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Abstract: Recently there has been increasing interest in species sampling priors, the

nonparametric priors defined as the directing random probability measures of the

species sampling sequences. In this paper, we show that not all of the species sam-

pling priors produce consistent posteriors. In particular, in the class of Pitman-Yor

process priors, the only priors rendering posterior consistency are essentially the

Dirichlet process priors. Under certain conditions, we also give a set of necessary

and sufficient conditions for the posterior consistency for the general species sam-

pling prior. Considered examples include the normalized inverse-Gaussian process,

the Poisson-Kingman partition, and the Gibbs partition.
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1. Introduction

The species sampling prior is defined as the directing random probability
measure of the exchangeable species sampling sequence. As its name indicates, it
has been studied as the probability model for applications to population genetics
and ecology; see Pitman (1996), Aldous (1985), and references therein. Recently,
there has been increasing interest in the species sampling prior as a nonpara-
metric prior; Ishwaran and James (2003), Lijoi, Mena, and Prünster (2005), and
Navarrete, Quintana and Müller (2008) discuss some theoretical properties and
the mixture modeling of the species sampling prior.

Although the probabilistic properties and computational aspects of the spe-
cies sampling prior (and species sampling sequence) have been studied exten-
sively, research on its large sample properties as a nonparametric prior has been
limited. Exceptions are Lijoi, Prünster, and Walker (2005) and James (2008).
Lijoi, Prünster, and Walker (2005) gave a strong consistency result on the nor-
mal mixtures of discrete nonparametric prior which can be used to establish the
consistency of the normal mixtures of the Pitman-Yor process. In finishing this
paper, we learned that James (2008) also independently obtained a consistency
result on the Pitman-Yor process prior that we consider in Section 3.
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We first investigate the posterior consistency in a specific class of priors,
namely Pitman-Yor processes (Pitman and Yor (1997)). The class of Pitman-Yor
processes is a subclass of species sampling priors, but is large enough to contain
the class of Dirichlet processes as subclass. For Pitman-Yor processes, we obtain
necessary and sufficient conditions for posterior consistency; in particular, the
Dirichlet process is the only prior that produces posterior consistency for all
continuous and discrete distributions. Thus the general class, although a rich
source, should not be used as priors for i.i.d. observations. This contrasts with
the result obtained by Lijoi, Prünster, and Walker (2005) from which one can
deduce strong consistency of normal mixtures of Pitman-Yor process priors. In
summary, the Pitman-Yor process prior can be used in the form of the normal
mixtures, but should not be used as the prior without mixtures.

Under certain conditions, we also give a set of necessary and sufficient con-
ditions for the posterior consistency of the general species sampling prior. The
necessary and sufficient conditions are given in terms of prediction probability
functions. We then consider, as examples, the normalized inverse-Gaussian pro-
cess, the Poisson-Kingman partition, and the Gibbs partition.

The plan for the paper is as follows. In Section 2, we present the basic theory
and examples of the species sampling prior and species sampling sequence. The
consistency result for the Pitman-Yor process is given in Section 3. Lastly, in
Section 4, we give general results for the posterior consistency of the general
species sampling prior.

2. Species Sampling Prior

2.1. Species sampling prior

Suppose (X1, X2, . . .) is a sequence of random variables with values in a
complete separable metric space X . Imagine this sequence is a random sample
from a large population of various species, i.e. Xi is the species of the ith sampled
individual.

Let X̃j be the jth distinct species to appear in the sequence (X1, X2, . . .).
Let njn be the number of times the jth species X̃j appears in (X1, . . . , Xn) and
nn = (n1n, . . . , nkn,n) where kn is the number of different species in (X1, . . . , Xn).
For simplicity, the subscript n in njn, kn and nn is dropped if it is not confusing.

Let ν be a diffuse (or atomless) probability measure on X . An exchangeable
sequence (X1, X2, . . .) is called a species sampling sequence if X1 ∼ ν and

Xn+1|X1, . . . , Xn ∼
k∑

j=1

pj(nn)δX̃j
+ pk+1(nn)ν,
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where δx is the degenerate probability measure at x and

pj(n) = P(Xn+1 = X̃j |X1, . . . , Xn), j = 1, . . . , k,

pk+1(n) = P(Xn+1 /∈ {X1, . . . , Xn}|X1, . . . , Xn).

The sequence of functions (p1, p2, . . .) defined on N∗ = ∪∞
k=1Nk, where N is the

set of natural numbers, is called a sequence of prediction probability functions
and satisfies the conditions pj(n) ≥ 0 and

∑k+1
j=1 pj(n) = 1, for n ∈ N∗.

A sequence of random variables (Xn) is a species sampling sequence if and
only if X1, X2, . . . |F is random sample from F where

F =
∞∑
i=1

PiδX̃i
+ Rν (2.1)

for some sequence of positive random variables (Pi) and R such that 1 − R =∑∞
i=1 Pi ≤ 1, (X̃i) is a random sample from ν, and (Pi) and (X̃i) are independent.

See Pitman (1996).
The above result is an extension of de Finetti’s theorem and characterizes

the directing random probability measure of the species sample sequence. We
call the directing random probability measure F in (2.1) the species sampling
prior (or process) of the species sampling sequence (Xi). The most celebrated
example of the species sampling prior is the Dirichlet process.

Example 1 (Dirichlet Process). Sethuraman (1994) showed that the Dirich-
let process can be represented in form (2.1). Suppose θ > 0 and ν is a probability
measure. Let W1,W2, . . . be an i.i.d. sequence from Beta(1, θ). From (Wi), dis-
crete probability masses (Pi) are constructed by the stick-breaking process, that
is,

P1 = W1 and Pj = Wj

j−1∏
i=1

(1 − Wi), j = 2, 3, . . . . (2.2)

Suppose X̃1, X̃2, . . . is an i.i.d. sequence from ν, and (Pi) and (X̃i) are indepen-
dent, then, F =

∑∞
j=1 PjδX̃j

∼ DP (θν).

Example 2 (Pitman-Yor Process). Pitman and Yor (1997) introduced an
interesting class of discrete random measures which includes the Dirichlet process.
Let b and a be real numbers with either 0 ≤ a < 1 and b > −a, or a < 0 and
b = −ma for some m = 1, 2, . . ., and let ν be a diffuse probability measure.
Construct (Pi) from (Wj) by the stick-breaking process as in (2.2), where each Wj

is independently sampled from Beta(1−a, b+ ja). Let (X̃j) be an i.i.d. sequence
from ν independent of (Pj). The random probability measure F =

∑∞
j=1 PjδX̃j

is called the Pitman-Yor process, denoted by PY (a, b, ν) in this paper. Note
PY (0, θ, ν) is DP (θν).
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2.2. Exchangeable partition probability function

Let [n] = {1, . . . , n}. An exchangeable sequence of random variables (Xi)
defines a random partition Π = {A1, . . . , Ak} of [n], where Ai = {j ∈ [n] : Xj =
X̃i}. Then,

p(#(A1), . . . , #(Ak)) = P(Πn = {A1, . . . , Ak})
defines a function from N∗ to [0, 1]. The function p is called the exchangeable
partition probability function (EPPF) derived from the exchangeable sequence
(Xn).

The following properties of the EPPF can be found in Pitman (1995). An
EPPF p derived from an exchangeable sequence (Xn) satisfies

p(1) = 1, and p(n) =
k(n)+1∑

j=1

p(nj+), for all n ∈ N∗, (2.3)

where nj+ is the same as n except that the jth element is increased by 1. Con-
versely, every symmetric function p : N∗ → [0, 1] satisfying (2.3) is an EPPF of
some exchangeable sequence.

Note that the distribution of the species sampling prior is completely deter-
mined by the those of (Pi, i = 1, 2, . . .) and (X̃i, i = 1, 2, . . .) as in (2.1), which in
turn can be parametrized by the prediction probability function (pj , j = 1, 2, . . .)
and the diffuse probability measure ν. Moreover, the pj can be specified as
p(nj+)/p(n). The species sampling prior characterized by an EPPF p and a
diffuse probability measure ν is denoted by SSP (p, ν).

2.3. Examples of species sampling priors

In this subsection, we give three different ways extending the Dirichlet pro-
cess, all of which are subclasses of species sampling priors.

Example 3 (Normalized Inverse-Gaussian (N-IG) Process). Lijoi, Mena,
and Prünster (2005) defined the N-IG process P by specifying the distribution
of (P (B1), . . . , P (Bk)), for a partition B1, . . . , Bk of X , as the distribution of
(V1, . . . , Vk)/V, where V = V1 + · · · + Vk and Vi

ind∼ IG(θν(Bi), 1), i = 1, . . . , k.
Here IG(a, b) denotes the inverse-Gaussian distribution with parameters a > 0
and b > 0, whose density is a(2πx3)−1/2 exp(−(a2/x + b2x)/2 + ab) for x > 0.

By a calculation similar to that given in Lijoi, Mena, and Prünster (2005),
one can show the N-IG process is the species sampling prior with predictive
distribution P(Xn+1 ∈ B|X1, . . . , Xn) = w1,n

∑k
j=1(nj − 1/2)δX̃j

(B) + w0,nν(B),
where

w0,n =
a

∫ ∞
1 (1−y−2)nyke−aydy

2n
∫ ∞
1 (1−y−2)n−1yk−1e−aydy

and w1,n =

∫ ∞
1 (1−y−2)nyk−1e−aydy

n
∫ ∞
1 (1−y−2)n−1yk−1e−aydy

.



SPECIES SAMPLING PRIORS 585

Example 4 (Poisson-Kingman Partition). Pitman (1995, 1996, 2003) and
Gnedin and Pitman (2006) developed many classes of EPPFs, that are closely
related to the random partition studied by Kingman (1975) and Aldous (1985).
Here we summarize two different random partitions: the Poisson-Kingman par-
tition and the Gibbs partition. Since the species sampling prior is characterized
by an EPPF p and a diffuse probability measure ν, these classes of EPPFs also
define new classes of species sampling priors.

The definition of Poisson-Kingman partition adopts an alternative definition
of the Dirichlet process as given in Ferguson (1973). Let J1, J2, . . . be the jump
sizes of the Poisson point process with the intensity (or Lévy) measure Λ. The
normalized Ji’s, Ji/T , play the role of Pi’s in (2.1) with R = 0, where T =
J1 + J2 + · · · . Sufficient conditions for T < ∞ a.s. are∫ 1

0
xdΛ(x) < ∞ and

∫ ∞

1
dΛ(x) < ∞.

The EPPF of the Poisson-Kingman distribution PK(ρ) with Lévy density ρ is
given by

p(n1, . . . , nk) =
(−1)n−k

Γ(n)

∫ ∞

0
un−1e−ψ(u)

k∏
j=1

ψnj (u)du,

where ψ(u)=
∫ ∞
0 (1− e−ux)ρ(x)dx and ψm(u)=(dmψ/dum)(u)=(−1)m−1

∫ ∞
0 xm

e−uxρ(x)dx for m = 1, 2, . . . (see Pitman (2003) for details). We call the species
sampling prior characterized by PK(ρ) and a diffuse probability measure ν the
Poisson-Kingman prior (or process), and denote it by PK(ρ, ν).

The predicted probability function pj(n) of a PK(ρ, ν) process is given by
pj(n) = p(nj+)/p(n) for j = 1, . . . , k, and pk+1(n) = 1 − (p1(n) + · · · + pk(n)).

Example 5 (Gibbs Partition). Gnedin and Pitman (2006) generalized the
EPPF of the Dirichlet process. An EPPF p is called the EPPF of Gibbs form
if p(n1, . . . , nk) = Vn,k

∏k
j=1 Wnj , for some nonnegative weights W = (Wj) and

V = (Vn,k).
Under the assumption W1 = V1,1 = 1, every Gibbs partition is represented

by Wj ’s and Vn,k’s satisfying

Wj =


1 if j = 1,

bj−1

j−2∏
i=0

(1 − a + i) j = 2, 3, . . .
and Vn,k = b(n−ak)Vn+1,k + Vn+1,k+1

for some b > 0 and a < 1.
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The predictive probability functions pj(n) for j = 1, . . . , k are

pj(n) =
p(nj+)
p(n)

=
Vn+1,k

Vn,k

Wnj+1

Wnj

= V∗(n, k)(nj − a),

where V∗(n, k) = bVn+1,k/Vn,k. The EPPF of the N-IG process has a Gibbs form.
Pitman-Yor process also has the EPPF of Gibbs form. In this aspect, the EPPF
of Gibbs form is an extension of the two-parameter Poisson-Dirichlet process.

3. Posterior Consistency of Pitman-Yor Prior

In this section, we investigate the consistency property of the Pitman-Yor
process prior. Throughout this paper, we consider the following nonparametric
model with various nonparametric priors:

X1, . . . , Xn|P ∼ P,

P ∼ P, (3.1)

where P is a nonparametric prior on P . In this section, we consider the posterior
consistency under (3.1) when P is the Pitman-Yor process prior PY (a, b, ν),
where a and b satisfy either 0 ≤ a < 1 and b > −a or a < 0 and b = m|a| for
some m = 1, 2, . . ., and ν is a diffuse probability measure. The posterior of this
prior family is known as

P |X1, . . . , Xn =
k∑

j=1

P̃jδX̃j
+ R̃kFk, (3.2)

where (P̃1, . . . , P̃k, R̃k) ∼ Dir(n1 − a, . . . , nk − a, b + ka) independent of Fk ∼
PY (a, b + ka, ν).

To investigate the behavior of the posterior under the sampling distribution,
we need to postulate the form of the true probability measure, P0, from which
the sample, X1, X2, . . . is drawn. We assume that P0 is decomposed into the
discrete and atomless parts,

P0 =
∑

j

qjδzj + λµ, (3.3)

where zj ∈ X , q1 ≥ q2 ≥ · · · ≥ 0, λ = 1−
∑

j qj ≤ 1, and µ is a diffuse probability
measure. Let Z = {z1, z2, . . .}.

Theorem 1. Suppose X1, X2, . . . is an i.i.d. sequence from P0 of form (3.3).
Under the model (3.1) with prior PY (a, b, ν), the posterior given X1, . . . , Xn is
weakly consistent at P0 if and only if one of the following holds: a = 0; when
a > 0, P0 is discrete or µ = ν; a < 0 and P0 is a mixture of at most m = |b/a|
degenerated measures.
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Remark 1. If P0 is discrete, all Pitman-Yor process priors with 0 ≤ a < 1
entail consistent posteriors. However, if P0 is continuous, the Dirichlet process
is the only prior among the Pitman-Yor process priors which renders posterior
consistency.

Remark 2. The story is completely different in the mixture setting. Consider
the normal mixture model

Xi|θi, h∼ ind N(θi, h
2), i = 1, . . . , n,

θi|P ∼ i.i.d.P, i = 1, . . . , n,

P ∼ PY (a, b, ν),

h2 ∼ µ,

(3.4)

where P and h are independent a priori. Then, µ × P is a prior on F , the class
of all densities with respect to Lebesgue measure. Suppose the supports of µ and
the diffuse probability measure ν are R+ = {x ∈ R : x ≥ 0} and R, respectively.

By Theorem 3 in Ghosal, Ghosh and Ramamoorthi (1999), every element
fh,P (x) =

∫
φh(x − y)dP (y) of G = {fh,P : h > 0, P is compactly supported}

is in the Kullback-Leibler support of P, where φh is the density of the normal
distribution with mean 0 and variance h2. Schwartz (1965) implies that µ×P is
weakly consistent at all fh,P ∈ G. Moreover, strong consistency can be obtained
from Theorem 1 in Lijoi, Prünster, and Walker (2005).

Remark 3. The second condition, in part, has the diffuse probability measure
ν proportional to the continuous part µ of the true probability measure P0. This
is impractical.

Remark 4. The same result was obtained in James (2008). He used a slightly
different approach to get the result using the notion of the seminorm and did not
consider the case a < 0.

Before we present the proof of Theorem 1, we need the following two lemmas
which will be used subsequently. Most technical details of the paper, including
the proofs of the two lemmas, are given in the Appendix of the paper that can
be found at http://www.stat.sinica.edu.tw/statistica.

Lemma 1. Let M be the class of all Borel probability measures on a complete
separable metric space X , and P be a prior on M. Suppose we postulate the model
(3.1) and that X1, X2, . . . is an i.i.d. sequence from the true probability measure
P0. The posterior is weakly consistent at P0 if and only if for any P0-continuity
set U of X ,
(i) lim

n→∞
E(P (U)|X1, . . . , Xn) = P0(U), P∞

0 − a.s.,
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(ii) lim
n→∞

Var(P (U)|X1, . . . , Xn) = 0, P∞
0 − a.s.,

where P∞
0 is the infinite product of the true probability measure P0.

Lemma 2. Suppose X1, X2, . . . , Xn are sampled from P0 of the form (3.3). Let
X̃1, . . . , X̃k be the distinct values among X1, . . . , Xn, k∗ =

∑k
j=1 I(X̃j /∈ Z), and

Gk be the empirical distribution of X̃1, . . . , X̃k. Then,
(i) kn/n → λ and k∗

n/n → λ, P∞
0 − a.s.,

(ii) Gkn → µ, P∞
0 − a.s. if λ > 0.

Proof of Theorem 1. First, consider the case a < 0. Then, b = m|a| for
some integer m and the Pitman-Yor process is a finite random mixture of point
random measures. By Theorem 4.3.1 of Ghosh and Ramamoorthi (2003) we get
that the posterior is consistent at P0 if and only if P0 is a discrete probability
measure having at most m point masses.

For a ≥ 0. Lemma 3 in the Appendix shows that

E[P (B)|X1, . . . , Xn] = [
n

n + b
]F̃n(B),

E[P (B)2|X1, . . . , Xn] = [(n + b)(n + b + 1)]−1(n2F̃n(B)2 + nF̃n(B)

−an(1 − ν(B))),

where F̃n(B) = n−1
∑n

i=1 δXi(B)−aknGkn(B)/n+(b+akn)ν(B)/n. The Strong
Law of Large Numbers and Lemma 2 yield F̃n(B) → P0(B) − aλ(µ(B) − ν(B))
and Var(P (B)|X1, . . . , Xn) → 0, P∞

0 − a.s. Then, the conclusion of the theorem
follows immediately by Lemma 1.

Remark 5. In the proof, we have identified the weak limit of the posterior, that
is, P0 − aλI(a ≥ 0)(µ − ν).

4. Posterior Consistency of Species Sampling Prior

We consider the same true probability measure (3.3) and the nonparametric
model (3.1) with

P = SSP (p, ν), (4.1)

where p is an EPPF and ν is a diffuse probability measure. For the results in
this section, we need two assumptions. We need the smoothness condition for the
prediction probability function: as n → ∞,

Sn = Sn(n) = max
1≤i≤k

k∑
j=1

∣∣∣pj(n) − pj(ni+)
∣∣∣ → 0, P∞

0 − a.s., (4.2)
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and the separability condition on the support of the discrete part of P0: there
exists ε > 0 such that for all i 6= j

d(zi, zj) > ε, (4.3)

where d is the metric of X .
A sufficient condition for posterior consistency is given below. The proof is

given in the Appendix.

Proposition 2. Suppose X1, . . . , Xn is an i.i.d. sequence from P0 of form (3.3).
Under the model (3.1) with prior (4.1) and the smoothness condition (4.2), the
posterior P given X1, . . . , Xn is weakly consistent at P0 if

Cn = Cn(n) =
k∑

j=1

∣∣∣pj(n) − nj

n

∣∣∣ → 0, P∞
0 − a.s. as n → ∞. (4.4)

Remark 6. Condition (4.4) gives an intuitive sufficient condition for poste-
rior consistency: the posterior predictive distribution, the conditional distribu-
tion of Xn+1 given X1, . . . , Xn, should behave like the empirical distribution of
X1, . . . , Xn. Proposition 3 and Theorem 4 show that this is almost a necessary
and sufficient condition.

Remark 7. The smoothness condition (4.2) for the predictive probability func-
tion pj(n) ensures a small change in n does not change pj(n) much. For instance,
note that

Cn+1(ni+) ≤ Sn + Cn +
2n

n(n + 1)
,

which together with (4.4) and (4.2) implies Cn+1(ni+) → 0, P∞
0 − a.s..

If the true probability measure P0 is atomless, (4.4) is equivalent to

k∑
j=1

∣∣∣pj(n) − nj

n

∣∣∣ = n

∣∣∣∣ 1n − pk(n)
∣∣∣∣ = |1 − npk(n)| = pn+1(n) → 0, P∞

0 − a.s.,

which is also equivalent to npk(n) → 1, P∞
0 − a.s. This argument is generalized

in the next proposition, whose proof is given in the Appendix.

Proposition 3. Suppose that X1, X2, . . . is an i.i.d. sequence from P0 of form
(3.3). Set k∗ =

∑k
j=1 I(X̃j 6∈ Z) and

p+(n) =

{
pj(n) if nj = 1 for some j ≤ k,

0 otherwise.
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If the predictive probability function pjs satisfies

lim
n→∞

k∑
j=1

|pj(n) − nj

n
|I(X̃j ∈ Z) = 0, P∞

0 − a.s., (4.5)

then the following hold.
(i) For all Borel set B,

∑k
i=1 pi(n)I(X̃i ∈ Z ∩B) →

∑∞
j=1 qjI(zj ∈ B), P∞

0 −
a.s.;

(ii)
∑k

i=1 pi(n)I(X̃i ∈ Z) → 1 − λ, and k∗p+(n) + pk+1(n) → λ, P∞
0 − a.s.;

(iii) (4.4) is equivalent to pk+1(n) → 0 as n → ∞, P∞
0 -a.s. Furthermore, if

λ > 0, (4.4) is equivalent to np+(n) → 1, as n → ∞, P∞
0 − a.s..

Remark 8. Note that even if there are multiple j with nj = 1, p+(n) is well
defined by the exchangeability of the EPPF p.

Theorem 4. Suppose X1, X2, . . . is an i.i.d. sequence from P0 of form (3.3)
with separability condition (4.3). Under the model (3.1) with a prior (4.1) that
satisfies the smoothness condition (4.2), the posterior given X1, . . . , Xn is weakly
consistent at P0 if and only if the predictive probability function satisfies (4.5)
and either pk+1(n) → 0 as n → ∞, P∞

0 − a.s., or P0 is a mixture of a discrete
probability measure and the diffuse measure ν.

The proof of “If” part relies essentially on Lemma 1. The mean and vari-
ance of the predictive probability are represented by the prediction probability
function of the prior and their limits calculated under the conditions of Theorem
4. The proof of “Only if” part proceeds similarly. First, one assumes that P0 is a
mixture of discrete probability measure and a diffuse probability measure µ dif-
ferent from ν. The limit of the predictive probability is identified as P0−φ(µ−ν),
where φ is the limit of pk+1(n) in case it converges, and one concludes φ = 0.
The details of the proof are given in the supplemental note.

Remark 9. The first condition in Theorem 4 is natural in the following sense.
Since pk+1(n) is the predictive probability that Xn+1 is sampled from ν, we
expect that pk+1(n) → 0 as n → ∞, if posterior consistency holds.

Example 6 (N-IG Process Prior). Recall that the predictive probability
function pj(n) of the N-IG process is

pj(n) = (nj −
1
2
)w1,n =

nj − 1/2
n

∫ ∞
1 (1 − y−2)nyk−1e−aydy∫ ∞

1 (1 − y−2)n−1yk−1e−aydy
.
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Note nw1,n → 1 by Lemma 7 in the Appendix, which guarantees (4.2) and (4.5)
because

k∑
j=1

∣∣∣pj(n) − pj(ni+)
∣∣∣ =

k∑
j=1

∣∣∣nj − 1/2
n

nw1,n −
ni+

j − 1/2
n + 1

(n + 1)w1,n+1

∣∣∣
≤ |nw1,n − nw1,n+1| + |w1,n+1| → 0, P∞

0 − a.s.∑
j:X̃j∈Z

∣∣∣pj(n) − nj

n

∣∣∣ ≤ |nw1,n − 1| + k − k∗

2n
nw1,n → 0, P∞

0 − a.s..

The second condition of Theorem 4 implies that the N-IG process prior produces
a consistent posterior at all discrete probability measures.

Now suppose P0 is non-discrete or, equivalently, λ > 0. Note that np+(n) =
nw1,n/2 → 1/2 < 1, P∞

0 − a.s.. Thus, all N-IG processes produce inconsistent
posteriors at all probability measures that do not satisfy the second condition of
Theorem 4. In particular, the N-IG process produces inconsistent posterior at
all diffuse probability measures except ν.

Example 7 (Poisson-Kingman process). In this example, we consider the
Poisson-Kingman process with generalized gamma Lévy density ρa,b,c(x) = cx−a−1

e−bx for 0 < a < 1, b ≥ 0 and c > 0; the class is large enough to contain Dirichlet
Processes – DP (θν) is equivalent to PK(ρ0,1,θ, ν). The EPPF of PK(ρa,b,c, ν) is

p(n1, . . . , nk)=
ck

∏k
j=1 Γ(nj − a)

Γ(n)

∫ ∞

0
un−1e−cΓ(1−a)[(b+u)a−ba]/a(b + u)ak−ndu.

The predictive probability function is given by pj(n) = [(nj−a)/n]w(n, k), where

w(n, k) =

∫ ∞
0 un(b + u)ak−n−1e−cΓ(1−a)(b+u)a/adu∫ ∞
0 un−1(b + u)ak−ne−cΓ(1−a)(b+u)a/adu

.

By Lemma 8, we get w(n, k) → 1 as n → ∞. Then, (4.5) can be shown using
the above result and Lemma 2 (i),∑
j:X̃j∈Z

∣∣∣pj(n) − nj

n

∣∣∣ ≤ a(k − k∗)
n

+
n − a(k − k∗)

n

∣∣∣w(n, k) − 1
∣∣∣ → 0. P∞

0 − a.s.

Also, it is not hard to see (4.2) holds. By Theorem 4 (ii), PK(ρa,b,c, ν) is con-
sistent at all discrete probability measures. For the non-discrete probability
measures, we can check the first condition of Theorem 4, or equivalently Propo-
sition 3 (iii): np+(n) = (1 − a)w(n, k) → 1 − a. P∞

0 − a.s.. Therefore, the
Poisson-Kingman prior PK(ρa,b,c, ν) is inconsistent at all continuous probability
measures except ν when a > 0.
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Example 8 (Gibbs partition). The predicted probability function is

pj(n) =
Vn+1,kWnj+1

Vn,kWnj

=
nbVn+1,k

Vn,k

nj − a

n
.

It is not hard to see that (4.5) is equivalent to nbVn+1,k/Vn,k → 1, which
also implies (4.2). Thus, Theorem 4 implies the species sampling prior gener-
ated by a Gibbs partition is consistent at all discrete probability measures if
nbVn+1,k/Vn,k → 1. For a non-discrete P0, assume nbVn+1,k/Vn,k → 1. Since as
n → ∞

np+(n) = n
Vn+1,k

Vn,k

W2

W1
=

nbVn+1,k

Vn,k
(1 − a) → 1 − a,

the posterior is consistent if and only if a = 0, thus a mixture of Dirichlet
processes.

5. Conclusion

The species sampling prior, which is gaining increasing interest as a class of
nonparametric priors, was tested for consistency in this paper. We found that,
among all the Pitman-Yor priors, the only priors consistent at diffuse probability
measures are Dirichlet processes. The same conclusion holds for the popular
subclasses of species sampling priors, the N-IG process, the Poisson-Kingman
process, and the Gibbs partition. This does not mean that the only consistent
priors among the species sampling priors are Dirichlet processes and that the
species sampling priors are not useful. First of all, the species sampling priors
can be useful in mixture modelling as we discussed in Section 3. Second, as we
have characterized the class of consistent species sampling priors in Section 4,
the class of consistent species sampling priors can be still large. We believe that
more research is necessary to develop flexible subclasses of the species sampling
priors that are consistent.
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