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Abstract: This paper is concerned with Edgeworth expansions for a general class of

statistics under very weak conditions. Our approach unifies the treatment for both

standardized and studentized statistics that have been traditionally studied sepa-

rately under usually different conditions. These results are then applied to several

special classes of well-known statistics: U -statistics, L-statistics, and functions of

sample means. Special attention is paid to the studentized statistics. We establish

Edgeworth expansions under very weak or minimal moment conditions.
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1. Introduction

Suppose we are interested in the distribution of a statistic, T = T (X1, . . .,
Xn), where X1, . . . , Xn is a sequence of independent and identically distributed
(i.i.d.) random variables (r.v.’s). Typically, one can use the delta method to
show that T converges in distribution to a normal distribution. The rates of
convergence to normality are usually of the order n−1/2 and can be described
by Berry-Esséen bounds. To get a better approximation than asymptotic nor-
mality, one can develop higher-order Edgeworth expansions under appropriate
conditions.

The theory of Edgeworth expansions dates back a long way, the simplest
case being the Edgeworth expansion for the sample mean. Much effort has been
devoted to Edgeworth expansions for other classes of statistics, such as functions
of means, U -, L-statistics, and others. On the other hand, Edgeworth expansions
for their studentized counterparts have also gained much momentum, partly due
to their usefulness in statistical inference. It is worth pointing out that each of the
methods for deriving Edgeworth expansions for the above-mentioned statistics
was tailored to the individual structures of these statistics. A general unifying ap-
proach is to consider symmetric statistics, which include all the aforementioned,
as in Lai and Wang (1993), Bentkus, Götze and van Zwet (1997), and Putter
and van Zwet (1998) for instance.
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A quick glance at the literature reveals that the moment conditions in Edge-
worth expansions for the studentized statistics are typically stronger than for the
corresponding standardized statistics; see Section 3 for more discussions. One
notable exception is the case of the sample mean, where the third moment is
enough for both the standardized mean and Student’s t-statistic, see Hall (1987)
and Bentkus and Götze (1996), for instance. This begs the question whether the
same phenomenon is also true for U -, L-statistics, and other classes of statistics.

In this paper we address this issue. We consider Edgeworth expansions for
a very general class of statistics, and then apply them to some special cases of
interest. In particular, we consider statistics of the form Tn/Sn, where

Tn = n−1/2
n∑

j=1

α(Xj) + n−3/2
∑
i<j

β(Xi, Xj) + V1n,

S2
n = 1 +

1
n(n − 1)

∑
i<j

γ(Xi, Xj) + V2n,

with V1n and V2n as remainder terms. One can think of Tn as the statistic of
interest and S2

n as the normalizing variable. We refer to Tn/Sn as the studentized
statistic when Sn is random, and as the standardized statistic when Sn = 1.

There are several reasons to consider such a class of statistics. First, a great
many of commonly-seen statistics belong to this class. These include (standard-
ized or studentized) U -, L-statistics, and function of sample means. Second, the
approach taken in this paper unifies the treatment for both standardized and
studentized statistics. For example, if γ(x, y) = 0 and V2n is sufficiently small
in the normalizing variable S2

n, then the studentized statistic Tn/Sn will reduce
to the standardized statistic Tn. Therefore, it is possible to derive asymptotic
results for both cases under the same set of conditions. Finally, the conditions
required for our main results are very weak, and often minimal; see Section 3.

Section 2 gives the main results of the paper. They will be applied in Section
3 to several well-known examples. Proofs and technical details are given in
Sections 4 and 5.

Throughout, we use C to denote some positive constants, independent of
n, which may be different at each occurrence. For a set B, let I(B) denote an
indicator function of B. The standard normal density and distribution function
are denoted by φ(x) and Φ(x), respectively. Finally, write

∑
i<j

≡
∑

1≤i<j≤n

,
∑

i<j<k

≡
∑

1≤i<j<k≤n

,
∑
i6=j

≡
n∑

i,j=1
i6=j

,
∑

i6=j 6=k

≡
n∑

i,j,k=1
i6=j,j 6=k,k 6=i

.
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2. Main Results

Let X,X1, . . . , Xn be a sequence of i.i.d. r.v.s. Let α(x), β(x, y), γ(x, y)
be some Borel measurable functions of x, y, and z. Let Vin ≡ Vin(X1, . . . , Xn)
(i = 1, 2) be functions of {X1, . . . , Xn}. Let

Tn = n−1/2
n∑

j=1

α(Xj) + n−3/2
∑
i<j

β(Xi, Xj) + V1n, (2.1)

S2
n = 1 +

1
n(n − 1)

∑
i<j

γ(Xi, Xj) + V2n. (2.2)

The dominant term in Tn/Sn is n−1/2
∑n

j=1 α(Xj), which converges in distribu-
tion to a normal distribution as n → ∞ under weak conditions. We first give
an Edgeworth expansion for Tn/Sn with remainder o(n−1/2) under very weak
conditions.

Theorem 2.1. Assume the following.
(a) α(X1) is nonlattice; β(x, y) and γ(x, y) are symmetric in x, y.
(b) Eα(X1) = 0, Eα2(X1) = 1, E|α(X1)|3 < ∞,

E[β(X1, X2)|X1] = 0, E|β(X1, X2)|5/3 < ∞,

Eγ(X1, X2) = 0, E|γ(X1, X2)|3/2 < ∞.
(c) P

(
|Vjn| ≥ δnn−1/2

)
= o

(
n−1/2

)
, j = 1, 2, where δn > 0 and δn → 0.

Then we have supx |P (Tn/Sn ≤ x) − En(x)| = o
(
n−1/2

)
, where

En(x) = Φ(x) − Φ(3)(x)
6
√

n

(
Eα3(X1) + 3Eα(X1)α(X2)β(X1, X2)

)
−xΦ(2)(x)

2
√

n
Eα(X1)γ(X1, X2).

The next corollary may be easier to use in some applications.

Corollary 2.1. Assume the conditions of Theorem 2.1, except with S2
n re-

placed by S2
n = 1 + n−3

∑
i6=j 6=k η(Xi, Xj , Xk) + V2n, where Eη(X1, X2, X3) = 0,

E|η(X1, X2, X3)|3/2 < ∞. Then supx |P (Tn/Sn) − En(x)| = o
(
n−1/2

)
, where

En(x) = Φ(x) − Φ(3)(x)
6
√

n

(
Eα3(X1) + 3Eα(X1)α(X2)β(X1, X2)

)
−xΦ(2)(x)

2
√

n

3∑
i=1

Eα(Xi)η(X1, X2, X3).
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Remark 2.1. If γ(x, y) = 0 in Theorem 2.1, we get supx |P (Tn ≤ x) − En0(x)|
= o

(
n−1/2

)
, where En0(x) = Φ(x)−6−1n−1/2Φ(3)(x)(Eα3(X1)+3Eα(X1)α(X2)

β(X1, X2)). The Edgeworth expansions for both types of statistics thus hold
under the same conditions if one can show that conditions for γ(X1, X2) in Tn/Sn

are implied by those imposed on α(X1) and β(X1, X2). Such examples can be
seen in Sections 3.2 and 3.3.

Remark 2.2. The underlying distribution F of Xi’s is typically unknown in
practice, so one cannot directly apply Theorem 2.1 and Corollary 2.1 since they
involve unknown quantities such as Eα3(X1) and Eα(X1)α(X2)β(X1, X2), etc.
In such situations, one could use empirical Edgeworth expansions (EEE) Ên(x)
obtained by estimating the unknown quantities in En(x) by their empirical ver-
sions (e.g., the jackknife).

Remark 2.3. Singh (1981) used a second-order Edgeworth expansion for the
mean of a sample from a nonlattice distribution to show, for the first time, that
the bootstrap distribution approximates the true distribution of the standardized
statistic better than the normal approximation under a finite third moment. This
classical result has been extended by Bloznelis and Putter (2003) to Student’s
t-statistic under the same optimal conditions. It would be of great interest to
find out whether similar results hold under the conditions for the more general
statistics considered in this paper. We hope to be able to report on this.

3. Some Important Applications

In this section, we apply the main results in Section 2 to three well-known
examples: U - and L-statistics and functions of the sample mean, which results in
second-order Edgeworth expansions under very weak, often optimal conditions.

3.1. U-statistics

Let h(x, y) be a real-valued Borel measurable function, symmetric in its
arguments, with Eh(X1, X2) = θ. Define a U -statistic of degree 2 with kernel
h(x, y) by

Un =
2

n(n − 1)

∑
i<j

h(Xi, Xj).

Let g(Xj) = E (h(Xi, Xj) − θ | Xj), σ2
g = V ar (g(X1)), and

R2
n =

4
(n − 1)(n − 2)2

n∑
i=1

(
1

n − 1

n∑
j=1
j 6=i

h(Xi, Xj) − Un

)2

.
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Note that n2R2
n is the jackknife estimator of 4σ2

g . Let the distributions of the
standardized and studentized U -statistics be, respectively,

G1n(x) = P

(√
n(Un − θ)

2σg
≤ x

)
, and G2n(x)=P

(√
n(Un − θ)

Rn
≤x

)
.

Asymptotic normality of G1n(x) and G2n(x) was established by Hoeffding
(1948) and Arvesen (1969), respectively, provided that Eh2(X1, X2) < ∞ and
σ2

g > 0. Berry-Esséen bounds for G1n(x) were studied by many authors, see
Bentkus, Götze and Zitikis (1994) and references therein. Also see Wang and
Weber (2006) for exact convergence rates and leading terms in the Central Limit
Theorem. Berry-Esséen bounds for G2n(x) have been given by many authors;
see Wang, Jing and Zhao (2000) for references. On the other hand, Edgeworth
expansions for U -statistics have also been intensively studied in recent years.
For G1n(x), under the conditions that σ2

g > 0, the d.f. of g(X1) is nonlattice,
E|g(X1)|3 < ∞, and E|h(X1, X2)|2+ε < ∞ for some ε > 0, Bickel Götze and van
Zwet (1986) showed that

sup
x

|G1n(x) − En0(x)| = o(n−1/2), (3.1)

where

En0(x) = Φ(x) − φ(x)
6
√

nσ3
g

(
x2 − 1

) {
Eg3(X1) + 3Eg(X1)g(X2)h(X1, X2)

}
.

Jing and Wang (2003) weakened the moment condition E|h(X1, X2)|2+ε < ∞ to
E|h(X1, X2)|5/3 < ∞. On the other hand, under the conditions that σ2

g > 0, the
d.f. of g(X1) is nonlattice, and E|h(X1, X2)|4+ε < ∞ for some ε > 0, Helmers
(1991) showed that

sup
x

|G2n(x) − En(x)| = o(n−1/2), (3.2)

where

En(x) = Φ(x)+
φ(x)

6
√

nσ3
g

{
(2x2+1)Eg3(X1)+3(x2+1)Eg(X1)g(X2)h(X1, X2)

}
.

Putter and van Zwet (1998) weakened the (4+ε)-th moment condition of Helmers
(1991) to E|h(X1, X2)|3+ε < ∞.

The following result can be obtained from Corollary 2.1.

Theorem 3.1. Suppose that the d.f. of g(X1) is nonlattice and σ2
g > 0.

(a) If E|g(X)|3 < ∞ and E|h(X1, X2)|5/3 < ∞, then (3.1) holds.
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(b) If E|h(X1, X2)|3 < ∞, then (3.2) holds.

Remark 3.1. The moment conditions E|g(X1)|3 < ∞ and E|h(X1, X2)|5/3 < ∞
are optimal for Edgeworth expansion of standardized U -statistics; see Jing and
Wang (2003). The conditions for Edgeworth expansion of studentized U -statistics
are suboptimal in the following sense: the condition E|h(X1, X2)|3 < ∞ cannot
be weakened to E|h(X1, X2)|3−δ < ∞ for any δ > 0, but it might be weakened
to E|g(X1)|3 < ∞, E|h(X1, X2)|5/3 < ∞, and E|h(X1, X2)h(X1, X3)|3/2 < ∞.

Remark 3.2. If h(x, y) = (x + y)/2, then
√

n(Un − θ)/Rn reduces to Student’s
t-statistic. From Theorem 3.1, the moment condition for Edgeworth expansions
of error size o(n−1/2) for Student’s t-statistic is E|X1|3 < ∞, which is optimal;
see Hall (1987).

Proof of Theorem 3.1. Part (a) can be proved by applying Theorem 2.1
directly. We prove part (b). Similar to (A3) in Callaert and Veraverbeke (1981)
(also see Serfling (1980)), we may write

√
n(Un − θ)

Rn
=

√
n(Un − θ)/(2σg)

Rn/(2σg)
≡ Tn

Sn
,

where Tn and S2
n are defined as in Corollary 2.1, with

α(Xj) = σ−1
g g(Xj),

β(Xi, Xj) = σ−1
g [h(Xi, Xj) − θ − g(Xi) − g(Xj)] ,

η(Xi, Xj , Xk) = σ−2
g [h(Xi, Xj) − θ] [h(Xi, Xk) − θ] − 1,

V1n = n−3/2(n − 1)−1
∑
i<j

β(Xi, Xj),

V2n =
2σ−2

g

(n − 1)(n − 2)2
∑
i<j

(h(Xi, Xj) − θ)2 −
n(n − 1)σ−2

g

(n − 2)2
(Un − θ)2

+
(n − 2)2 + 4(n − 1)
n3(n − 1)(n − 2)2

∑
i6=j 6=k

η(Xi, Xj , Xk) +
2

n − 2
.

By the properties of conditional expectation, it can easily shown that

Eα(Xi)α(X2)β(Xi, Xj) = σ−3
g Eg(X1)g(X2)h(X1, X2), if 1 ≤ i 6= j ≤ 2,

Eα(Xi)η(X1, X2, X3) = σ−3
g Eg3(X1), if i = 1,

= σ−3
g Eg(X1)g(X2)h(X1, X2), if i = 2, 3.

In view of these estimates and the relations Φ(2)(x) = −xφ(x) and Φ(3)(x) =
(x2 − 1)φ(x), one can apply Corollary 2.1 to obtain

En(x) = Φ(x)+
φ(x)

6
√

nσ3
g

{
(2x2+1)Eg3(X1)+3(x2 + 1)Eg(X1)g(X2)h(X1, X2)

}
.
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On the other hand, condition (a) of Corollary 2.1 can be easily checked. Then
Theorem 3.1 follows from Corollary 2.1 if we can show P

(
|Vjn| ≥ n−1/2(log n)−1

)
= o(n−1/2) for j = 1, 2, but this follows from Lemma 4.1 below.

3.2. L-statistics

Let X1, . . . , Xn be i.i.d. r.v.s with distribution function F . Denote the empir-
ical distribution by Fn(x) = n−1

∑n
j=1 I(Xi≤x). Let J(t) be a real-valued function

on [0, 1] and T (G) =
∫

xJ(G(x)) dG(x). Then T (Fn) is called an L-statistic; see
Serfling (1980). Write s ∧ t = min{s, t}, s ∨ t = max{s, t}, and

σ2 ≡ σ2(J, F ) =
∫ ∫

J (F (s))J (F (t))F (s ∧ t) [1 − F (s ∨ t)] dsdt,

A natural estimate of σ2 is σ̂2 ≡ σ2(J, Fn). Let the distributions of the standard-
ized and studentized L-statistic T (Fn) be, respectively,

L1n(x) = P

(√
n(T (Fn) − T (F ))

σ
≤ x

)
, and

L2n(x) = P

(√
n(T (Fn) − T (F ))

σ̂
≤ x

)
.

Asymptotic normality of L1n(x) and L2n(x) holds if E|X1|2 < ∞, σ2 > 0,
and some smoothness conditions on J(t); see Serfling (1980). Berry-Esséen
bounds were given for them by Helmers (1977), van Zwet (1984), Helmers,
Janssen and Serfling (1990), Helmers (1982), and Wang, Jing and Zhao (2000).
Also see Wang and Weber for exact convergence rates and leading terms in the
Central Limit Theorem. On the other hand, Edgeworth expansions for L1n(x)
were given by Helmers (1982), Lai and Wang (1993), among others. Edgeworth
expansions for L2n(x) were studied by Putter and van Zwet (1998) under some
smoothness conditions on J(t) and the moment condition E|X1|3+ε < ∞ for some
ε > 0. The next theorem shows that this moment condition can be weakened.

Theorem 3.2. Assume the following.
(a) J ′′(t) is bounded on t ∈ [0, 1].

(b) σ2 > 0 and
∫

[F (t)(1 − F (t))]1/3dt < ∞.

(c) the d.f. of Y =
∫

J(F (s))
(
I(X1≤s) − F (s)

)
ds is nonlattice.

Then we have

sup
x

∣∣∣L1n(x) − Ẽn0(x)
∣∣∣ = o(n−1/2) and sup

x

∣∣∣L2n(x)−Ẽn(x)
∣∣∣ = o(n−1/2), (3.3)
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where Ẽn0(x) = Φ(x) + 6−1σ−3n−1/2
(
−3a1Φ(1)(x) + a3Φ(3)(x)

)
and

Ẽn(x) = Φ(x) +
1

6σ3
√

n

(
−3a1Φ(1)(x) + 3a2xΦ(2)(x) + a3Φ(3)(x)

)
.

Here, J0(t) = J(F (t)),

a1 = σ2

∫
J ′

0(x)F (x)[1 − F (x)]dx,

a2 =
∫ ∫ ∫

J0(y)J0(z)
[
J0(x)K1(x, y, z) + J ′

0(x)K2(x, y, z)
]
dxdydz,

a3 =
∫ ∫ ∫

J0(x)J0(y)
[
J0(z)K3(x, y, z) + 3J ′

0(z)K4(x, z)K4(y, z)
]
dxdydz,

K1(x, y, z) = [F (x ∧ y ∧ z) − F (x ∧ y)F (z)] [(1 − F (x ∨ y)]

+F (x ∧ y)F (x ∨ y) [F (z) − 1] ,

K2(x, y, z) = F (x ∧ y) [1 − F (x ∨ y)] [F (y ∧ z) − F (y)F (z)] ,

K3(x, y, z) = F (x ∧ y ∧ z) − F (x)F (y ∧ z) − F (y)F (x ∧ z)

−F (z)F (x ∧ y) + 2F (x)F (y)F (z),

K4(x, y) = F (x ∧ y) − F (x)F (y).

Remark 3.3. Note that
∫

[F (t)(1 − F (t)]1/3dt < ∞ is weaker than E|X1|3+ε <

∞ for every ε > 0. To see this, first apply Markov’s inequality to get F (t){1 −
F (t)} ≤ E|X1|3+ε/|t|3+ε. Then,∫

{F (t)[1 − F (t)]}1/3dt ≤
∫
|t|≤1

1dt +
∫
|t|>1

{F (t)[1 − F (t)]}1/3dt

≤ 2 +
(
E|X1|3+ε

)1/3
∫
|t|>1

|t|−1−ε/3dt < ∞.

Proof of Theorem 3.2. We only prove the second relation in (3.3), the first
can be done similarly. Write

Jn(t) = J(Fn(t)), Z(s, t, F ) = F (s ∧ t)(1 − F (s ∨ t)),

ξ(Xi, Xj) = σ−2

∫ ∫
J0(s)J0(t)

(
I(Xi≤s∧t)I(Xj>s∨t) − Z(s, t, F )

)
dsdt,

ϕ(Xi, Xj , Xk) = σ−2

∫ ∫
J ′

0(s)J0(t)
[
I(Xi≤t) − F (t)

]
I(Xj≤s∧t)I(Xk>s∨t) dsdt.

From Lemma B of Serfling (1980, p.265), we have T (Fn)−T (F ) = −
∫

[K1(Fn(x))
−K1(F (x))]dx, where K1(t) =

∫ t
0 J(u)du. We now can write

√
n (T (Fn) − T (F ))

σ̂
=

√
n (T (Fn) − T (F )) /σ

σ̂/σ
≡ Tn + n−1/2Eβ(X1, X1)

Sn
,
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where Tn and S2
n are defined as in Corollary 2.1, with

α(Xj) = −σ−1

∫
J0(t)

[
I(Xj≤t) − F (t)

]
dt,

β(Xi, Xj) = −σ−1

∫
J ′

0(t)
[
I(Xi≤t) − F (t)

] [
I(Xj≤t) − F (t)

]
dt,

η(Xi, Xj , Xk) = ξ(Xi, Xj) + ϕ(Xi, Xj , Xk),

|V1n| ≤
1

n3/2

∣∣∣ n∑
j=1

[β(Xj , Xj)−Eβ(X1, X1)]
∣∣∣+Cn1/2

∫
|Fn(t)−F (t)|3dt,

V2n = Q1n + Q2n + Q3n,

where the Qin’s are

Q1n = 2σ−2

∫ ∫ [
Jn(s) − J0(s) − J ′

0(s)(Fn(s) − F (s))
]
J0(t)Z(s, t, Fn)dsdt,

Q2n = σ−2

∫ ∫
[Jn(s) − J0(s)] [Jn(t) − J0(t)]Z(s, t, Fn)dsdt,

Q3n = n−3
∑
j 6=k

[ξ(Xj , Xk) + ϕ(Xj , Xj , Xk) + ϕ(Xk, Xj , Xk)]

−n−1σ−2

∫ ∫
F (s ∧ t) [1 − F (s ∨ t)] dsdt.

Conditions (a) and (b) in Corollary 2.1 can be easily checked. Let us check
condition (c). It suffices to show that

P
(
|V1n| ≥ n−1/2(log n)−1

)
= o(n−1/2),

P
(
|Qjn| ≥ n−1/2(log n)−1

)
= o(n−1/2), for j = 1, 2, 3, (3.4)

For illustration, we only prove (3.4) for j = 1. Others can be shown similarly.
Noting that Z(s, t, Fn) ≤ [Fn(s)(1 − Fn(s))]1/2 [Fn(t)(1 − Fn(t))]1/2, we have

|Q1n| ≤ σ−2 sup
x,y

|J ′′
0 (x)J0(y)|

∫ ∫
(Fn(s) − F (s))2Z(s, t, Fn)dsdt

≤ Cσ−2

∫
(Fn(s) − F (s))2ds

∫
F 1/2

n (t)(1 − Fn(t))1/2dt

=: Cσ−2Q6n Q7n, say. (3.5)

Using the inequality E|Fn(t) − F (t)|k ≤ Cn−k/2F (t)(1 − F (t)), we get

EQ3
6n =

∫ ∫ ∫
E

{
(Fn(s) − F (s))2(Fn(t) − F (t))2(Fn(v) − F (v))2

}
dsdtdv
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≤
(∫ (

E|Fn(s) − F (s)|6
)1/3

ds

)3

≤ Cn−3

(∫
F 1/3(s)(1 − F (s))1/3ds

)3

.

Similarly, we can show EQ3
7n ≤

(∫
F 1/3(s)(1 − F (s))1/3ds

)3
. Therefore,

P
(
|Q1n| ≥ n−1/2(log n)−1

)
≤

(
n1/2 log n

)3/2
E|Q1n|3/2

≤ C3/2σ−3
(
n1/2 log n

)3/2 (
EQ3

6n

)1/2 (
EQ3

7n

)1/2

≤ Cn−3/4(log n)3/2

(∫
[F (t)(1 − F (t)]1/3dt

)3

= o(n−1/2).

Finally, we can apply Corollary 2.1 to get supx |P (Tn/Sn≤x)−En(x)|=o(n−1/2),
From this, and using the similar method as in proof of Theorem 2.1, we can get

sup
x

∣∣∣∣∣P
(

Tn + n−1/2Eβ(X1, X1)
Sn

≤ x

)
− n−1/2φ(x)Eβ(X1, X1) − En(x)

∣∣∣∣∣
= o(n−1/2).

This reduces to (3.3) after some tedious but routine calculations.

3.3. Functions of the sample mean

Let X1, . . . , Xn be i.i.d. r.v.s with EX1 = µ and V ar(X1) = σ2 < ∞; let
f be differentiable in a neighborhood of µ with f ′(µ) 6= 0. The asymptotic
variance of

√
nf(X) is σ2

f = (f ′(µ))2 σ2. Write X = n−1
∑n

i=1 Xi and σ̂2 =
n−1

∑n
i=1(Xi − X)2. A simple estimator of σ2

f is |f ′(X)|2 σ̂, and the jackknife
variance estimator of σ2

f is

σ̂2
f =

n − 1
n

n∑
j=1

(
f(X(j)) − f(X)

)2
, where X

(j) =
1

n − 1

(
n∑

i=1

Xi − Xj

)
.

Write the distributions of the standardized and studentized f(X), respectively,
as

H1n(x)=P

(√
n(f(X)−f(µ))

σf
≤ x

)
, H2n(x)=P

(√
n(f(X)−f(µ))

σ̂f
≤ x

)
.

Asymptotic properties of H1n(x) have been well studied (see Bhattacharya
and Ghosh (1978) for instance). On the other hand, Miller (1964) showed that
σ̂2

f is a consistent estimator of σ2
f and hence proved that H2(x) is asymptotically
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normal. Applying Bai and Rao (1991), Edgeworth expansions for H1n(x) with er-
ror size o(n−1/2) hold under the minimal moment condition E|X1|3 < ∞. Putter
and van Zwet (1998) gave Edgeworth expansions for H2n(x) under E|X1|3+ε < ∞
for some ε > 0. The next theorem gives the optimal moment condition.

Theorem 3.3. Assume that f (3)(x) is bounded in a neighborhood of µ and
f ′(µ) 6= 0, E|X1|3 < ∞, and the d.f. of X1 is nonlattice. Then we have

sup
x

∣∣∣H1n(x) − Ẽn0(x)
∣∣∣ = o

(
n−1/2

)
, sup

x

∣∣∣H2n(x) − Ẽn(x)
∣∣∣ = o

(
n−1/2

)
, (3.6)

where ρ = E(X1 − µ)3/σ3, b = 2−1σf ′′(u)/f ′(u), and

Ẽn0(x) = Φ(x) +
φ(x)
6
√

n

(
(1 − x2)ρ + 6(2 − x2)b

)
,

Ẽn(x) = Φ(x) +
φ(x)
6
√

n

(
(2x2 + 1)ρ + 6b

)
.

Proof. We only prove the second relation in (3.6), the first can be done similarly.
Applying Taylor’s expansion to f(X) − f(µ) and nσ̂2

f , we get

√
n(f(X) − f(µ))

σ̂f
=

Tn + n−1/2b

Sn
,

where Tn and S2
n are defined in (2.1) and (2.2), with

α(Xj) =
Xj − µ

σ
, β(Xi, Xj) = 2bα(Xi)α(Xj),

γ(Xi, Xj) = α2(Xi) + α2(Xj) − 2 + 2bσ−1α(Xi)α(Xj) [α(Xi) + α(Xj)] ,

|V1n| ≤
C

n3/2

∣∣∣ n∑
j=1

(
(Xj − µ)2 − σ2

) ∣∣∣ + C
√

n
∣∣X − µ

∣∣3 ,

|V2n| ≤ C

4∑
k=2

|X − µ|k +
C

n2

n∑
j=1

(
(Xj − µ)2 + |Xj − µ|3

)
+

C

n3

n∑
j=1

(Xj − µ)4

+
C

n
(X − µ)2

n∑
j=1

(Xj − µ)2 +
C

n3

∣∣∣ ∑
i 6=j

γ(Xi, Xj)
∣∣∣.

Conditions (a) and (b) in Theorem 2.1 can be easily checked. Condition (c) can
be verified by applying Lemmas 4.1–4.2 in the Appendix. Applying Theorem
2.1, we get

sup
x

∣∣∣∣P (
Tn

Sn
≤ x

)
− En(x)

∣∣∣∣ = o(n−1/2), (3.7)
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where En(x) is given in Theorem 2.1. It follows from (3.7), and a similar method
to the one used in the proof of Theorem 2.1, that

sup
x

∣∣∣∣P (
Tn + b/

√
n

Sn
≤ x

)
− b√

n
Φ(1)(x) − En(x)

∣∣∣∣ = o(n−1/2).

Theorem 3.3 then follows from Φ(2)(x) = −xφ(x), Φ(3)(x) = (x2 − 1)φ(x), and

Eα3(X1) = ρ, Eα(X1)α(X2)β(X1, X2) = 2b, Eα(X1)γ(X2, X1) = ρ + 2b.

4. Proof of Theorem 2.1

4.1. Some useful lemmas

Lemma 4.1. Let g(x1, . . . , xk) be symmetric in its arguments. Assume that

Un(g) =
(

n

k

)−1 ∑
1≤i1<···<ik≤n

g(Xi1 , . . . , Xik)

is a degenerate U -statistic of order m, i.e., Eg(x1, . . . , xm, Xm+1, . . . , Xk)=0.
(a) If E|g(X1, . . . , Xk)|p < ∞,

E|Un(g)|p ≤ C n(m+1)(1−p), for 1 ≤ p ≤ 2,

E|Un(g)|p ≤ C n−(m+1)p/2, for p ≥ 2.

(b) If E|g(X1, . . . , Xk)|2 < ∞, then P
(
|Un(g)| ≥ Cn−1/2

)
= o(n−1/2) for m ≥ 1.

(c) If E|g(X1, . . . , Xk)|3/2 < ∞, then

P
(
|Un(g)| ≥ Cn1/2(log n)−1

)
= o(n−1/2), for m = 0,

P
(
|Un(g)| ≥ Cn−3/10

)
= o(n−1/2), for m = 1,

P
(
|Un(g)| ≥ Cn−1/2(log n)−1

)
= o(n−1/2), for m = 2.

(d) If E|g(X1, . . . , Xk)|3 < ∞, then for all m ≥ 0 and k > 0,

P
(
|Un(g)| ≥ Cn−1/4(log n)−k

)
= o(n−1/2).

The proof of (a) can be found in Theorems 2.1.3 and 2.1.4 of Koroljuk and Borovs-
kich (1994). Others can be shown by (a) of the present lemma and Markov’s
inequality.

Lemma 4.2.
(a) If E|X1| < ∞, there exists a δn → 0 such that P

(∣∣X̄∣∣ ≥ δn
√

n
)

= o(n−1/2).
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(b) If EX1 = 0 and E|X1|3/2 < ∞, there exists a δn → 0 such that P
(∣∣X̄∣∣ ≥ δn

)
= o(n−1/2).

(c) If E|X1|3/4 < ∞, then P
(∣∣X̄∣∣ ≥ Cn

)
= o(n−1/2).

(d) If EX1 = 0, EX2
1 = 1, and E|X1|3 < ∞, then supx2≥10 log n P (

∣∣X̄∣∣ ≥ |x|n−1/2

/3) = o(n−1/2).

Proof. To prove (a), let δ3
n = max

{
E|X1|I(|X1|≥n1/4),

(
2n−1/2E|X1|

)3
}

. Since
E|X1| < ∞, we have δn → 0 and

P
(∣∣X̄∣∣ ≥ δn

√
n
)

≤ nP (|X1| ≥ n3/2)

+P

(
1

n3/2

∣∣∣ n∑
j=1

(
XjI(|Xj |≤n3/2) − EXjI(|Xj |≤n3/2)

) ∣∣∣ ≥ δn − E|X1|
n1/2

)
≤ n−1/2E|X1|I(|X1|≥n3/2) +

8
n2δ2

n

(
EX2

1I(|X1|≤n1/4) + EX2
1I(n1/4<|X1|≤n3/2)

)
≤ o(n−1/2) +

8
n(E|X1|)2

EX2
1I(|X1|≤n1/4) + 8δnn−1/2 = o

(
n−1/2

)
.

This proves (a). Similarly, we can prove (b) and (c). We prove (d) next. From
Chapter V of Petrov (1975), supx(1+|x|3)

∣∣P (√
nX̄≤x

)
−Φ(x)

∣∣ ≤ Cn−1/2E|X1|3.
From this and the inequality

1 − Φ(x) ≤ 1√
2π

e−x2/2 ≤ 2
1 + |x|3

, for x ≥ 1, (4.1)

we have P
(√

nX̄ ≥ |x|/3
)

≤ 1 − Φ(|x|/3) + Cn−1/2(log n)−1 = o(n−1/2) for
n ≥ 3 and x2 ≥ 10 log n. Similarly, P

(√
nX̄ ≤ −|x|/3

)
= o(n−1/2) for n ≥ 3 and

x2 ≥ 10 log n. We have proved (d).

The proof of the next lemma can be found in Jing and Wang (2003).

Lemma 4.3. Let Vn(x) and Wn(x, y) be real Borel-measurable functions and
Wn(x, y) be symmetric in its arguments. Assume the following.
(a) the d.f. of Vn(X1) is nonlattice for sufficiently large n.

(b) EVn(X1) = 0, EV 2
n (X1) = 1, supn≥1 E|Vn(X1)|3 < ∞.

(c) E[Wn(X1, X2)|X1] = 0, supn≥2 E|Wn(X1, X2)|5/3 < ∞.

Then,

sup
x

∣∣∣∣P( 1√
n

n∑
j=1

Vn(Xj) +
1

n3/2

∑
i<j

Wn(Xi, Xj) ≤ x
)
− En(x)

∣∣∣∣ = o(n−1/2),
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where Ln(x) = n
{
EΦ

(
x − n−1/2Vn(X1)

)
− Φ(x)

}
− Φ(2)(x)/2 and

En(x) = Φ(x) + Ln(x) − Φ(3)(x)
2
√

n
EVn(X1)Vn(X2)Wn(X1, X2).

The next lemma may be of independent interest.

Lemma 4.4. Let ξj(x), ϕj(x, y), and Vn ≡ Vn(X1, . . . , Xn) be real Borel mea-
surable functions in their arguments, and ϕj(x, y) = ϕj(y, x). Assume the fol-
lowing.
(a) The d.f. of ξ1(X1) is nonlattice and Eξ1(X1) = 0, Eξ1(X1)2 = 1, E|ξ1(X1)|3

< ∞.

(b) Eξ2(X1) = 0, E|ξ2(X1)|3/2 < ∞, E|ξ3(X1)|3/4 < ∞.

(c) E(ϕj(X1, X2)|X1) = 0, j = 1, 2; E|ϕ1(X1, X2)|5/3 < ∞, E|ϕ2(X1, X2)|3/2

< ∞.

(d) P (|Vn| ≥ o(n−1/2)) = o(n−1/2).

Let ςnj = ξ2(Xj) + n−1ξ3(Xj) and ψnij(x) = ϕ1(Xi, Xj) + xn−1/2ϕ2(Xi, Xj),

Kn(x) =
1√
n

n∑
j=1

ξ1(Xj) +
x

n

n∑
j=1

ςnj +
1

n3/2

∑
i<j

ψnij(x),

EK(x) = Φ(x) − 6−1n−1/2Φ(3)(x)
(
Eξ3

1(X1) + 3Eξ1(X1)ξ1(X2)ϕ1(X1, X2)
)

+n−1/2xΦ(2)(x)Eξ1(X1)ξ2(X1).

Then, supx |P (Kn(x) ≤ x(1 + Vn)) − EK(x)| = o(n−1/2) as n → ∞, .

Proof. Without loss of generality, we assume that

|ϕ2(Xi, Xj)| ≤ 4n2 for all i, j. (4.2)

For, if not, we can define

ϕ3(Xi, Xj) = ϕ2(Xi, Xj)I(|ϕ2|≤n2) − Eϕ2(Xi, Xj)I(|ϕ2|≤n2),

ϕ4(Xi, Xj) = ϕ3(Xi, Xj) − E(ϕ3(Xi, Xj)|Xi) − E(ϕ3(Xi, Xj)|Xj),

ψ̃nij(x) = ϕ1(Xi, Xj) +
x√
n

ϕ4(Xi, Xj).

Then we have

1
n3/2

∑
i<j

ψnij(x) =
1

n3/2

∑
i<j

ψ̃nij(x) + xR∗
n, say.
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Write δ2
n = E|ϕ2(X1, X2)|3/2I(|ϕ2|≥n2). Since E [ϕ2(X1, X2)|X1] = 0, we have

P

(
|R∗

n| ≥
δn√
n

)
= P

(
1
n2

∣∣∣ ∑
i<j

[ϕ2(Xi, Xj) − ϕ4(Xi, Xj)]
∣∣∣ ≥ δn√

n

)
≤ 4

√
nδ−1

n E|ϕ2(X1, X2)|I(|ϕ2|≥n2)

≤ (4
√

nδ−1
n )n−1E|ϕ2(X1, X2)|3/2I(|ϕ2|≥n2)

≤ 4δnn−1/2.

It is easy to show that δn → 0 and that ϕ4(x, y) is a symmetric function sat-
isfying E(ϕ4(X1, X2)|X1) = 0, E|ϕ4(X1, X2)|3/2 < ∞, and |ϕ4(Xi, Xj)| ≤ 4n2.
Therefore, if (4.2) does not hold, we can replace ϕ2(Xi, Xj) by ϕ4(Xi, Xj), and
Vn by Vn − R∗

n.
For simplicity, take Vn = 0. Clearly, this will not affect the result since

Vn only makes contribution of size o(n−1/2) to the Edgeworth expansion. Write
ξ∗2(Xj) = ξ2(Xj)I(|ξ2(Xj)|≤n/(1+x2)), ξ∗3(Xj) = ξ3(Xj)I(|ξ3(Xj)|≤n2/(1+x2)), ς∗nj =
ξ∗2(Xj) + ξ∗3(Xj)/n, and

K∗
n(x) =

1√
n

n∑
j=1

ξ1(Xj) +
x

n

n∑
j=1

ς∗nj +
1

n3/2

∑
i<j

ψnij(x).

Then we have

sup
x

|P (Kn(x) ≤ x) − EK(x)|

≤ sup
x2≥10 log n

|P (Kn(x) ≤ x) − EK(x)| + sup
x2≤10 log n

|P (K∗
n(x) ≤ x) − EK(x)|

+ sup
x2≤10 log n

|P (K∗
n(x) ≤ x) − P (Kn(x) ≤ x)|

=: P1 + P2 + P3, say.

It suffices to show that Pi = o(n−1/2) for i = 1, 2, 3.

(i) First, we prove P1 = o(n−1/2). Write P1 = P+
1 + P−

1 , where

P+
1 = sup

x≥(10 log n)1/2

|P (Kn(x) ≤ x) − EK(x)|

≤ sup
x≥(10 log n)1/2

P (Kn(x) ≥ x) + sup
x≥(10 log n)1/2

|1 − EK(x)|

≤ sup
x≥(10 log n)1/2

P
( 1√

n

n∑
j=1

ξ1(Xj) ≥
x

3

)
+ P

( 1
n

n∑
j=1

ςnj ≥
1
3

)
+sup

x≥1
P

( 1
n3/2

∑
i<j

ψnij(x) ≥ x

3

)
+ sup

x≥(10 log n)1/2

|1 − EK(x)|



628 BING-YI JING AND QIYING WANG

= o(n−1/2),

where the last equality follows from Lemmas 4.1−4.2 and the inequality (4.1).
Similarly, we can show that P−

1 = o(n−1/2). This proves P1 = o(n−1/2).

(ii) We show that P3 = o(n−1/2) next. Clearly

P3 ≤ sup
x2≤1

|P (K∗
n(x) ≤ x) − P (Kn(x) ≤ x)|

+ sup
1≤x2≤10 log n

P
(
Kn(x) ≥ x, ςnj 6= ς∗nj , for some j

)
+ sup

1≤x2≤10 log n

P
(
K∗

n(x) ≥ x, ςnj 6= ς∗nj , for some j
)

=: Ωn0 + Ωn1 + Ωn2, say.

First consider Ωn0. It is easy to see that

P
(
ςnj 6= ς∗nj

)
≤ P

(
|ξ2(X1)| ≥

n

1 + x2

)
+ P

(
|ξ3(X1)| ≥

n2

1 + x2

)
≤ 1 + |x|3/2 + |x|3

n3/2

(
E|ξ2(X1)|3/2I(|ξ2(X1)|≥n/(1+x2))

+ E|ξ3(X1)|3/4I(|ξ3(X1)|≥n2/(1+x2))

)
. (4.3)

It follows from (4.3) that Ωn0 ≤ supx2≤1

∑n
j=1 P (ςnj 6= ς∗nj) = o(n−1/2).

Next we investigate Ωn1. Without loss of generality, we assume that x ≥ 1.
Then in view of (4.3) and independence of Xk, we obtain

sup
1≤x2≤10 log n

P
( 1√

n

n∑
k=1

ξ1(Xk) ≥
x

3
, ςnj 6= ς∗nj , for some j

)
≤

n∑
j=1

sup
1≤x2≤10 log n

P
( 1√

n

n∑
k=1

ξ1(Xk) ≥
x

3
, ςnj 6= ς∗nj

)
≤

n∑
j=1

P
( 1√

n
ξ1(Xj) ≥

1
6

)
+

n∑
j=1

sup
1≤x2≤10 log n

P
( 1√

n

n∑
k=1
k 6=j

ξ1(Xk) ≥
x

6
, ςnj 6= ς∗nj

)

= o(n−1/2) +
n∑

j=1

sup
1≤x2≤10 log n

P
( 1√

n

n∑
k=1
k 6=j

ξ1(Xk) ≥
x

6

)
P

(
ςnj 6= ς∗nj

)
= o(n−1/2),

where we used the inequality: P (n−1/2
∑n

k=1
k 6=j

ξ1(Xk) ≥ x/6) ≤ Cx−3 for all
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1 ≤ j ≤ n. From this and Lemmas 4.1-4.2, we get

Ωn1 ≤ sup
x2≥1

P
( 1

n3/2

∑
i<j

ψnij(x) ≥ x

3

)
+ P

( 1
n

n∑
j=1

ςnj ≥
1
3

)
+ sup

1≤x2≤10 log n

P
( 1√

n

n∑
k=1

ξ1(Xk) ≥ x/3, ςnj 6= ς∗nj , for some j
)

= o(n−1/2). (4.4)

Similarly, we can show Ωn2 = o(n−1/2). Thus, we have shown P3 = o(n−1/2).

(iii) Finally, we prove P2 = o(n−1/2). Write

Ynj(x) = ξ1(Xj) +
x√
n

(
ς∗nj − Eς∗nj

)
,

σ2
n(x) = EY 2

n1(x), θn(x) =
x

σn(x)
(1 − Eς∗n1) .

Ln(y) = n

{
EΦ

(
y − Yn1(x)√

nσn(x)

)
− Φ(y)

}
− 1

2
Φ(2)(y),

and define

K̃∗
n(x) =

1√
n

n∑
j=1

1
σn(x)

Ynj(x) +
1

n3/2

∑
i<j

1
σn(x)

ψnij(x),

En(y) = Φ(y) + Ln(y) − Φ(3)(y)
2
√

nσ3
n(x)

EYn1(x)Yn2(x)ψn12(x),

E∗
n(y) = Φ(y) − Φ(3)(y)

6
√

nσ3
n(x)

(
EY 3

n1(x) + 3EYn1(x)Yn2(x)ψn12(x)
)
.

Then we have

P2 ≤ sup
x2≤10 log n

sup
y

∣∣∣P (
K̃∗

n(x) ≤ y
)
− En(y)

∣∣∣ + sup
x2≤10 log n

sup
y

|En(y) − E∗
n(y)|

+ sup
x2≤10 log n

|E∗
n(θn(x)) − EK(x)|

=: I1n + I2n + I3n, say.

Thus, P2 = o(n−1/2) follows if we can show

Ijn = o(n−1/2), for j = 1, 2, 3. (4.5)

Under condition (b), we obtain that for all x2 ≤ 10 log n,

|Eξ∗2(X1)| ≤ E|ξ2(X1)|I(|ξ2(X1)|≥n/(1+x2)) = o

(
1 + |x|√

n

)
, (4.6)
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E|ξ∗2(X1)|α ≤ E|ξ2(X1)|αI(|ξ2(X1)|≤
√

n)+
(

n

1+x2

)α−3/2

E|ξ2(X1)|3/2I(|ξ2(X1)|≥
√

n)

= o

(
n

1 + x2

)α−3/2

, for α > 3
2 . (4.7)

Similarly, we have

E|ξ∗3(X1)|α = o

(
n2

1 + x2

)α−3/4

, for α > 3
4 . (4.8)

Recalling ς∗nj = ξ∗2(Xj) + n−1ξ∗3(Xj), it follows from (4.6)−(4.8) that for x2 ≤
10 log n,

|Eς∗n1| =
∣∣∣∣Eξ∗2(X1) +

1
n

Eξ∗3(X1)
∣∣∣∣ = o

(
1 + |x|√

n

)
, (4.9)

E|ς∗n1| ≤ E|ξ∗2(X1)| +
1
n

E|ξ∗3(X1)| = O(1), (4.10)(
|x|√

n

)2

E(ς∗n1)
2 ≤ 2x2

n

(
E(ξ∗2(X1))2 +

E(ξ∗3(X1))2

n2

)
= o

(
1 + |x|√

n

)
,(4.11)(

|x|√
n

)3

E|ς∗n1|3 ≤ 6
(
|x|√

n

)3 (
E|ξ∗2(X1)|3 +

1
n3

E|ξ∗3(X1)|3
)

= o(1). (4.12)

By using (4.9)−(4.12), together with Hölder’s inequality, we get that if x2 ≤
10 log n, then

σ2
n(x) = 1 +

2x√
n

Eξ1(X1)ξ2(X1) + o

(
1 + |x|√

n

)
, (4.13)

σ−1
n (x) = 1 − x√

n
Eξ1(X1)ξ2(X1) + o

(
1 + |x|√

n

)
, (4.14)

EY 3
n1(x) = Eξ1(X1)3 + o(1), E|Yn1(x)|3 = O(1), (4.15)

EYn1(x)Yn2(x)ψn12(x) = Eξ1(X1)ξ1(X2)ϕ1(X1, X2) + o(1). (4.16)

We only check (4.16) below, others can be checked similarly. Let µnj(x) =

xn−1/2
(
ς∗nj − Eς∗nj

)
. It follows from (4.12) that E|µn1(x)|3 = o(1). Then,

EYn1(x)Yn2(x)ψn12(x) = Eξ1(X1)ξ1(X2)ϕ1(X1, X2) + B1 + B2

where, by noting independence of Xk and (4.15),

|B1| ≤ |E {ξ1(X1)µn2(x) + µn1(x)Yn2(x)}ϕ1(X1, X2)|

≤ 3
(
E|µn1(x)|3

)1/3 (
E|ξ1(X1)|3 + E|Yn1(x)|3

)1/3
(
E|ϕ1(X1, X2)|3/2

)2/3
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= o(1),

|B2| ≤ E|Yn1(x)Yn2(x)ϕ2(X1, X2)| ≤
(
E|Yn1(x)|3

)2/3
(
E|ϕ2(X1, X2)|3/2

)2/3

= O(1).

This proves (4.16).
We turn back to the proof of (4.5). To show I3n = o(n−1/2), it suffices to

show

sup
x2≤10 log n

∣∣∣∣∣Φ(θn(x)) − Φ(x) − xΦ(2)(x)√
n

Eξ1(X1)ξ1(X2)

∣∣∣∣∣ = o(n−1/2), (4.17)

sup
x2≤10 log n

∣∣∣Φ(3)(θn(x)) − Φ(3)(x)
∣∣∣ = O(n−1/2), (4.18)

sup
x2≤10 log n

∣∣∣∣EY 3
n1(x)

σ3
n(x)

− Eξ1(X1)3
∣∣∣∣ = o(1), (4.19)

sup
x2≤10 log n

∣∣∣∣EYn1(x)Yn2(x)ψn12(x)
σ3

n(x)
− Eξ1(X1)ξ1(X2)ϕ1(X1, X2)

∣∣∣∣ = o(1). (4.20)

Clearly, (4.18)−(4.20) follow easily from (4.13)−(4.16). Now let us check (4.17).
Using (4.9) and (4.14), we have that, for all x2 ≤ 10 log n,

θn(x) =
x

σn(x)
(1 − Eς∗n1) = x

(
1 − x√

n
Eξ1(X1)ξ1(X2)

)
+ o

(
1 + x2

√
n

)
.

Hence, for sufficiently large n, we have x/2 ≤ θn(x) ≤ 3x/2. From these and
Taylor’s expansion, there exists 1/2 ≤ δ ≤ 3/2 such that for all x2 ≤ 10 log n,

Φ(θn(x)) = Φ(x) + (θn(x) − x)φ(x) +
(θn(x) − x)2

2
Φ(2)(δx)

= Φ(x) − x2φ(x)√
n

Eξ1(X1)ξ2(X1) + o(n−1/2)f(x)φ(
x

2
),

where f(x) is a polynomial in x. Since Φ(2)(x) = −xφ(x), (4.17) is shown. Thus,
I3n = o(n−1/2).

Next we show that I2n = o(n−1/2). Note that

sup
y

|En(y) − E∗
n(y)|

= sup
y

∣∣∣∣n{
EΦ

(
y − Yn1(x)√

nσn(x)

)
− Φ(y)

}
− 1

2
Φ(2)(y) +

EY 3
n1(x)

6
√

nσ3
n(x)

Φ(3)(y)
∣∣∣∣

≤ C√
nσ3

n(x)
E|Yn1(x)|3I(|Yn1(x)|≥

√
nσn(x)) +

C

nσ4
n(x)

E|Yn1(x)|4I(|Yn1(x)|≤
√

nσn(x)),
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where the last inequality follows from Theorem 3.2 of Hall (1982). It follows from
(4.13) that for sufficiently large n and all x2 ≤ 10 log n,

1
2

< |σn(x)| <
3
2
. (4.21)

It follows from (4.9) that for sufficiently large n and all x2 ≤ 10 log n,

|Yn1(x)| =
∣∣∣∣ξ1(X1) +

x√
n

(ς∗n1 − Eς∗n1)
∣∣∣∣

≤ 1 + |ξ1(X1)| + |ξ2(X1)|1/2 + |ξ3(X1)|1/4 =: κ(X1), say.(4.22)

Noting (4.21) and Eκ3(X1) < ∞, we get for sufficiently large n,

I2n = sup
x2≤10 log n

sup
y

|En(y) − E∗
n(y)|

≤ Cn−1/2 sup
x2≤10 log n

(
E|Yn1(x)|3I(|Yn1(x)|≥n1/4)+

1√
n

E|Yn1(x)|4I(|Yn1(x)|≤n1/4)

)
≤ Cn−1/2

(
Eκ3(X1)I(κ(X1)≥n1/4) +

1
n1/4

Eκ3(X1)
)

=o(n−1/2).

Finally we use Lemma 4.3 to show that I1n = o(n−1/2) by taking Vn(Xj) =
Ynj(x)/σn(x),Wn(Xi, Xj) = ψnij(x)/σn(x). First, we check condition (a) of
Lemma 4.3. By Theorem 1.3 of Petrov (1995), a d.f. with the characteristic
function f(t) is a nonlattice d.f. if and only if for every fixed number s0 6=
0, we have |f(s0)| < 1 or, equivalently, if and only if supδ≤t≤t0 |f(t)| < 1
for any t0 > 0 and δ > 0. Hence, to show that Vn(Xj) is nonlattice uni-
formly for x2 ≤ 10 log n for sufficiently large n, we only need to prove bn =:
supx2≤10 log n supδ≤|t|≤t0

∣∣EeitVn(Xj)
∣∣ < 1 for sufficiently large n and each δ > 0.

Noting that supδ≤|t|≤t0

∣∣Eeitξ1(X1)
∣∣ < d < 1, and from (4.10) and (4.14), we have

bn ≤ sup
x2≤10 log n

sup
δ≤|t|≤t0

∣∣∣EeitVn(Xj) − Eeitξ1(X1)
∣∣∣ + sup

δ≤|t|≤t0

∣∣∣Eeitξ1(X1)
∣∣∣

≤ t0 sup
x2≤10 log n

E |Vn(Xj) − ξ1(X1)| + d

≤ t0 sup
x2≤10 log n

(∣∣∣σn(x)−1 − 1
∣∣∣ +

x√
n

E |ς∗n1 − Eς∗n1|
)

+ d

= d + o(1) < 1, for sufficiently large n.

Condition (a) of Lemma 4.3 also holds here.
To check condition (b) of Lemma 4.3, it is easy to see that EVn(X1) = 0 and

EV 2
n (X1) = 1. For x2 ≤ 10 log n, from (4.21)−(4.22), we have supn E|Vn(X1)|3 <

∞.
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To check condition (c) of Lemma 4.3, it is easy to see that E[Wn(X1, X2)|X1]
= 0. For x2 ≤ 10 log n, by Minkowski’s inequality and the assumptions, we get

E|ψnij(x)5/3|≤CE|ϕ1(Xi, Xj)|5/3+
Cx5/3

n5/6
E|ϕ2(Xi, Xj)|5/3I{|ϕ2(Xi, Xj)|≤4n2}

≤CE|ϕ1(Xi, Xj)|5/3 +
Cx5/3

n1/2
E|ϕ2(Xi, Xj)|3/2 ≤ C,

which, together with (4.21), yields supn≥2 E|Wn(Xi, Xj)5/3| < ∞.
Hence, applying Lemma 4.3, we have that, for all sufficiently large n,

I1n = sup
x2≤10 log n

sup
y

∣∣∣P (
K̃∗

n(x) ≤ y
)
− En(y)

∣∣∣ = o(n−1/2).

Then, P2 = o(n−1/2). The proof of Lemma 4.4 is complete.

4.2. Proof of Theorem 2.1

Without loss of generality, we assume Vjn = 0. It will be clear that this
assumption does not affect the proof of the main results since their contributions
to the Edgeworth expansion is only of size o(n−1/2). Let γ1(x) = Eγ (x,X1) and
γ2(x, y) = γ(x, y) − γ1(x) − γ1(y). It is easy to show that

S2
n = 1 +

1
n

n∑
j=1

γ1(Xj) +
1

n(n − 1)

∑
i<j

γ2(Xi, Xj) =: 1 + Zn + Rn, say. (4.23)

Noting that 1 + u/2 − u2/6 ≤ (1 + u)1/2 ≤ 1 + u/2 + u2/6 for |u| ≤ 1/9, if
|Zn + Rn| ≤ 1/9, we have

1 +
1
2
(Zn + Rn) − 1

3
(
Z2

n + R2
n

)
≤ Sn ≤ 1 +

1
2
(Zn + Rn) +

1
3

(
Z2

n + R2
n

)
.(4.24)

Put ∆n(s) = Zn/2 + (n − 1/2n)Rn + sZ2
n. Then from (4.23) and (4.24), we have

P

(
Tn

Sn
≤ x

)
≤ P

(
Tn

Sn
≤ x, |Zn + Rn| ≤

1
9

)
+ P (|Zn + Rn| ≥

1
9
)

≤ P

(
Tn ≤ x

{
1 + ∆n(

1
3
) +

Rn

2n
+

R2
n

3

})
+ P (|Zn + Rn| ≥

1
9
)

≤ P

(
Tn ≤ x

{
1 + ∆n(

1
3
) + n−3/5

})
+P (|Zn + Rn| ≥

1
9
) + P

(∣∣∣∣Rn

2n
+

R2
n

3

∣∣∣∣ ≥ n−3/5

)
. (4.25)

Similarly, we get

P (Tn/Sn ≤ x) ≥ P

(
Tn ≤ x

{
1 + ∆n(−1

3
) − n−3/5

})
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−P (|Zn + Rn| ≥
1
9
) − P

(∣∣∣∣Rn

2n
− R2

n

3

∣∣∣∣ ≥ n−3/5

)
. (4.26)

Using Jensen’s inequality, we can easily see that E|γ1(X1)|3/2 < ∞ and E|γ2(X1,
X2)|3/2 < ∞. Since 2Rn is a degenerate U -statistic of order 1, it follows from
Lemmas 4.1−4.2 that

P

(∣∣∣∣ 1
2n

Rn ± 1
3
R2

n

∣∣∣∣ ≥ n−3/5

)
≤ P (|Rn| ≥ 1) + P (|Rn| ≥ n−3/10) = o(n−1/2),

P (|Zn + Rn| ≥
1
9
) ≤ P

(
|Zn| ≥

1
18

)
+ P

(
|Rn| ≥

1
18

)
= o(n−1/2).

In view of these inequalities, (4.25) and (4.26), Theorem 2.1 follows if

sup
x

|P (Tn ≤ x (1 + ∆n(s) + An)) − En(x)| = o(n−1/2), (4.27)

where |An| ≤ n−3/5 and |s| ≤ 1/3. To prove (4.27), let

ςnj(x) = −
(

1
2
γ1(Xj) +

s

n
γ2
1(Xj)

)
,

ψnij(x) = β(Xi, Xj) −
x√
n

(
2sγ1(Xi)γ1(Xj) +

1
2
γ2(Xi, Xj)

)
.

An elementary calculation shows that

P (Tn ≤ x (1 + ∆n(s) + An))

= P

(
1√
n

n∑
j=1

α(Xj) +
x

n

n∑
j=1

ςnj +
1

n3/2

∑
i<j

ψnij(x) ≤ x (1 + An)
)

.

It is easy to check that conditions of Lemma 4.4 are satisfied with |s| ≤ 1/3, Vn =
n−3/5, and with ξ1(Xj) = α(Xj), ξ2(Xj) = −γ1(Xj)/2, ξ3(Xj) = −sγ2

1(Xj), and

ϕ1(Xi, Xj) = β(Xi, Xj), ϕ2(Xi, Xj) = −
(

2sγ1(Xi)γ1(Xj) +
1
2
γ2(Xi, Xj)

)
.

So (4.27) follows from Lemma 4.4 and the relation Eα(X1)γ1(X1) = Eα(X1)
γ(X1, X2).
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van Zwet, W. R. (1984). A Berry-Esséen Bound for symmetric statistics. Z. Wahrsch. Verw.

Gebiete 66, 425-440.

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water

Bay, Kowloon, Hong Kong.

E-mail: majing@ust.hk

School of Mathematics and Statistics, University of Sydney, NSW, Australia.

E-mail: qiying@maths.usyd.edu.au

(Received December 2007; accepted December 2008)

file:majing@ust.hk
file:qiying@maths.usyd.edu.au

	1. Introduction
	2. Main Results
	3. Some Important Applications
	3.1. U-Statistics
	3.2. L-statistics
	3.3. Functions of the sample mean

	4. Proof of Theorem 2.1
	4.1. Some useful lemmas
	4.2. Proof of Theorem 2.1


