using the
corresponding p-values P1, . . . Pn, respectively. Let P(1) ≤ · · · ≤ P(n) be the
ordered p-values and H(1), . . . ,H(n) the associated null hypotheses. Then, given
a non-decreasing set of critical constants 0 < α1 ≤ · · · ≤ αn < 1, a stepdown
multiple testing procedure rejects the set of null hypotheses {H(i), i ≤ i∗SD} and
accepts the rest, where i∗SD = max{i : P(j) ≤ αj ∀ j ≤ i} if the maximum exists,
otherwise it accepts all the null hypotheses. A stepup procedure, on the other
hand, rejects the set {H(i), i ≤ i∗SU} and accepts the rest, where i∗SU = max{i :
P(i) ≤ αi} if the maximum exists, otherwise it accepts all the null hypotheses. A
stepwise (stepdown or stepup) procedure with the same constant is referred to
as a single-step procedure.

The constants in a stepwise procedure are determined subject to the control
at a pre-specified level α of a suitable error rate. With R and V denoting,
respectively, the total numbers of rejected and falsely rejected null hypotheses,
the k-FDR is defined as k-FDR = E (k-FDP) , where k-FDP = V/R if V ≥ k,
and = 0 otherwise (Sarkar (2007)). The k-FDR is the expected ratio of k or more
false rejections to the total number of rejections, reducing to the original FDR
when k = 1. It is a less conservative notion of error rate than the FDR, as k-FDR
≤ FDR. Using it when one is willing to control at least k false rejections, rather
than at least one, is a natural generalization of the idea of using the k-FWER
= P{V ≥ k} instead of the FWER = P{V ≥ 1}.

The following lemma, with proof given in the Web Appendix, is key to
developing the k-FDR procedures. We assume that n0 is the number of true
null hypotheses and P̂1, . . . , P̂n0 are the corresponding p-values.

Lemma 2.1. Given a stepwise procedure involving P1, . . . , Pn and the critical
values 0 < α1 ≤ · · · ≤ αn < 1, consider the corresponding stepwise procedure in
terms of the null p-values P̂1, . . . , P̂n0 and the critical values αn−n0+1 ≤ · · · ≤ αn.
Let Vn be the number of false rejections in the stepwise procedure and R̂n0 be the
number of rejections in the stepwise procedure involving the null p-values. Then,
{Vn ≥ k} ⊆

{
R̂n0 ≥ k

}
for any fixed k ≤ n0 ≤ n.

http://www.stat.sinica.edu.tw/statistica
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Remark 2.1. With Lemma 2.1, construction of a stepwise procedure providing
a control of the k-FWER at α basically reduces to that of finding the constants in
that procedure guaranteeing the inequality P{R̂n0 ≥ k} ≤ α for all k ≤ n0 ≤ n.
It unifies the arguments used separately towards constructing stepdown k-FWER
and stepup k-FWER procedures in Lehmann and Romano (2005) and Romano
and Shaikh (2006).

We assume that each Pi ∼ U(0, 1) when the corresponding Hi is true and,
jointly, the p-values are positively dependent in the sense that

E
{

φ(P1, . . . , Pn) | P̂i ≤ u
}

↑ u ∈ (0, 1), (2.1)

for each P̂i and any increasing (coordinatewise) function φ. This is slightly weaker
than E

{
φ(P1, . . . , Pn) | P̂i = u

}
↑ u ∈ (0, 1), the positive regression dependence

on subset (PRDS) condition considered in Benjamini and Yekutieli (2001) and
Sarkar (2002). A proof of the k-FDR control of our proposed procedure becomes
easier when the present form of positive dependence is applied directly, even
though relaxing the PRDS condition to the present form may not be of much
importance from a practical standpoint. This condition is satisfied by the p-values
arising in a number of multiple testing situations. In particular, it is satisfied by
the p-values corresponding to multivariate normal test statistics with a common
non-negative correlation as is considered in our numerical calculations.

We assume that k is pre-fixed, though it is important to note that a determi-
nation of it statistically when it is not given is an important issue; see Sarkar and
Guo (2009) for a discussion. Since the k-FDR is 0, and hence trivially controlled,
for any procedure if n0 < k, we assume throughout this paper that k ≤ n0 ≤ n.

3. k-FDR Procedures under Positive Dependence or Independence

In this section, we develop stepwise procedures that control the k-FDR for
k ≥ 2 using bivariate distributions of the null p-values, assumed known. To this
end, we have the following theorem whose proof is in the Web Appendix.

Theorem 3.1. Consider a stepwise procedure with the critical values given by
αi = {i ∨ k}αk/k, i = 1, . . . , n, for some fixed 2 ≤ k ≤ n and 0 < αk < 1. Then
for p-values satisfying (2.1) we have

k-FDR ≤ max
k≤n0≤n

 1
k(k − 1)

n0∑
i=1

n0∑
j(6=i)=1

Hij

(
αk,

(n − n0 + k)αk

k

) , (3.1)

where Hij(u, v) = P{P̂i ≤ u, P̂j ≤ v}, i 6= j, are the bivariate cdf’s of the null
p-values.
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We can apply the inequality P{P̂i ≤ u | P̂j ≤ v′} ≤ {P̂i ≤ u | P̂j ≤
v}, for any v ≤ v′, that characterizes the positive dependence property shared
by every pair (P̂i, P̂j), to the right-hand side in (3.1) to obtain a more relaxed,
but easier to utilize, upper bound to the k-FDR than the one in Theorem 3.1.

Corollary 3.1. For the stepwise procedure in Theorem 3.1, and under the same
conditions, for k ≥ 2,

k-FDR ≤ max
k≤n0≤n

n − n0 + k

k2(k − 1)

n0∑
i=1

n0∑
j(6=i)=1

Hij (αk, αk)

 . (3.2)

The k-FDR of the stepwise procedure in Theorem 3.1 can be controlled at
α by equating the upper bound in (3.1) or (3.2) to α and solving the resulting
equation for αk. Of course one needs to know the bivariate distributions of all
pairs of null p-values. For instance, when the null p-values are exchangeable with
H as the common and known bivariate cdf, the αk can be obtained from

max
k≤n0≤n

{
n0(n0 − 1)
k(k − 1)

H

(
αk,

(n − n0 + k)αk

k

)}
= α (3.3)

or, can be obtained more conservatively by solving

D(k, n)H (αk, αk)
k2(k − 1)

= α, with D(k, n) = max
k≤n0≤n

{n0(n0−1)(n−n0 + k)} . (3.4)

Often in practice, as in microarray analysis and fMRI studies, the p-values
tend to be clumpy dependent in the sense that they are more (positively) depen-
dent within groups than between groups. Suppose that there are g independent
groups and, for each i = 1, · · · , n0, Ji is the set of indices of null hypotheses in
the group containing the P̂i. Clearly, Ji ≡ Jj if i and j belong to the same
group. The upper bounds in Theorem 3.1 and Corollary 3.1 can be expressed,
respectively, in this case as

k-FDR ≤ max
k≤n0≤n

n − n0 + k

k2(k − 1)

n0∑
i=1

∑
j(6=i)∈Ji[

k

n − n0 + k
Hij

(
αk,

(n − n0 + k)αk

k

)
+ (n0 − |Ji|)α2

k

]}
, (3.5)

k-FDR ≤ max
k≤n0≤n

n − n0 + k

k2(k − 1)

n0∑
i=1

∑
j(6=i)∈Ji

[
Hij (αk, αk) + (n0 − |Ji|)α2

k

] , (3.6)
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where |Ji| is the cardinality of Ji. Stepwise procedures controlling the k-FDR
in case of clumpy dependence can then be constructed by equating the upper
bound in (3.5) or (3.6) to α and solving for αk.

When the p-values are independent, we have the following.

Proposition 3.1. A stepwise procedure with the critical values αi = (i∨ k)β/n,
i = 1, . . . , n, with β = n

√
(k − 1)α/D(k, n), controls the k-FDR at α when the

p-values are independent.

In fact, an alternative to the stepdown part of the procedure in Proposition
3.1 can be obtained under independence. Consider a stepdown procedure with
critical values αi = {i ∨ k}β/n, i = 1, . . . , n, for a fixed 0 < β < 1. For this
procedure, we have

k-FDR ≤ n0β

n
P {Rn0−1 ≥ k − 1} , (3.7)

as shown in the Web Appendix, where Rn0−1 is the number of rejections in
the stepdown procedure based on P̂(1):n0−1 ≤ · · · ≤ P̂(n0−1):n0−1, the ordered
versions of any n0 − 1 of the n0 null p-values, and the corresponding critical
values αn−n0+2 ≤ · · · ≤ αn. Let

Gk,n(u) = P
{
U(k) ≤ u

}
=

n∑
j=k

(
n

j

)
uj(1 − u)n−j ,

the cdf of the kth order statistic based on n iid U(0, 1). Then, since

P {Rn0−1 ≥ k − 1} = P
{

P̂1:n0−1 ≤ αn−n0+2, . . . , P̂(k−1):n0−1 ≤ αn−n0+k

}
≤ Gk−1,n0−1 (αn−n0+k) ,

we have the following.

Proposition 3.2. Consider a stepdown procedure with the critical values αi =
(i ∨ k)β/n, i = 1, . . . , n, where

β

n
max

k≤n0≤n

{
n0Gk−1,n0−1

(
(n − n0 + k)β

n

)}
= α . (3.8)

The k-FDR is controlled at α when the p-values are independent.

We show numerically in the next section that the stepdown procedure in
Proposition 3.2 indeed performs better than the stepdown procedure in Propo-
sition 3.1 under independence.



PROCEDURES CONTROLLING THE k-FDR 1233

Remark 3.1. In a stepwise procedure providing a control of the k-FDR, the
first k − 1 critical values can be chosen arbitrarily without affecting the k-FDR,
as in the case of a k-FWER stepwise procedure (Lehmann and Romano (2005)
and Sarkar (2007, 2008)). Nevertheless, as argued in those papers, keeping these
critical values constant at the kth critical value would be the best option. This
is what we do in this paper. Thus, even though one can use the stepwise BH
procedure with the critical values αi = iα/n, i = 1, . . . , n, as a k-FDR procedure,
one may consider improving it by modifying its critical values to αi = (i∨k)α/n,
i = 1, . . . , n; we call this the k-FDR version of the stepwise BH procedure. Of
course, this k-FDR BH procedure does not take full advantage of the notion of
k-FDR in that its critical values are determined directly using a formula for the
the FDR, not the k-FDR, and hence can potentially be improved. It is this k-
FDR version of stepwise BH procedure against which we numerically investigate
the performances of our proposed k-FDR procedures in the next section.

4. Simulations

We present in this section the results of simulation studies we conducted
to investigate the performances of our k-FDR procedures developed under dif-
ferent types of dependence among the p-values – positive dependence, clumpy
dependence, and independence. These studies were geared toward comparing
our procedures with the k-FDR version of the BH stepwise procedure in terms
of the average power, the expected proportion of false null hypotheses that are
rejected. For the positive dependence case, our procedures are the ones that are
based on αk determined from the upper bound in Theorem 3.1, or its corollary.
For the clumpy dependence case, these are based on the αk in (3.5) or (3.6). In
the independence case, we focused on the stepdown procedure in Proposition 3.2
to see how it actually performs in such a case as an alternative to the one in
Proposition 3.1.

In all these studies, we chose n = 200 and k = 8, and generated the p-
values from multivariate normal test statistics. These statistics have a common
non-negative correlation ρ in the case of positive dependence, and are broken
up into g independent groups with a common non-negative correlation ρ within
each group in the case of clumpy dependence. For the positive and clumpy
dependence cases, we decided to present the power comparisons for different
degrees of dependence. However, since we had to numerically compute the critical
values of our procedures for this (n, k) before proceeding to simulate their average
powers, we also decided to present these critical values along with those for
a variety of other choices of both n and k. This provides us a more direct
comparisons between our procedures and the k-FDR version of the BH stepwise
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Table 1. Values of β1 and β2 for different (n, k) and non-negative ρ with
α = 0.05.

ρ = 0.0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20
n k β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

50 2 0.079 0.079 0.066 0.062 0.055 0.050 0.046 0.039 0.038 0.031
200 8 0.103 0.103 0.087 0.083 0.074 0.066 0.063 0.053 0.053 0.043

1000 40 0.108 0.0108 0.092 0.087 0.078 0.070 0.066 0.056 0.056 0.045
5000 200 0.109 0.109 0.093 0.088 0.079 0.071 0.067 0.057 0.057 0.046

10000 400 0.109 0.109 0.093 0.088 0.079 0.071 0.067 0.057 0.057 0.046

procedure. In the independence case, however, we consider only the average
power for comparison.

We computed β, where αk = kβ/n, from the upper bounds in Theorem 3.1
and its corollary, with the p-values assumed to be generated from multivariate
normal test statistics with a common non-negative correlation ρ. Values of β

for some (n, k, ρ) and α = 0.05 are presented in Table 1, where β ≡ β1 =
nαk/k with αk in (3.1), and β ≡ β2 = nαk/k with αk in (3.2). Comparing
the values of both β1 and β2 directly with α = 0.05, we notice that when the
p-values are independent or weakly but positively dependent our proposed k-
FDR stepwise procedures are based on quite large critical values, and hence
quite powerful relative to the k-FDR version of the corresponding stepwise BH
procedure. However, as the p-values become more and more positively dependent,
our procedures lose their edge over this k-FDR version of stepwise BH procedure.
To see the extent of power improvement our k-FDR procedures offer over the k-
FDR version of the BH procedure in case of weakly but positively dependent
p-values, we carried out further numerical investigations in terms of the average
power, but this time considering only stepup procedures.

Figure 1 presents a comparison of the simulated average powers of the stepup
procedures corresponding to β1 and β2, labelled k-FDR SU 1 and k-FDR SU 2,
respectively, and the k-FDR version of the BH procedure, labelled k-FDR BH.
The simulated average power for each procedure was obtained by (i) generating
n = 200 dependent normal random variables N(µi, 1), i = 1, · · · , n, with a
common correlation ρ = 0.05, 0.1, 0.15 or 0.2, and with n1 of the 200 µi’s being
equal to d = 2 and the rest 0, (ii) applying the corresponding stepup procedure
with k = 8 to the generated data to test Hi : µi = 0 against Ki : µi 6= 0
simultaneously for i = 1, . . . , 200 at α = 0.05, and (iii) repeating steps (i) and
(ii) 1,000 times before observing the proportion of the n1 false Hi’s that were
correctly declared significant. The values of β1 and β2 for (n, k) = (200, 8) and
ρ = 0.05, 0.1, 0.15 and 0.2 were taken from Table 1. As seen from this figure,
our proposed k-FDR stepup procedures are uniformly more powerful than the
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Figure 1. Power of two k-FDR stepup procedures in the case of positive
dependence with parameters n = 200, k = 8, d = 2 and α = 0.05.

BH stepup procedure under weak dependence, with the power difference getting
significantly higher with increasing numbers of false null hypotheses.

We did similar kind of calculations for the clumpy dependence case. Table
2 presents the values of β1 = nαk/k with αk in (3.5) and β2 = nαk/k with αk in
(3.6) for some values of (n, k, g, ρ) and α = 0.05. This time, our stepwise proce-
dures are seen to uniformly dominate the corresponding stepwise BH procedure
even for positive correlations as large as 0.5. For correlation larger than 0.5,
while the procedure corresponding to β1 continues to uniformly dominate the
corresponding stepwise BH procedure, the procedure corresponding to β2 works
well only when the number of null hypotheses is large. A further comparison
in terms of the average power is presented in Figure 2, having simulated these
powers for (n, k, g) = (200, 8, 20), ρ = 0, 0.2, 0.5 and 0.8, and α = 0.05. In this
graph, the stepup procedures corresponding to β1 and β2 and the k-FDR version
of the BH procedure are labelled k-FDR SU 1, k-FDR SU 2, and k-FDR BH,
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Figure 2. Power of two k-FDR stepup procedures in the case of clumpy
dependence with parameters n = 200, g = 20, k = 8, d = 2 and α = 0.05.

Table 2. Values of β1 and β2 for different (n, k, g) and non-negative ρ under
clumpy dependence with α = 0.05.

ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8
n k g β1 β2 β1 β2 β1 β2 β1 β2

200 8 20 0.103 0.103 0.096 0.092 0.079 0.058 0.054 0.022
500 20 25 0.107 0.107 0.101 0.098 0.086 0.065 0.063 0.026

1000 40 40 0.108 0.108 0.105 0.102 0.094 0.078 0.076 0.038
5000 200 100 0.109 0.109 0.108 0.107 0.103 0.095 0.095 0.066

10000 400 100 0.109 0.109 0.108 0.107 0.103 0.095 0.095 0.066

respectively. Figure 2 reinforces our previous observations regarding the relative
performances of these procedures made from Table 2.

Lastly, we repeated our simulation for the independence case. The average
powers were simulated for the procedures in Propositions 3.2 and 3.1, and the
k-FDR version of the stepdown BH procedure, with (n, k, ρ) = (200, 5, 0) and
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α = 0.05. These are presented in Web Figure 1, having labelled these procedures
k-FDR SD 1, k-FDR SD 2, and k-FDR BH, respectively. We notice that the
stepdown procedure in Proposition 3.2 indeed performs much better than the
other two stepdown procedures under independence.

5. k-FDR Procedure under Arbitrary Dependence

We now consider developing a stepup procedure, with a control of the k-FDR
under any form of dependence of the p-values, that will uniformly dominate the
BY procedure with the critical values αi = iα/n

∑n
j=1

1
j , i = 1, . . . , n, or its

modification obtained by keeping the first k−1 critical values the same as the kth
one. To that end, we have the following theorem, proved in the Web Appendix.

Theorem 5.2. A stepup procedure with the critical values

αi =
(i ∨ k)α

n
{

1 +
∑n

j=k+1 1/j
} , i = 1, . . . , n,

controls the k-FDR at α.
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