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Supplementary Material

The referred equations in this Supplement are labeled as (S1.1), (S2.1) and so on, whereas labels

such as (1), (2), etc. refer to equations the main text. We also include here additional lemmas and

corollaries (and when necessary, their proofs), sometimes within the proof of an assertion in the main

text. The proof of each assertion in the main text ends with a �, and the proof of each additional lemma

or corollary introduced in the Supplement ends with a 2. Proofs are organized according to the sections

in which the corresponding assertions appear.

S1 Proofs for Section 2

To prove the results in this section we need the following additional lemmas.

Lemma S1.1 Let R be a u dimensional subspace of R
r, and let M ∈ R

r×r. R is an invariant subspace

of M if and only if, for any A ∈ R
r×s, s ≥ u, such that span(A) = R, there exists a B ∈ R

s×s such

that MA = AB.

Proof. Suppose there is a B that satisfies MA = AB. For every v ∈ R there is a t ∈ R
u so that

v = At. Consequently, Mv = MAt = ABt ∈ R, which implies that R is an invariant subspace of M.

Suppose that R is an invariant subspace of M, and let aj , j = 1, . . . , s denote the columns of A.

Then Maj ∈ R, j = 1, . . . , s. Consequently, span(MA) ⊆ R, which implies there is a B ∈ R
s×s such

that MA = AB. 2

Lemma S1.2 Let R reduce M ∈ R
r×r. Then MR = R if and only if R ⊆ span(M).

Proof. Assume that MR = R. Then, with A as defined in Corollary 2.1, MA = AB for some

full rank matrix B ∈ R
u×u. Consequently, ATMA is full rank. It follows from Corollary 2.1 that

R ⊆ span(M).

Assume that R ⊆ span(M). Then it follows from Corollary 2.1 that ATMA is of full rank. Thus,

B must have full rank in the representation MA = AB, which implies MR = R. 2
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Lemma S1.3 Suppose that R reduces M ∈ S
r×r. Then M has a spectral decomposition with eigenvec-

tors in R or in R⊥.

Proof. Let A0 ∈ R
r×u be a semi-orthogonal matrix whose columns span R and let A1 be its

completion, such that (A0,A1) ≡ A is an orthogonal matrix. Because MR ⊆ R and MR⊥ ⊆ R⊥, it

follows from Lemma S1.1 there exist matrices B0 ∈ R
u×u and B1 ∈ R

(r−u)×(r−u) such that MA0 =

A0B0 and MA1 = A1B1. Hence

M
(

A0 A1

)

=
(

A0 A1

)

(

B0 0

0 B1

)

⇔M = A

(

B0 0

0 B1

)

AT .

Because M is symmetric, so must be B0 and B1. Hence B0 and B1 have spectral decompositions

C0Λ0C
T
0 and C1Λ1C

T
1 for some diagonal matrices Λ0 and Λ1 and orthogonal matrices C0 and C1. Let

C = diag(C0,C1) and Λ = diag(Λ0,Λ1). Then,

M = ACΛCTAT ≡ DΛDT , (S1.1)

where D = AC. The first u columns of D, which form the matrix A0C0, span R. Moreover, D is an

orthogonal matrix, and thus (S1.1) is a spectral decomposition of M with eigenvectors in R or R⊥. 2

Proof of Proposition 2.1 Assume that M can be written as in (4). Then for any v ∈ R, Mv ∈ R,

and for and v ∈ R⊥, Mv ∈ R⊥. Consequently, R reduces M.

Next, assume that R reduces M. We must show that M satisfies (4). Let u = dim(R). It

follows from Lemma S1.1 that there is a B ∈ R
u×u that satisfies MA = AB, where A ∈ R

r×u and

span(A) = R. This implies QRMA = 0 which is equivalent to QRMPR = 0. By the same logic applied

to R⊥, PRMQR = 0. Consequently,

M = (PR +QR)M(PR +QR) = PRMPR +QRMQR. �

Proof of Corollary 2.1 The first conclusion follows immediately from Proposition 2.1.

To show the second conclusion, first assume that ATMA is full rank. Then, from Lemma S1.1, B

must be full rank in the representation MA = AB. Consequently, any vector in R can be written as

a linear combination of the columns of M and thus R ⊆ span(M). Next, assume that R ⊆ span(M).

Then there is a full rank matrixV ∈ R
r×u such that MV = A and thus that ATMV = Iu. Substituting

M from Proposition 2.1, we have (ATMA)(ATV) = Iu. It follows that ATMA is of full rank.

For the third conclusion, since M is full rank R ⊆ span(M) and R⊥ ⊆ span(M). Consequently,

both ATMA and AT
0MA0 are full rank. Thus the right hand side of (5) is defined. Meanwhile, note

that PR = AAT and QR = A0A
T
0 . Hence, by (4), M = AATMAAT +A0A

T
0MA0A

T
0 . Multiply this

and the right hand side of (5) to complete the proof. �
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Proof of Proposition 2.2 The equivalence of 1 and 4 is known and can be found in Conway (1990,

page 39). We now demonstrate the equivalence of 1, 2, and 3.

1 implies 2: If v ∈ R, then

v = Ipv =

(

q
∑

i=1

Pi

)

v =

q
∑

i=1

Piv ∈ ⊕q
i=1PiR.

Hence R ⊆ ⊕q
i=1PiR. Conversely, if v ∈ ⊕q

i=1PiR, then v can be written as a linear combination

of P1v1, . . . ,Pqvq where v1, . . . ,vq belong to R. By Lemma S1.3, Piw ∈ R for any w ∈ R. Hence

any linear combination of P1v1, . . . ,Pqvq, with v1, . . . ,vq belonging to R, belongs to R. That is,

⊕q
i=1PiR ⊆ R.

2 implies 3: If v ∈ R then, from the previous step, Piv ∈ R, i = 1, . . . , q. Hence

(

q
∑

i=1

PiPRPi

)

v =

q
∑

i=1

Piv = v = PRv.

Now let v ∈ R⊥. Then, v ⊥ PiR for each i. Because Pi is self-adjoint we see that Piv ⊥ R for each i.

Consequently

(

q
∑

i=1

PiPRPi

)

v = 0 = PRv.

It follows that (
∑

PiPRPi)v = PRv for all v ∈ R
r. Hence the two matrices are the same.

3 implies 1: Again, if v ∈ R then Piv ∈ R, i = 1, . . . , q. Hence, indicating with mi, i = 1, . . . , q the

distinct eigenvalues of M we have

PRMv =

q
∑

i=1

miPiPRPiPRPiv =

q
∑

i=1

miPiPRPiv = Mv.

It follows that MR ⊆ R. �

Proof of Proposition 2.3 To prove that ⊕q
i=1PiS is the smallest reducing subspace of M that

contains S, it suffices to prove the following statements:

1. ⊕q
i=1PiS reduces M.

2. S ⊆ ⊕q
i=1PiS.

3. If T reduces M and S ⊆ T , then ⊕q
i=1PiS ⊆ T .
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Statement 1 follows from Proposition 2.2, as applied to R ≡ ⊕q
i=1PiS. Statement 2 holds because

S = {P1v + · · ·+Pqv : v ∈ S} ⊆ ⊕q
i=1PiS. Turning to statement 3, if T reduces M, it can be written

as T = ⊕q
i=1PiT by Proposition 2.2. If, in addition, S ⊆ T then we have PiS ⊆ PiT for i = 1, . . . , q.

Statement 3 follows since ⊕q
i=1PiS ⊆ ⊕q

i=1PiT = T .

�

Proof of Proposition 2.4 Because K and M commute, they can be diagonalized simultaneously by

an orthogonal matrix, say U. Recall that Pi is the projection on the i-th eigenspace of M, and let

di = rank(Pi). Partition U = (U1, . . . ,Uq), where Ui contains di columns, i = 1, . . . , q. Without loss

of generality, we can assume that UiU
T
i = Pi for i = 1, . . . , q. Then K can be written as U1Λ1U

T
1 +

· · ·UqΛqU
T
q , where the Λi’s are diagonal matrices of dimension di × di. It follows that

KPi =(U1Λ1U
T
1 + · · ·+UqΛqU

T
q )UiU

T
i

=UiΛiU
T
i = UiU

T
i (U1Λ1U

T
1 + · · ·UqΛqU

T
q ) = PiK.

That is, K and Pi commute. Now, by Proposition 2.2, EM(S) = ⊕q
iPiS. Hence

KEM(S) ={KP1h1 + · · ·+KPqhq : h1, . . . ,hq ∈ S}
={P1Kh1 + · · ·+PqKhq : h1, . . . ,hq ∈ S} = ⊕q

i=1PiKS.

By Proposition 2.2 again, the right hand side is EM(KS).

Now suppose, in addition, that S ⊆ span(K) and S reduces K. We note that if K commutes with

M, then span(K) reduces M. This is because, for all h ∈ R
r, MKh = KMh ⊆ span(K). Hence

EM(S) ⊆ span(K). By Lemma S1.2, then, KEM(S) = EM(S), which, in conjunction with (6), implies

(7). �

S2 Proofs for Section 3

Proof of Proposition 3.1 We need to show that Σ−1B = Σ−1
Y
B, and

EΣ(B) = EΣY
(B) = EΣ(Σ−1B) = EΣY

(Σ−1
Y
B) = EΣY

(Σ−1B) = EΣ(Σ−1
Y
B).

Model (1) implies model (10) by construction and thus ΣY = Σ+ ΓVΓT , where V = ηvar(X)ηT . By

matrix multiplication we can show that

Σ−1
Y

=Σ−1 −Σ−1Γ(V−1 + ΓTΣ−1Γ)ΓTΣ−1,

Σ−1 =Σ−1
Y
−Σ−1

Y
Γ(−V−1 + ΓTΣ−1

Y
Γ)ΓTΣ−1

Y
.
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The first equality implies span(Σ−1
Y
Γ) ⊆ span(Σ−1Γ); the second implies span(Σ−1Γ) ⊆ span(Σ−1

Y
Γ).

Hence Σ−1
Y
B = Σ−1B, recalling that span(Γ) = EΣ(B) by construction. From this we also deduce

EΣY
(Σ−1

Y
B) = EΣY

(Σ−1B) and EΣ(Σ−1
Y
B) = EΣ(Σ−1B).

We next show that EΣ(B) = EΣY
(B) by demonstrating that R ⊆ R

p is a reducing subspace of Σ

that contains B if and only if it is a reducing subspace of ΣY that contains B. Suppose R is a reducing

subspace of Σ that contains B. Let α ∈ R. Then ΣYα = Σα +Γηvar(X)ηTΓT α. Σα ∈ R because R
reduces Σ; the second term on the right is a vector in R because B ⊆ R. Thus, R is a reducing subspace

of ΣY and by construction it contains B. Next, suppose R is a reducing subspace of ΣY that contains

B. The reverse implication follows similarly by reasoning in terms of Σα = ΣYα − Γηvar(X)ηTΓT α.

We have ΣYα ∈ R because R reduces ΣY; the second term on the right is a vector in R because B ⊆ R.

The remaining equalities follow immediately from (8). �

S3 Proofs for Section 4

Proof of Lemma 4.1 From the properties of a projection we see that, for any B ∈ A, we have

PW(Λ)B
TPV = BT . It follows that

tr(A∗ΛBT ) = tr[PVUP
T
W(Λ)ΛB

T ] = tr[UΛPW(Λ)B
TPV] = tr(UΛBT ).

Thus tr[(U−A∗)ΛB] = 0. Now decompose the objective function (11) as

tr[(U−A)Λ(U−A)T ] = tr[(U−A∗ +A∗ −A)Λ(U −A∗ +A∗ −A)T ]

Because A∗ −A ∈ A, the cross product term in the above is tr[(U−A∗)Λ(A∗ −A)T ] = 0. Hence

tr[(U−A)Λ(U−A)T ] =tr[(U−A∗)Λ(U −A∗)T ] + tr[(A∗ −A)Λ(A∗ −A)T ]

≥tr[(U−A∗)Λ(U −A∗)T ].

The lower bound is achieved when A = A∗, in which case

tr[(U−A∗)Λ(U−A∗)T ] = tr[(U −A∗)ΛUT ] = tr(UΛUT )− tr(A∗ΛUT ).

However, by definition of A∗ and the property of projection,

tr(A∗ΛUT ) = tr(PVUP
T
W(Λ)ΛU

T ) = tr[PVUP
T
W(Λ)ΛPW(Λ)U

TPV],

as desired. �

Proof of Lemma 4.1 Straightforward and omitted.
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Proof of Lemma 4.3 Because P is the projection onto span(A), we have

L(A) = [det0(A)]−
1

2 e−
1

2
tr(UPA†

PU
T ). (S3.2)

If we writeUT = (U1, . . . ,Un), then the above is proportional to the likelihood ofU1, . . . ,Un if they are

iid N(0,A). The maximum likelihood estimator (among all A) is the sample varianceA∗ = PUTUP/n.

Note that A∗ happens to be in A. Therefore L(A) is maximized by A∗ among A. In the meantime,

tr[UP(A∗)†PUT ] = tr[(A∗)†PUTUP] = ntr[(A∗)†A∗] = nk,

where the last equality holds because (A∗)†A∗ is a projection matrix of rank k. Substitute the above

equality into (S3.2) and use the relation nkdet0(A
∗) = det0(PU

TUP) to complete the proof. �

S4 Proofs for Section 5

Proof of Theorem 5.1 The asymptotic distribution (23), where H is as defined in (22), follows from

Shapiro (1986, Proposition 4.1). To prove the equality V0 ≤ V we note that

V −V0 = J−1 −H(HTJH)†HT = J−
1

2 [Ipr+r(r+1)/2 − J
1

2H(HTJH)†HTJ
1

2 ]J−
1

2 . (S4.3)

Since the matrix Ipr+r(r+1)/2 − J
1

2H(HTJH)†HTJ
1

2 is the projection on to orthogonal complement of

span(J
1

2H) relative to the standard inner product, it is positive semidefinite, which implies that V−V0

is positive semidefinite. From (S4.3) we can also see that

V−
1

2 (V −V0)V
− 1

2 = Ipr+r(r+1)/2 − J
1

2H(HTJH)†HTJ
1

2 = Q
J

1

2H
,

which proves the last statement of the theorem. We still need to derive the an explicit expression for H

as given by (24). To do so we need to find expressions for the eight partial derivatives ∂hi/∂φT
j , i = 1, 2,

j = 1, 2, 3, 4. We divide these derivations into two steps.

Step 1: Compute ∂h1/∂φT

First,

∂h1

∂φ
T
1

=
∂vec(Γη)

∂vecT (η)
=

∂[(Ip ⊗ Γ)vec(η)]

∂vecT (η)
= Ip ⊗ Γ ∈ R

pr×pu.

In a similar way,

∂h1

∂φT
2

=
∂vec(Γη)

∂vecT (Γ)
= ηT ⊗ Ir ∈ R

pr×ur.
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Clearly, ∂h1/∂φT
3 = 0, ∂h1/∂φT

4 = 0, where the first matrix has dimensions pr × u(u + 1)/2, and the

second matrix has dimensions pr × (r − u)(r − u + 1)/2.

Step 2: Compute ∂h2/∂φT

Since h2 does not depend on φ1 we have ∂h2/∂φT
1 = 0. Note that this matrix is of dimension r(r +

1)/2× pu.

To compute ∂h2/∂φT
2 , let h21(φ) = vech(ΓΩΓT ) and h22(φ) = vech(Γ0Ω0Γ

T
0 ), so that we can

write

∂h2

∂φT
2

=
∂h21

∂φT
2

+
∂h22

∂φT
2

. (S4.4)

where φ2 = vec(Γ). The following two lemmas, which are presented without proof, will facilitate

computation of the derivatives in (S4.4).

Lemma D.1 Let X be a matrix of arbitrary dimensions, and let F(X) ∈ R
m×p and G(X) ∈ R

p×q be

matrix-valued differentiable function of X. Then

∂vec[F(X)G(X)]

∂vecT (X)
= (GT ⊗ Im)

∂vec[F(X)]

∂vecT (X)
+ (Iq ⊗ F)

∂vec[G(X)]

∂vecT (X)
.

The commutation matrix Kpm ∈ R
pm×pm is the unique matrix that transforms the vec of a matrix into

the vec of its transpose: For F ∈ R
p×m, vec(FT ) = Kpmvec(F). The next lemma gives properties of

commutation matrices used in our derivations.

Lemma D.2 The following properties hold:

1. KT
pm = Kmp

2. KT
pmKpm = KpmK

T
pm = Ipm;

3. Suppose A ∈ R
r1×r2 , B ∈ R

r3×r4 . Then Kr3r1
(A⊗B)Kr2r4

= B⊗A.

4. Suppose A ∈ S
r×r and Cr andKrr are defined by vech(A) = Crvec(A) and vec(A) = Krrvec(AT ).

Then CrKrr = Cr.
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The first term on the right of (S4.4) can now be written as follows:

∂h21

∂φT
2

=
Cr∂vec[(ΓΩ)ΓT ]

∂vecT (Γ)

= Cr(Γ⊗ Ir)
∂vec(ΓΩ)

∂vecT (Γ)
+Cr(Ir ⊗ ΓΩ)

∂vec(ΓT )

∂vecT (Γ)

= Cr(Γ⊗ Ir)(Ω⊗ Ir)
∂vec(Γ)

∂vecT (Γ)
+Cr(Ir ⊗ ΓΩ)Kru

∂vec(Γ)

∂vecT (Γ)

= Cr(ΓΩ⊗ Ir) +CrKrr(Ir ⊗ ΓΩ)Kru

= 2Cr(ΓΩ⊗ Ir). (S4.5)

By a similar derivation, we have

∂h22

∂φ2

=
∂vech(Γ0Ω0Γ

T
0 )

∂vecT (Γ)
= 2Cr(Γ0Ω0 ⊗ Ir)

∂vec(Γ0)

∂vecT (Γ)
. (S4.6)

To complete this derivative, we need to define Γ0 so that it is uniquely associated with Γ. One way

to do so is the following. First we find it helpful to deviate temporarily from convention and make a

careful distinction between Γ which can vary and its true fixed population value. Let the columns of

the semi-orthogonal matrix Λ represent any fixed basis for EΣ(B) and let Λ0 be any fixed basis for the

orthogonal complement of EΣ(B). Then in the vicinity of Λ, QΓΛ0 and QΓ share the same column

space. Thus we can take QΓΛ0 as the uniquely determined Γ0, and the required derivative becomes

∂vec(Γ0)

∂vecT (Γ)
=

∂vec(QΓΛ0)

∂vecT (Γ)
= −∂vec(PΓΛ0)

∂vecT (Γ)
= −(ΛT

0 ⊗ Ir)
∂vec(PΓ)

∂vecT (Γ)

The next derivative that we need is

∂vec(PΓ)

∂vecT (Γ)
=

∂vec(Γ(ΓTΓ)−1ΓT )

∂vecT (Γ)

= (Γ(ΓTΓ)−1 ⊗ Ir)
∂vec(Γ)

∂vecT (Γ)
+ (Ir ⊗ Γ)

∂vec((ΓTΓ)−1ΓT )

∂vecT (Γ)

The first term on the right hand side is 0 when multiplied by (ΛT
0 ⊗ Ir). For the second term:

∂vec((ΓTΓ)−1ΓT )

∂vecT (Γ)
=(Γ⊗ Iu)

∂vec((ΓTΓ)−1)

∂vecT (Γ)
+ (Ir ⊗ (ΓTΓ)−1)

∂vec(ΓT )

∂vecT (Γ)

=(Γ⊗ Iu)
∂vec((ΓTΓ)−1)

∂vecT (Γ)
+ (Ir ⊗ (ΓTΓ)−1)Kru

The first term on the right hand side is again 0 when multiplied by (ΛT
0 ⊗ Ir), and therefore

∂vec(QΓΛ0)

∂vecT (Γ)
= −(ΛT

0 ⊗ Γ(ΓTΓ)−1)Kru = −(ΛT
0 ⊗Λ)Kru
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where the final term is explicitly evaluated at the true values, recalling that ΛTΛ = Iu

Substituting back and returning to the original notation, in which it is understood that all derivatives

are evaluated at the true population values, we obtain

∂h2

∂φT
2

= 2Cr(ΓΩ⊗ Ir)− 2Cr(Γ0Ω0 ⊗ Ir)(ΓT
0 ⊗ Γ)Kru

= 2Cr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ
T
0 ).

Finally, we calculate ∂h2/∂φT
3 and ∂h2/∂φT

4 . We have

∂h2

∂φT
3

=
∂vech(ΓΩΓT )

∂vechT (Ω)

= Cr
∂vec(ΓΩΓT )

∂vechT (Ω)

= Cr(Γ⊗ Γ)Eu(∂vech(Ω)/∂vechT (Ω))

=Cr(Γ⊗ Γ)Eu.

Similarly, ∂h2/∂φT
4 = Cr(Γ0 ⊗ Γ0)E(r−u). Now assemble these derivatives together to obtain (24). �

Proof of (27) Lemma D.2 implies the following corollaries, which will be used repeatedly in the

subsequent development.

Corollary D.1 Let PEr
be the projection Er(E

T
r Er)

−1ET
r , andA be an r×u matrix. Then the following

relations hold:

1. ErCr = (ErCr)
T = 1

2 (Ir2 +Krr) = PEr
;

2. ErCr(A⊗A)Eu = (A⊗A)Eu and ErCr(A⊗A)CT
u = (A⊗A)CT

u .

3. PEr
(A⊗A)PEu

= PEr
(A⊗A) = (A⊗A)PEu

;

4. If B ∈ R
t×u, then Ktr(A⊗B) = (A⊗B)Ksu.

Corollary D.2 Let C ∈ R
s×r, D ∈ R

t×r, A ∈ R
r×u and B ∈ R

r×v, then

(C⊗D)PEr
(A⊗B) =

1

2
(CA⊗DB) +

1

2
(CB⊗DA)Kvu.

In particular, if either CB = 0 or DA = 0, then

(C⊗D)PEr
(A⊗B) =

1

2
(CA⊗DB).
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Moreover, the following equalities follows from Corollary 2.1.

Corollary D.3

ΓT
0Σ

−1Γ0 = Ω−1
0 , ΓTΣ−1Γ0 = 0, ΓTΣ−1Γ = Ω−1. (S4.7)

We now derive (27). Straightforward matrix multiplication yields

HT
12JH12 = ηΣXηT ⊗ ΓT

0Σ
−1Γ0

+2(ΩΓT ⊗ ΓT
0 − ΓT ⊗Ω0Γ

T
0 )CT

r E
T
r (Σ−1 ⊗Σ−1)ErCr(ΓΩ⊗ Γ0 − Γ⊗ Γ0Ω0).

By Corollary D.1, part 3, the factor CT
r E

T
r in the second term on the right can be removed. Hence the

second term reduces to

2(ΩΓTΣ−1 ⊗ ΓT
0Σ

−1 − ΓTΣ−1 ⊗Ω0Γ
T
0Σ

−1)PEr
(ΓΩ⊗ Γ0 − Γ⊗ Γ0Ω0). (S4.8)

This can be expanded as 4 terms and, using (S4.7), it can be easily verified that each of these terms is

of the form (C ⊗ D)PEr
(A ⊗ B) with either CB = 0 or DA = 0. Hence, by Corollary D.2, we can

replace PEr
by 1/2 in (S4.8), which then reduces to

(ΩΓTΣ−1 ⊗ ΓT
0Σ

−1 − ΓTΣ−1 ⊗Ω0Γ
T
0Σ

−1)(ΓΩ⊗ Γ0 − Γ⊗ Γ0Ω0).

Now simplify this using (S4.7) to complete the proof. �

E Proofs for Section 6

Block-matrices in (30) From the definitions of H and J we have

Jηη =(Ip ⊗ ΓT )(ΣX ⊗Σ−1)(Ip ⊗ Γ) = ΣX ⊗Ω−1

JηΓ =(ΣX ⊗ ΓTΣ−1)(ηT ⊗ Ir) = ΣXηT ⊗ ΓTΣ−1

JΓΓ =ηΣXηT ⊗Σ−1

+2(ΩΓT ⊗ Ir − ΓT ⊗ Γ0Ω0Γ
T
0 )CT

r E
T
r (Σ−1 ⊗Σ−1)ErCr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ

T
0 )

JΓΩ =(ΩΓT ⊗ Ir − ΓT ⊗ Γ0Ω0Γ
T
0 )CT

r E
T
r (Σ−1 ⊗Σ−1)ErCr(Γ⊗ Γ)Eu

=(ΩΓTΣ−1Γ⊗ IrΣ−1Γ)Eu

=(Iu ⊗Σ−1Γ)Eu.

JΩΩ =
1

2
ET

u (ΓT ⊗ ΓT )CT
r E

T
r (Σ−1 ⊗Σ−1)ErCr(Γ⊗ Γ)Eu =

1

2
ET

u (Ω−1 ⊗Ω−1)Eu

JΩ0Ω0
=

1

2
ET

r−u(ΓT
0 ⊗ ΓT

0 )CT
r E

T
r (Σ−1 ⊗Σ−1)ErCr(Γ⊗ Γ)Er−u

=
1

2
ET

r−u(Ω−1
0 ⊗Ω−1

0 )Er−u.
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In the derivations of JΓΩ, JΩΩ, and JΩ0Ω0
we have used Corollary D.1, part 2, to remove ErCr and

CT
r E

T
r in various places. �

Derivation of (32) We need the following result, which is a direct consequence of Corollary 2.1 and

Proposition 2.2.

Corollary E.1 Let A be an r× r symmetric, nonsingular matrix and G be an r×u matrix with u ≤ r,

assume that G has full column rank. If PG and A commute, then

G(GTAG)−1GT = PGA
−1PG.

We now derive (32). The first equality in (32) holds because, as we have argued in Section 6, avar(η̂Γ) =

J−1
ηη

, which is the desired matrix by the formula for Jηη given previously in this section.

By (31) and the formulas in Section E, [avar(
√

nvec(Γ̂η))]−1 is

ηΣXηT ⊗Σ−1

+2(ΩΓT ⊗ Ir − ΓT ⊗ Γ0Ω0Γ
T
0 )CT

r E
T
r (Σ−1 ⊗Σ−1)ErCr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ

T
0 )

−2(Iu ⊗Σ−1Γ)Eu

[

ET
u (Ω−1 ⊗Ω−1)Eu

]−1
ET

u (Iu ⊗ ΓTΣ−1). (S5.9)

The second term in (S5.9), without the proportionality constant 2, can be decomposed into the following

4 terms

(ΩΓT ⊗ Ir)PEu
(Σ−1 ⊗Σ−1)PEu

(ΓΩ⊗ Ir)
−(ΩΓT ⊗ Ir)PEu

(Σ−1 ⊗Σ−1)PEu
(Γ⊗ Γ0Ω0Γ

T
0 )

−(ΓT ⊗ Γ0Ω0Γ
T
0 )PEu

(Σ−1 ⊗Σ−1)PEu
(ΓΩ⊗ Ir)

+(ΓT ⊗ Γ0Ω0Γ
T
0 )PEu

(Σ−1 ⊗Σ−1)PEu
(Γ⊗ Γ0Ω0Γ

T
0 ) ≡ A1 +A2 +A3 +A4.

(S5.10)

The terms A2,A3,A4 can be simplified by the method used in the proof of (27). That is, we can replace

the PEu
in these terms by 1/2, which results in

A2 = A3 = −1

2
Iu ⊗ Γ0Γ

T
0 , A4 =

1

2
Ω−1 ⊗ Γ0Ω0Γ

T
0 .

Next, let us simplify the first term in (S5.10). By Corollary D.2,

(ΩΓTΣ−1 ⊗Σ−1)PEu
(ΓΩ⊗ Ir) =

1

2
(Ω⊗Σ−1) +

1

2
(ΩΓTΣ−1 ⊗Σ−1ΓΩ)Kru.

Let us now simplify the third term in (S5.9). By Corollary D.1, part 3, PEu
and Ω−1 ⊗Ω−1 commute.

Hence, by Corollary E.1, the third term in (S5.9), without the proportionality constant −2, is (Iu ⊗
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Σ−1Γ)PEu
(Ω⊗Ω)PEu

(Iu⊗ΓTΣ−1), which, by Corollary D.2, reduces to {(Ω⊗ΓΩ−1ΓT )+(ΩΓTΣ−1⊗
Σ−1ΓΩ)Kru}/2. To summarize, we have

[avar(
√

nvec(Γ̂η))]−1 =ηΣXηT ⊗Σ−1 + (Ω⊗ Γ0Ω
−1
0 ΓT

0 )− 2(Iu ⊗ Γ0Γ
T
0 ) +Ω−1 ⊗ Γ0Ω0Γ

T
0 .

This proves the second equality in (32). �

Proof of Theorem 6.1 Let H1,ij , i = 1, 2, j = 1, . . . , 4, denote the (i, j)th block of the matrix H1

defined by (25). Then the asymptotic variance of
√

nvec(β̂) =
√

nvec(Γ̂η̂) is

4
∑

j=1

H1,1j(H
T
1jJH1j)

−1HT
1,1j .

Because H1,1j = 0 for j = 3, 4, we have

avar[
√

nvec(β̂)] = H1,11(H
T
11JH11)

−1HT
1,11 +H1,12(H

T
12JH12)

−1HT
1,12. (S5.11)

From the definitions of H1 and J we see that

HT
11JH11 =ΣX ⊗Ω−1

HT
12JH12 =ηΣXηT ⊗Ω−1

0

+2(ΩΓT ⊗ ΓT
0 − ΓT ⊗Ω0Γ

T
0 )HT

r E
T
r (Σ−1 ⊗Σ−1)ErHr(ΓΩ⊗ Γ0 − Γ⊗ Γ0Ω0).

Hence

H1,11(H
T
11JH11)

−1HT
1,11 = (Ip ⊗ Γ)(Σ−1

X
⊗Ω)(Ip ⊗ ΓT ) = (Σ−1

X
⊗ ΓΩΓT ).

Comparing the right hand side with the first equality in (32), we see that

H1,11(H
T
11JH11)

−1HT
1,11 = (Ip ⊗ Γ)avar[

√
nvec(η̂Γ)](Ip ⊗ ΓT ). (S5.12)

In the meantime, comparing (27) and the second equality in (32) we see that

H12JH
T
12 = (Iu ⊗ ΓT

0 )[avar(
√

nvec(Γ̂η))]−1(Iu ⊗ Γ0).

Consequently,

H1,12(H12JH
T
12)
−1HT

1,12

=(ηT ⊗ Ir)(Iu ⊗ Γ0)
{

(Iu ⊗ ΓT
0 )[avar(

√
nvec(Γ̂η))]−1(Iu ⊗ Γ0)

}−1

(Iu ⊗ ΓT
0 )(η ⊗ Ir).

Now let the G and A in Lemma E.1 be Iu ⊗ Γ0 and [avar(
√

nvec(Γ̂η))]−1, respectively. Then PG =

Iu ⊗ Γ0Γ
T
0 , and it is easy to verify that PG and A commute. Hence

H1,12(H12JH
T
12)
−1HT

1,12 =(ηT ⊗ Ir)(Iu ⊗PΓ0
)[avar(

√
nvec(Γ̂η))](Iu ⊗PΓ0

)(η ⊗ Ir)
=(ηT ⊗PΓ0

)[avar(
√

nvec(Γ̂η))](η ⊗PΓ0
). (S5.13)

Now substitute (S5.12) and (S5.13) into (S5.11) to complete the proof. �


