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Abstract: Nonparametric varying coefficient models are useful for the analysis of

repeated measurements. While many procedures have been developed for estimat-

ing varying-coefficients, there have been few results on variable selection for such

models. Recently, Wang, Chen and Li (2007) proposed a group SCAD procedure

for model selection in varying-coefficient models, and Wang, Li and Huang (2008)

established the existence of a local minimizer of the group SCAD criterion that

has the oracle property. However, whether the final estimator from the gSCAD

procedure via local quadratic approximation always finds the desired local mini-

mizer is not clear. In this paper, by linearizing the gSCAD penalty we propose

a one-step estimator that has the oracle property in variable selection and esti-

mation. The proposed estimator has a much simpler implementation and gives

better performance in variable selection and estimation than the ordinary gSCAD

estimator.
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1. Introduction

Analysis of repeated measurement data is a recurrent challenge to statis-
ticians engaged in biological and biomedical applications. A traditional setup
for such data is to assume that the observed sequence of measurements on an
individual is sampled from a realization of a continuous-time stochastic process
{(Y (t),X(t)), t ∈ T }, where Y (t) and X(t) = (X1(t), . . . , XL(t))> denote, re-
spectively, the response and the RL-valued covariate, and T denotes the time
interval on which the measurements are taken. In practice, observations for n

randomly chosen subjects are obtained as (Yi(tij),Xi(tij)) for the ith subject at
discrete time points tij , i = 1, . . . , n, j = 1, . . . , ni.

Varying-coefficient models have been used extensively for the analysis of
longitudinal repeated measurement data. The linear varying-coefficient model
can be written as

Yi(tij) = Xi(tij)>β(tij) + εi(tij), (1.1)

where β(t) = (β1(t), . . . , βL(t))> is an L-dimensional vector of smooth functions
of t, and εi(t), i = 1, . . . , n, are i.i.d. mean zero random processes, independent
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of Xi(t). Model (1.1) assumes a linear model for each fixed t, but allows the
coefficients to vary with time. Many methods have been developed for estimating
the varying coefficients in (1.1), see Hoover et al. (1998), Fan and Zhang (2000),
Rice and Wu (2001), Huang, Wu and Zhou (2002, 2004), and Xue (2009), among
others. However, when the number of covariates in (1.1) is very large, selection
of important variables is still a challenging issue; we tackle this problem in the
present paper.

Recent years have seen a few developments for regularization procedures
to select important variables in Model (1.1). Fan and Li (2004) studied the
SCAD penalty approach for variable selection in longitudinal data analysis, but
in the case where the coefficient vector β is not time-dependent. Wang, Chen
and Li (2007) considered a group SCAD (gSCAD) procedure, but assumed that
the covariates Xi are not time-dependent. Wang, Li and Huang (2008) further
developed the gSCAD procedure for general nonparametric varying coefficient
models with time-dependent varying coefficients and time-dependent covariates.
They provided theoretical justification for the gSCAD procedure by establishing
the existence of a local minimizer of the gSCAD criterion that has the oracle
property in variable selection and estimation. Due to the non-convexity of the
gSCAD penalty, there may be multiple local minima. An important issue that
deserves further attention then is whether the final estimator from the gSCAD
procedure via local quadratic approximation (LQA) always finds the desired local
minimizer.

Here we propose a new sparse estimation procedure for Model (1.1). The
method is based on linearization of the gSCAD penalty. The idea of linearization
was first used by Zou and Li (2008) to fit sparse parametric linear models. We
show that the procedure leads to a sparse estimator of the varying coefficient
vector that possesses the oracle property in variable selection and estimation.
Our theory uses general basis functions for approximating the unknown vary-
ing coefficient functions. Thus, the results are valid for non-orthonormal basis
functions, such as B-splines, as well as orthonormal basis functions. Another
important advantage of our procedure is that one does not need to choose an ar-
tificial cut-off value as typically required for iterative algorithms based on LQA
of the SCAD or gSCAD penalty to make the resulting estimators sparse. It was
observed by Hall, Lee and Park (2009) that the performance of SCAD proce-
dures depends crucially on the choice of the cut-off value. Since our procedure
for computing the estimator is a traditional convex programming problem, its
implementation is much simpler than the ordinary gSCAD estimator of Wang,
Li and Huang (2008). Furthermore, our simulation study suggests that the pro-
posed one-step gSCAD procedure has better finite sample performance than the
ordinary gSCAD.
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The rest of the paper is organized as follows. We first describe the one-step
gSCAD estimator and an algorithm in Section 2. We then present the oracle
property of our estimator in Section 3. We report simulation results in Section 4.
Technical details are deferred to Section 5.

2. One-step gSCAD Procedure

In order to select significant covariates in Model (1.1), Wang, Li and Huang
(2008) proposed a grouped version of the SCAD penalty based on a basis expan-
sion of β and penalized estimation. We assume that each βl, l = 1, . . . , L, can
be approximated by a set of basis functions, that is,

βl(t) ≈
Kl∑

k=1

γlkBlk(t), l = 1, . . . , L, (2.1)

where {Blk}∞k=1 span a function space Fl which is assumed to contain βl, and
Kl is the number of the basis functions used to approximate βl. In Wang, Li
and Huang (2008) it is assumed that {Blk}∞k=1 is a spline basis for each l. We
work on general basis functions. Since, under the approximations (2.1), each
function βl in (1.1) is characterized by a set of parameters γl = (γl1, . . . , γlKl

)>,
one should not select nonzero individual components γlk, but choose the whole
nonzero vector γl.

For the approximation gl =
∑Kl

k=1 γlkBlk at (2.1), its squared L2-norm can
be written as ‖gl‖2 = γ>

l Hlγl, where Hl is a Kl × Kl matrix with entries hkk′ =∫
T Blk(t)Blk′(t) dt. For a vector γl ∈ RKl , we use the standardized `2-norm

‖γl‖w ≡ (γ>
l Hlγl)1/2

to define a group SCAD penalty function. Let wi ≥ 0 be the weights that are
applied to each subject, and pλ(·) be the SCAD penalty function introduced by
Fan and Li (2001). The function pλ is defined on R+ by its derivative

p′λ(x) = λI(x ≤ λ) +
(aλ − x)+

a − 1
I(x > λ)

for some a > 2. Let Xil denote the lth component of the covariate vector process
Xi. Then, the group SCAD regularized estimator of γ = (γ>

1 , . . . , γ>
L )> that we

consider in this paper minimizes

l(γ) =
n∑

i=1

wi

ni∑
j=1

(
Yi(tij) −

L∑
l=1

Kl∑
k=1

Xil(tij)Blk(tij)γlk

)2

(2.2)

+
L∑

l=1

pλ(‖γl‖w)

with respect to γ.
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The SCAD penalty has the tuning parameters a and λ. Fan and Li (2001)
suggested the use of a = 3.7. Some examples of wi include wi ≡ (

∑n
i=1 ni)−1

and wi = (n × ni)−1. Wang, Li and Huang (2008) used the latter in their
objective function. Huang, Wu and Zhou (2002) showed that the latter choice
yields consistency of the estimators under weaker conditions than the former in
the problem of estimating the varying coefficients without penalty. Our theory
in the next section treats a general choice of {wi}.

A difficulty with the gSCAD approach described above is that the loss l

often has multiple local minima due to the non-convexity of the gSCAD penalty
function. The gSCAD algorithm suggested by Wang, Li and Huang (2008) is
based on LQA and leads to a local minimizer whose statistical properties are not
well known. As remarked by Wang, Li and Huang (2008), their gSCAD algorithm
may fail to converge and the search may fall into an infinite loop surrounding
several local minimizers. To overcome the difficulty, we adopt the approach of
Zou and Li (2008) who worked on a linear approximation of the SCAD penalty
to obtain a one-step SCAD estimator in parametric linear models. The oracle
property here means that the zero coefficient functions are correctly identified
with probability approaching one, and the rates of convergence of the estimators
of the nonzero coefficient functions coincide with those of the oracle estimators
that use knowledge of the zero coefficient functions.

2.1. Local linear approximation of gSCAD penalty

The local linear approximation (LLA) of the gSCAD penalty is

pλ(‖γl‖w) ≈ pλ(‖γ(0)
l ‖w) + p′λ(‖γ(0)

l ‖w)(‖γl‖w − ‖γ(0)
l ‖w)

for γ ≈ γ(0). Set an initial value γ(0). For k = 0, 1, 2, . . . one may repeatedly
minimize la(γ|γ(k)) to obtain the updated value γ(k+1), where

la(γ|γ′) =
n∑

i=1

wi

ni∑
j=1

(
Yi(tij) −

L∑
l=1

Kl∑
k=1

Xil(tij)Blk(tij)γlk

)2

+
L∑

l=1

p′λ(‖γ′
l‖w)‖γl‖w.

The following proposition is a version of Theorem 1 in Zou and Li (2008). The
proof is the same as theirs, hence is omitted.

Proposition 2.1. For the SCAD penalty function pλ, l(γ) ≤ la(γ|γ(k)) + c and
l(γ(k)) = la(γ(k)|γ(k)) + c, where c =

∑L
l=1[pλ(‖γ(0)

l ‖w) − p′λ(‖γ(0)
l ‖w)‖γ(0)

l ‖w].
Furthermore, the LLA algorithm has satisfies l(γ(k+1)) ≤ l(γ(k)) for all k =
0, 1, 2, . . .
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The LLA algorithm is thus an instance of the Majorize-Minimize (MM) algo-
rithms and its convergence may be analyzed using general convergence results for
MM algorithms, see Lange (1995), Hunter and Li (2005), and Zou and Li (2008).
The fact that the LLA is the best convex majorization of pλ is demonstrated by
Theorem 2 in Zou and Li (2008).

2.2. One-step gSCAD estimator

Let γ0 be an initial estimator of γ, and γ̂ be the one-step gSCAD estimator
obtained by minimizing the loss

la(γ) ≡ la(γ|γ̂(0)) =
n∑

i=1

wi

ni∑
j=1

(
Yi(tij) −

L∑
l=1

Kl∑
k=1

Xil(tij)Blk(tij)γlk

)2

+
L∑

l=1

p′λ(‖γ0
l ‖w)‖γl‖w. (2.3)

In Section 3, we show that, if one uses the least square estimator in Huang, Wu
and Zhou (2004) as an initial value γ̂0, the one-step gSCAD estimator is already
efficient, enjoying the oracle property in variable selection and estimation.

Since minimization of la at (2.3) is a convex programming problem as is
the lasso, the estimator is uniquely defined and can be computed by a convex
optimization technique. We present a complete algorithm; alternatively, the
minimization can be performed by a standard convex programming solver such
as CVX (Grant and Boyd (2008)).

For i = 1, . . . , n and j = 1, . . . , ni, let Yi = (Yi(ti1), . . . , Yi(tini))
>, Y =

(Y>
1 , . . . ,Y>

n )>, Wi = wiIni with Id denoting the d-dimensional identity ma-
trix, and W = diag(W1, . . . ,Wn). Also, define U>

ij = Xi(tij)>B(tij), Ui =
(Ui1, . . . ,Uini)

>, and U = (U>
1 , . . . ,U>

n )>, where

B(t) =

 B11(t) · · · B1K1(t) 0 · · · 0 0 · · · 0
...

...
...

0 · · · 0 0 · · · 0 BL1(t) · · · BLKL
(t)

 .

Then, (2.3) can be written as

la = (Y − Uγ)>W(Y − Uγ) +
L∑

l=1

p′λ(‖γ0
l ‖w)‖γl‖w.

As in Zou and Li (2008), we split the quadratic term in la into two parts, one for
those γl with l in A and the other for those with l in B:

A = {l : p′λ(‖γ̂0
l ‖w) = 0}, B = {l : p′λ(‖γ̂0

l ‖w) > 0}.
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Computation of γ̂l with l ∈ A is the standard least squares problem, and those
γ̂l with l ∈ B can be obtained by the standard group lasso algorithm.

To be specific, we rearrange the columns of the matrix U so that those
corresponding to l ∈ A are positioned in the first

∑
l∈A Kl columns. With a

slight abuse of notation, we continue to refer to the rearranged matrix as U.
Thus we write U = (UA,UB), where UA consists of those

∑
l∈A Kl columns

of U that correspond to l ∈ A and UB is the remaining block of U. Likewise,
we rearrange and partition the coefficient vector γ as γ> = (γ>

A ,γ>
B ), where

γ>
A = (γ>

l : l ∈ A) and γ>
B = (γ>

l : l ∈ B). Let Ul denote the lth block
of the rearranged matrix U, that is, Ul is of size (

∑n
i=1 ni) × Kl. Let HA be

the projection matrix onto the column space of UA in R
Pn

i=1 ni with the inner
product 〈y1, y2〉 = y>

1 Wy2, that is HA = UA(U>
AWUA)−1U>

AW. For l ∈ B,
define

Ũl = Ul

[
λ

p′λ(‖γ̂0
l ‖w)

]
, γ∗

l = γl

[
p′λ(‖γ̂0

l ‖w)
λ

]
.

Let ŨB = (Ũl : l ∈ B) and γ∗>
B = (γ∗>

l : l ∈ B). Then, one can decompose
Uγ = UAγA + ŨBγ∗

B into a sum of orthogonal vectors as

Uγ = UAγ∗
A + (I − HA)ŨBγ∗

B,

where γ∗
A = γA + (U>

AWUA)−1U>
AWŨBγ∗

B. Decomposing Y = HAY + Y∗

likewise, where Y∗ = (I − HA)Y, it follows that

(Y − Uγ)>W(Y − Uγ) = (HAY − UAγ∗
A)>W(HAY − UAγ∗

A)

+(Y∗ − Ũ∗
Bγ∗

B)>W(Y∗ − Ũ∗
Bγ∗

B),

where Ũ∗
B = (I − HA)ŨB.

The foregoing arguments justify the following algorithm.

(1) Solve the typical group lasso problem

γ̂∗
B = argmin

γ∗
B

1
n

(Y∗ − Ũ∗
Bγ∗

B)>W(Y∗ − Ũ∗
Bγ∗

B) + λ
∑
l∈B

‖γ∗
l ‖w,

and then compute

γ̂B = γ̂∗
B

[
λ

p′λ(‖γ̂0
l ‖w)

]
.

(2) Compute γ̂A = (U>
AWUA)−1U>

AW(Y − ŨBγ̂∗
B).

We note that the iterative algorithm of Wang, Li and Huang (2008) based
on LQA of pλ(‖γl‖w) requires one to select an additional cut-off parameter to
produce a group-sparse solution. It was observed by Hall, Lee and Park (2009)
that the performance of SCAD procedures depends crucially on the choice of the
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cut-off value. As demonstrated in Zou and Li (2008), if the cut-off value in LQA
is properly set in the right scale, the performance of LQA may be similar to that
of the one-step procedure. In the regression spline setting of the present paper,
however, it is difficult to find an appropriate scale for δ. Since our method uses
a group lasso algorithm, it does not need to select additional parameters to get
a sparse solution. For a group lasso algorithm, one may use the one proposed by
Yuan and Lin (2006), as we have done in our numerical study.

For an initial estimator γ̂0, one can take the least square estimator in Huang,
Wu and Zhou (2004). The initial estimator γ̂0 is defined as the minimizer of

n∑
i=1

wi

ni∑
j=1

(
Yi(tij) −

L∑
l=1

Kl∑
k=1

Xil(tij)Blk(tij)γlk

)2

.

We show that with this initial estimator the proposed one-step estimator has
the oracle property. For the initial estimation one needs to choose several tuning
parameters. For example, if one uses a spline basis, one needs to select the degrees
of the spline functions, the numbers and locations of the knots. For simplicity, one
may use the usual cubic splines with equally spaced knots and select Kl only.
To choose the tuning parameters Kl one can use the “leave-one-subject-out”
cross-validation (Rice and Silverman (1991)), or the K-fold cross-validation by
splitting the subjects into K roughly equal-size parts. For the one-step estimator,
one needs to choose Kl again for the minimization of la at (2.3). In addition to
this, one should also select the regularization parameter λ. To avoid unnecessary
complication we suggest using the same Kl used for the initial estimator. This
is justified by the fact that the optimal order of Kl for the one-step estimator
is the same as that of the initial estimator. For the selection of λ, one may use
a cross-validatory criterion, or develop a bootstrap procedure similar to the one
that was proposed by Hall, Lee and Park (2009) in a related problem.

We introduce a cross-validatory criterion that selects the regularization pa-
rameter λ as well as the number of knots K ≡ Kl to be used in the initial and the
one-step estimator. We have used this criterion in our numerical study presented
in Sections 4 and 5. The cross-validatory criterion, which was also considered in
Wang, Li and Huang (2008), is

CV (K,λ) =
n∑

i=1

wi‖Yi − Uiγ̂
(−i)‖2

2, (2.4)

where ‖ · ‖2 denotes the `2-norm, and γ̂(−i) is the one-step gSCAD estimator ob-
tained with the ith subject being deleted. Now, suppose that the initial estima-
tor γ̂0 is given as the minimizer of (Y −Uγ)>W(Y −Uγ). Then, the one-step
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gSCAD estimator γ̂ is approximately γ̂ridge = (U>WU + Σλ(γ̂0))−1U>WY,
where

Σλ(γ) = diag
{IK1p

′
λ(‖γ1‖2)
‖γ1‖2

, . . . ,
IKL

p′λ(‖γL‖2)
‖γL‖2

}
and Ik denotes the identity matrix of dimension k. The latter is the solution of
the ridge regression that minimizes

(Y − Uγ)>W(Y − Uγ) + γ>Σλ(γ̂0)γ. (2.5)

From Lemma 1 of Wang, Li and Huang (2008), it follows that, if γ̂ridge,−i are
the minimizers of (2.5) computed with the ith subject being deleted, then the
cross-validatory criterion at (2.4) with γ̂(−i) being replaced by γ̂ridge,−i is

n∑
i=1

wi‖(Ini − Mii(K,λ))−1(Yi − Uiγ̂
ridge)‖2

2,

where M(K,λ) = U(U>WU + Σλ(γ̂0))−1U>W. This motivates us to use

ACV (K,λ) =
n∑

i=1

wi‖(Ini − Mii(K,λ))−1(Yi − Uiγ̂)‖2
2

as an approximation of CV (K,λ) at (2.4) for the selection of K and λ.

3. Oracle Property

The oracle property in a strong sense implies that the asymptotic distribu-
tions of the estimators of the nonzero coefficients coincide with those of the oracle
estimators. Fan and Li (2001), Zou (2006), and Zou and Yuan (2008), among
others, established this property in parametric linear models. In nonparametric
settings, however, the oracle property often means that the rates of convergence,
rather than the asymptotic distributions, of the nonparametric estimators are
the same as those of the oracle estimators. This weaker notion of oracle property
was also used in, for example, Storlie et al. (2010) for a nonparametric additive
model, and Bach (2008) for multiple kernel learning.

We take the latter definition of the oracle property. For β̂l ≡
∑Kl

k=1 γ̂lkBlk,
where γ̂lk are the one-step gSCAD estimators of γlk defined in Section 2, we show
that β̂l = 0 with probability tending to one for all the irrelevant covariates Xl,
and that β̂l converge to the true βl at the univariate optimal rate for all the
relevant covariates Xl. Our assumptions are similar to those in Wang, Li and
Huang (2008), but we establish the oracle property for general basis functions
Blk.

We assume that only s predictors among the Xl are relevant in Model (1.1).
Without loss of generality, we let βl(·), 1 ≤ l ≤ s, be the nonzero coefficient
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functions, and βl, (s + 1) ≤ l ≤ L, be identically zero. We consider the case
where Kl tends to infinity as n goes to infinity, thus Kl depends on n although
we suppress the dependence. We treat the case where the ni are deterministic,
as in Fan and Zhang (2000) and Huang, Wu and Zhou (2002, 2004). The case
of random ni requires a different analysis. We make the following technical
assumptions.

(A1) The observation times tij are chosen independently according to a distri-
bution FT on T , and independent of the response and covariate processes
{Yi(·),Xi(·)}, i = 1, . . . , n. The distribution FT has a density fT , with
respect to Lebesgue measure, bounded away from 0 and ∞ in t ∈ T .

(A2) The eigenvalues of the matrix E
{
X(t)X(t)>

}
are bounded away from 0

and ∞ in t ∈ T .

(A3) There exists a positive constant M1 < ∞ such that |Xl(t)| ≤ M1 for all
t ∈ T and for all l = 1, . . . , L

(A4) There exists a positive constant M2 such that Eε(t)2 ≤ M2 for all t ∈ T .

(A5) lim supn→∞ (max1≤l≤L Kl/min1≤l≤L Kl) < ∞.

(A6) There exist constants α ≥ 0 and 0 < M3,M4 < ∞, not depending on Kl,
such that

M3K
−α
l

Kl∑
k=1

γ2
lk ≤

∫
T

[ Kl∑
k=1

γlkBlk(t)
]2

dt ≤ M4K
−α
l

Kl∑
k=1

γ2
lk

for any sequence {γlk ∈ R : k = 1, . . . ,Kl}.

Assumption (A6) is the only requirement for the system of basis functions
Blk. We show that under this assumption our estimator enjoys the oracle prop-
erty. Assumption (A6) asks that the `2-norm of the estimated coefficient vector
γ̂l can be translated directly to the L2-norm of the estimated function β̂l. This
assumption accommodates not only orthonormal bases with M3 = M4 = 1 and
α = 0, but also non-orthonormal bases such as the Riesz basis (α = 0) and the
B-spline (α = 1).

We now state the main theorem. For each 1 ≤ l ≤ L, let Gl be a linear
space spanned by {Blk(·) : 1 ≤ k ≤ Kl}. Let K = max1≤l≤L Kl, dist(βl, Gl) =
infg∈Gl

supt∈T |βl(t) − g(t)|, and ρ = max1≤l≤L dist(βl, Gl). Also, take

Al = sup
g∈Gl, ‖g‖6=0

supt∈T |g(t)|
‖g‖

, A = max
0≤l≤L

Al,

where ‖ · ‖ denotes the L2-norm. In this notation, we suppress dependence on n

in K, ρ, Al and A.
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Theorem 3.1. Assume that λ, r, ρ → 0 and λ/max{r, ρ} → ∞ as n → ∞,
where r = (K

∑n
i=1 n2

i w
2
i )

1/2, and that

lim
n→∞

[
A2K max

{
max
1≤i≤n

(niwi),
n∑

i=1

n2
i w

2
i

}]
= 0. (3.1)

Furthermore, assume that the initial estimator γ̂0 is given as the minimizer of
(Y − Uγ0)>W(Y − Uγ0). Then, under (A1)−(A6),

(a) β̂l = 0 for all (s + 1) ≤ l ≤ L with probability tending to 1;

(b) ‖β̂l − βl‖ = Op (ρ + r) for all 1 ≤ l ≤ s.

When βl has a bounded second derivatives and Gl is a space of cubic splines
with K interior knots on T , one has Al = O(K1/2) and ρ = O(K−2), see The-
orem 6.27 in Schumaker (1981), and also Huang (1998). Thus if

∑n
i=1 n2

i w
2
i =

O(n−1), one gets ‖β̂l − βl‖ = Op(n−2/5) by taking K ∼ n1/5, which is the
same as the optimal rate for i.i.d. data (Stone (1982)). If one employs the
weights wi = (nni)−1, then the condition on {ni} is satisfied automatically. If
one uses wi = (

∑m
i=1 ni)−1, then the condition is met provided the sequence

(max1≤i≤n ni/ min1≤i≤n ni) is bounded.
One can derive a version of Theorem 3.1 for the one-step gSCAD estimator

with the `2-norm ‖ · ‖2, instead of the standardized norm ‖ · ‖w, in the penalty
function. To get the conclusions (a) and (b) of the theorem, one needs the
following additional conditions on K and λ:

rKα/2, ρKα/2, λKα → 0, and
λ

max{Kα/2r,Kα/2ρ}
→ ∞

as n → ∞. Thus, to get the oracle property for cubic splines, the regularization
parameter λ should satisfy λn1/5 → 0 and λn3/10 → ∞. This means that the use
of the `2-norm in the penalty function requires stronger conditions on λ than the
norm-type ‖ · ‖w that requires λn2/5 → ∞. In general, the optimal order of λ for
the norm-type ‖ · ‖2 is greater than the one for the norm-type ‖ · ‖w by a factor
of Kα/2. In practical terms, this means that one should take a wider range of λ

to search for the best λ with the norm-type ‖ · ‖2.
Wang, Li and Huang (2008) showed that the asymptotic distribution of the

ordinary gSCAD estimator is the same as that of the oracle estimator. Their
work is based on spline basis functions. Using the same arguments, one can
show that our one-step gSCAD estimator with spline basis functions Blk enjoys
the same property under the additional condition (C6) of Wang, Li and Huang
(2008) on the error process.
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4. Simulation Study

We conducted simulation studies to assess the effectiveness of our one-step
gSCAD procedure for selecting and estimating the relevant varying coefficients.
To compare the one-step gSCAD estimator with the ordinary gSCAD and the or-
acle estimators, we generated random samples of n = 100 subjects from the model
(1.1). The observation time points tij were generated by the same scheme as in
Huang, Wu and Zhou (2002), where each subject had a set of “scheduled”time
points {1, . . . , 30}, and each scheduled time had 60% probability of being skipped.
A Uniform(−0.5, 0.5) random deviate was added to a non-skipped scheduled time
to obtain an actual observation time point. We took L = 23 with the coefficient
functions

β0(t) = 15 + 20 sin
(

πt

60

)
, β1(t) = 2 − 3 cos

(
π(t − 25)

15

)
,

β2(t) = 6 − 0.2t, β3(t) = −4 +
(20 − t)3

2000
,

and βl ≡ 0 for 4 ≤ l ≤ 23. Thus, the variables Xl for 4 ≤ l ≤ 23 in X =
(X0, X1, . . . , X23)> were irrelevant.

The variables Xl were generated as follows. For each observation time point
t, X1(t) was sampled from the uniform distribution on [t/10, 2+t/10]; the second
variable X2(t), conditioned on the value of X1(t), was generated from the normal
distribution with mean zero and variance (1 + X1(t))/(2 + X1(t)); the third
variable X3(t), independent of X1(t) and X2(t), was a Bernoulli random variable
with probability of success 0.6. The remaining 20 covariate processes Xl(·) for
4 ≤ l ≤ 23 were taken to be independent of each other, and each of them was
a Gaussian process with mean zero and covariance structure cov(Xl(t), Xl(s)) =
σ2

1 exp(−|t − s|). The error process ε(·) was set to ε(t) = Z(t) + u(t), where the
process Z(·) had the same distribution as X(l)(·), 4 ≤ l ≤ 23, and u(t) for each
t was an independent measurement error from N(0, σ2

2). For the levels of the
correlations among Xl, 4 ≤ l ≤ 23, we chose σ1 = 1 and 2, and we took σ2 = 2
and 3.

We repeated the simulation 100 times. We used cubic splines and an equal
number of knots for estimating different varying coefficients. The cross-validatory
criterion ACV , described at the end of Section 2, was used to choose the number
of knots K and the regularization parameter λ for the one-step and the ordinary
gSCAD estimators. For the tuning parameter a in the definition of pλ, we took
a = 3.7 as suggested in Fan and Li (2001). Since there is no confirmed guideline
to choosing an appropriate δ in our setting, we adopted the approach of Hall,
Lee and Park (2009): the cut-off value δ to set the ordinary gSCAD estimator
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Table 1. Comparison of the one-step and the ordinary gSCAD estimators
in terms of identifying relevant variables and the expected value of MADE,
based on 100 pseudo-samples of size n = 100.

Correlation and Avg. No of 0 Coefficients
Noise Level Method Correct Incorrect E(MADE)

one-step 19.90 0 0.0829
σ1 = 1, σ2 = 2 ordinary (δ = 0.01) 20 0.02 0.0813

ordinary (δ = 0.001) 19.98 0 0.0784
oracle 20 0 0.0795

one-step 18.89 0 0.1870
σ1 = 1, σ2 = 3 ordinary (δ = 0.01) 19.35 0.21 0.1975

ordinary (δ = 0.001) 18.51 0.06 0.1841
oracle 20 0 0.1611

one-step 19.68 0 0.0899
σ1 = 2, σ2 = 2 ordinary (δ = 0.01) 19.97 0.07 0.0938

ordinary (δ = 0.001) 15.59 0 0.0947
oracle 20 0 0.0857

one-step 17.36 0 0.1838
σ1 = 2, σ2 = 3 ordinary (δ = 0.01) 19.99 2.69 0.4202

ordinary (δ = 0.001) 11.01 0.10 0.2150
oracle 20 0 0.1643

γ̂l to zero for ‖γ̂l‖ ≤ δ
∑L

l=1 ‖γ̂l‖2 was taken as 10−2 and 10−3. For the weights
wi, we used wi = (n × ni)−1.

We computed the average numbers of the coefficients that were estimated to
be 0. Also, we calculated the mean absolute deviation of errors

MADE =
24∑
l=1

n−1
gr

ngr∑
r=1

|β̄l(tr) − βl(tr)|
range(βl)

,

where the β̄l denote the one-step gSCAD, the ordinary gSCAD, or the oracle
estimates, and tr for 1 ≤ r ≤ ngr with ngr = 301 are the equally spaced grid
points on the support of tij . These results are reported in Table 1. In the table,
those in the column labeled “Correct” indicate the average number, out of 100
replications, of β̄l = 0 among the estimates for the 20 truly zero coefficients βl,
4 ≤ l ≤ 23, and those in the column labeled “Incorrect” give that number among
the estimates for the truly nonzero coefficients βl, 1 ≤ l ≤ 3.

From the table one sees that the one-step gSCAD estimator selected all rele-
vant variables in every run. The ordinary gSCAD procedure sometimes estimated
the nonzero coefficients as zero, especially when δ = 0.01. In terms of identifying
irrelevant variables, the results suggest that performance of the ordinary gSCAD
estimator is sensitive to the choice of δ, the larger it is the higher the noise and
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Figure 1. Mean estimated curves for the coefficient functions β0 (top-left),
β1 (top-right), β2 (bottom-left), β3 (bottom-right), when σ1 = 1, σ2 = 2,
and n = 100. The cut-off value δ for the ordinary gSCAD estimates was
0.01.

correlation levels. In particular, one can find that a good choice of δ for selecting
relevant variables is a bad choice for identifying irrelevant variables, and vice
versa. Our one-step gSCAD estimator does not need to choose the thresholding
parameter δ, and its performance is competitive to the best case of the ordi-
nary gSCAD. Furthermore, in terms of MADE, the one-step gSCAD estimator
outperforms the ordinary gSCAD at higher noise and correlation levels.

Figures 1 and 2 depict the mean and variance of the estimated coefficient
functions when σ1 = 1 and σ2 = 2. The results suggest that the bias and variance
performance of the one-step gSCAD estimator is very similar to that of the oracle
estimator. In particular, the variance property of the one-step gSCAD estimator
is better than that of the ordinary gSCAD estimator, and is closer to that of the
oracle estimator. This was also found to be the case for other correlation and
noise levels.

5. A Data Example

We illustrate the one-step gSCAD method in an analysis of a dataset from the
Multicenter AIDS Cohort study. The dataset consists of 283 homosexual males
who were HIV positive between the years 1984 and 1991. During the study, all
participants were scheduled to have their measurements taken every six months,
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Figure 2. Variance curves of the estimators of the coefficient functions β0

(top-left), β1 (top-right), β2 (bottom-left), β3 (bottom-right), when σ1 =
1, σ2 = 2, and n = 100. The cut-off value δ for the ordinary gSCAD
estimates was 0.01.

but it often happened that patients missed or rescheduled their appointments.
Each individual had a different number of repeated measurements at different
times. It is known that HIV destroys CD4 cells, so by measuring CD4 cell counts
and percentages in the blood, doctors are able to monitor progression of the
disease. The aim of our statistical analysis was to identify the covariates that
influence the mean CD4 percentage depletion after infection, and to describe
their effects on the mean CD4 percentage depletion over time.

Let tij be the time (in years) of the jth measurement for the ith individual
after HIV infection. The response variable Yij is the CD4 percentage for the
ith individual measured at tij . Three covariates were collected: Xi1 denotes the
ith individual’s smoking status, 1 for smoker and 0 for nonsmoker; Xi2(tij) is
the ith individual’s centered age at time tij ; Xi3 is the ith individual’s centered
pre-infection CD4 cell percentage. For the analysis of this dataset, we considered
the varying coefficient model

Yij = β0(tij) + Xi1β1(tij) + Xi2(tij)β2(tij) + Xi3β3(tij) + εij .

For numerical tractability we used cubic splines with equally spaced knots, and
used the same number of knots for estimating different varying coefficients. The
cut-off value δ to set the ordinary gSCAD estimator γ̌l to zero for ‖γ̌l‖ ≤
δ
∑L

l=1 ‖γ̌l‖2 was 10−3. From the cross-validation criterion mentioned in Sec-
tion 2, the number of knots was chosen to be 5 for both the one-step and the
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Figure 3. Fitted varying coefficient functions for the AIDS data.

ordinary gSCAD estimators, and the regularization parameters were selected to
be 6.9 and 6 for the one-step and the ordinary gSCAD estimators, respectively.
The weights wi = (n × ni)−1 were applied for both estimators.

Both gSCAD procedures identified the pre-infection CD4 cell percentage as
an influential factor on the mean CD4 percentage depletion, but neither of them
selected age and smoking status. This is consistent with the result of Huang,
Wu and Zhou (2002). The fact that smoking status was not selected as an
influential factor to AIDS progression coincides with the conclusion of Furber et
al. (2007). While age is known to be related to AIDS progression (for example,
see Zingmond et al. (2001)), age was not selected by the procedure. Figure 3
depicts the fitted coefficient functions of β0(t) and β3(t) by the two methods.
We observed that if we set the cut-off value δ to 10−2 for the ordinary gSCAD
estimator, the pre-infection CD4 cell percentage was not selected by the ordinary
gSCAD procedure. This suggests that the one-step gSCAD procedure is more
stable than, and improves upon, the ordinary gSCAD procedure.

6. Extensions

We have proposed and studied the one-step gSCAD procedure for model
selection and estimation in varying coefficient models. The one-step gSCAD
method may be extended to other nonparametric models, for example to gener-
alized linear models. We describe the method for the varying-coefficient logistic
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regression model, where Yi(tij) ∈ {0, 1} are the observed responses and Xi(tij)
are the observed vectors of the covariate processes. In this case, the wi-weighted
log-likelihood of the varying-coefficient vector β is

`(β,Z) =
n∑

i=1

wi

ni∑
j=1

[
Yi(tij)Xi(tij)>β(tij) − log

{
1 + exp

(
Xi(tij)>β(tij)

)}]
,

where Z ≡ {(Yi(tij),X(tij)) : 1 ≤ j ≤ ni, 1 ≤ i ≤ n}. Approximating βl by
βl ≈

∑Kl
k=1 γlkBlk, we obtain the following penalized log-likelihood of γ:

la(γ) = `

({ Kl∑
k=1

γlkBlk

}L

l=1
,Z

)
−

L∑
l=1

p′λ(‖γ0
l ‖w)‖γl‖w, (6.1)

where pλ(·) is the SCAD penalty function with λ as a regularization parameter
and γ̂0 is an initial estimator of γ. The one-step gSCAD regularized estimator
of γ = (γ>

1 , . . . , γ>
L )> is then defined as the maximizer of la.

Although la is a convex function of γ, its maximization involves a nonlin-
ear optimization problem due to the first term in its definition at (6.1). One
can use numerical methods for the nonlinear optimization. For example, one
can linearize the problem by a Newton-Raphson method, approximating ` by a
quadratic function locally around the initial choice of γ̂0. This would involve an
iterative algorithm. In the iteration, one can use the updated estimates of γ in
the approximation of ` only, or use them as well in the linearization of the SCAD
penalty. Theoretical properties of the estimator are yet to be developed.

7. Proof of Theorem 3.1

Let Ỹij = Xi(tij)>β(tij), Ỹi = (Ỹi1, . . . , Ỹini)
>, Ỹ = (Ỹ>

1 , . . . , Ỹ>
n )>, and

γ̃ =
(
U>WU

)−1 U>WỸ, where U and W are defined in Section 2. Also,
take εi = (εi(ti1), . . . , εi(tini))

>, ε = (ε>1 , . . . , ε>n )> and β̃(t) = B(t)γ̃. We write
an ∼ bn if both an and bn are positive and an/bn and bn/an are bounded.

Lemma 7.1. Suppose that (3.1) holds. Then, there exist constants 0 < M5 <
M6 < ∞ such that, as n → ∞,

P{all the eigenvalues of KαU>WU fall in [M5,M6]} −→ 1.

Proof. For gl =
∑Kl

k=1 γlkBlk, 1 ≤ l ≤ L, we have from (A5) and (A6) that

L∑
l=1

‖gl‖2 =
L∑

l=1

‖γl‖2
w ∼

L∑
l=1

K−α
l ‖γl‖2

2 ∼ K−α‖γ‖2
2.

Following the proofs of Lemmas A1 and A2 in Huang, Wu and Zhou (2002) using
the approximation

∑L
l=1 ‖gl‖2 ∼ K−α‖γ‖2

2 leads to the result.
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Lemma 7.2. Suppose that (3.1) holds. Then, ‖γ̂ − γ̃‖w = Op(r +
√

λρ)

Proof. Let γ̂ − γ̃ = δKα/2u where δ is a scalar and u is a vector such that
‖u‖2 = 1. Observe that

la(γ̂) − la(γ̃) = −2Kα/2δε>WUu + Kαδ2u>U>WUu

+
L∑

l=1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w).

From (A1), (A3), (A4), and (A6), we obtain

E(|U>
i Wiεi|2) = E

[ L∑
l=1

Kl∑
k=1

w2
i

{ ni∑
j=1

Xil(tij)Blk(tij)εi(tij)
}2]

≤ M2
1 M2

2 niw
2
i

L∑
l=1

ni∑
j=1

E
[ Kl∑

k=1

Blk(tij)2
]

≤ sup
t∈T

fT (t)M2
1 M2

2 M4n
2
i w

2
i

L∑
l=1

K1−α
l .

This implies E(ε>WUU>Wε) = O(K−αr2), so that

ε>WUuδ = Op

(
K−α/2r

)
δ. (7.1)

By Lemma 5.1, we have u>U>WUu ≥ M5K
−α. From (A6) and the triangular

inequality for the `2-norm, and since p′ is bounded by λ, we obtain

L∑
l=1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w) ≥ −(const.)λ‖γ̂ − γ̃‖w.

From la(γ̂) − la(γ̃) ≤ 0, we get

M5δ ≤ 2Kα/2ε>WUu −
L∑

l=1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w)/δ

≤ Op(r) + (const.)λ.

This yields ‖γ̂ − γ̃‖w ≤ M
1/2
4 δ = Op(r + λ).

One can show that Lemma A3 of Huang, Wu and Zhou (2002) continues
to hold for a non-orthonormal basis under the assumption (A6), that is, for
β̂0

l ≡
∑Kl

k=1 γ̂0
lkBlk,

‖β̂0
l − β̃l‖ = Op(r), ‖β̃l − βl‖ = Op(ρ). (7.2)
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This gives

‖γ̂0
l ‖w = ‖βl‖ + op(1), 1 ≤ l ≤ s, (7.3)

‖γ̂0
l ‖w = Op(r + ρ), (s + 1) ≤ l ≤ L, (7.4)

‖γ̃l‖w = Op(ρ), (s + 1) ≤ l ≤ L. (7.5)

From (7.3) it follows that ‖γ̂0
l ‖w > aλ for all 1 ≤ l ≤ s with probability tending

to one, where a appears in the definition of pλ. This means that, with probability
tending to one, p′λ(‖γ̂0

l ‖w) = 0 for all 1 ≤ l ≤ s. Since ‖γ̂ − γ̃‖w = Op(r + λ) =
op(1), so that ‖γ̂l‖w − ‖γ̃l‖w = op(1), it follows from the definition of pλ that

s∑
l=1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w) = op(κn) (7.6)

for any sequence {κn} such that κn → 0 as n → ∞. Also, from (7.4) and the
condition that λ/max{r, ρ} → ∞ as n → ∞, we have ‖γ̂0

l ‖w < λ with probability
tending to one, so that

L∑
l=s+1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w) ≥ −

L∑
l=s+1

p′λ(‖γ̂0
l ‖w)‖γ̃l‖w (7.7)

= −λ

L∑
l=s+1

‖γ̃l‖w

with probability tending to one. Putting (7.5)−(7.7) together, we obtain

M5δ
2 ≤ 2 Kα/2δε>WUu−

L∑
l=1

p′λ(‖γ̂0
l ‖w)(‖γ̂l‖w − ‖γ̃l‖w) (7.8)

≤ Op(rδ + λρ),

which concludes the proof of the lemma.

Proof of Theorem 3.1 (a). Suppose that there exists an l0, (s + 1) ≤ l0 ≤ L,

such that the probability of β̂l0 ≡ 0 does not converge to one. Then there exists
ε > 0 such that, for infinitely many n, P (γ̂l0 6= 0) = P (β̂l0 6= 0) ≥ ε. Let γ∗ be
the vector obtained from γ̂ with γ̂l0 replaced by 0. Then, from Lemma 5.2, (A6),
and (7.2), we have ‖γ∗ − γ̂‖w = ‖γ̂l0‖w = Op(r +

√
λρ + ρ). This together with

(7.1), (A6), the two lemmas, and the fact that p′λ(‖γ̂0
l0
‖w) = λ with probability

tending to one, gives

la(γ̂) − la(γ∗) = −2(Y − Uγ̃)>WU(γ̂ − γ∗) − 2(γ̃ − γ∗)>U>WU(γ̂ − γ∗)

+(γ̂ − γ∗)>U>WU(γ̂ − γ∗) + p′λ(‖γ̂0
l0‖w)‖γ̂l0‖w

≥ Op(r)‖γ̂l0‖w + Op(‖γ̂l0‖2
w) + λ‖γ̂l0‖w.
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Since λ‖γ̂l0‖w > 0 dominates the other two terms in the above inequality, one
contradicts l(γ̂) − l(γ∗) ≤ 0.

Proof of Theorem 3.1 (b). Let γ̃∗ be the minimizer of (Ỹ−Uγ)>W(Ỹ−Uγ)
over γ, with the constraints γl = 0 for (s + 1) ≤ l ≤ L. From the first part of
the theorem, we have P (γ̂l = γ̃∗

l for all (s + 1) ≤ l ≤ L) → 1. By applying (7.8)
with γ̃ = γ̃∗, we obtain that, with probability tending to one,

M5‖γ̂ − γ̃∗‖2
w ≤ 2 ε>WU(γ̂ − γ̃∗) = Op(r‖γ̂ − γ̃∗‖w).

This shows ‖γ̂ − γ̃∗‖w = Op(r) and thus ‖β̂ − β̃∗‖ = Op(r). From the triangle
inequality, the second part of the theorem follows.
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