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Abstract: We consider situations in Bayesian analysis where the prior is indexed by

a hyperparameter taking on a continuum of values. We distinguish some arbitrary

value of the hyperparameter, and consider the problem of estimating the Bayes

factor for the model indexed by the hyperparameter vs. the model specified by the

distinguished point, as the hyperparameter varies. We assume that we have Markov

chain output from the posterior for a finite number of the priors, and develop a

method for efficiently computing estimates of the entire family of Bayes factors. As

an application of the ideas, we consider some commonly used hierarchical Bayesian

models and show that the parametric assumptions in these models can be recast

as assumptions regarding the prior. Therefore, our method can be used as a model

selection criterion in a Bayesian framework. We illustrate our methodology through

a detailed example involving Bayesian model selection.
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1. Introduction

Suppose we have a data vector Y whose distribution has density pθ, for some
unknown θ ∈ Θ. Let {νh, h ∈ H} be a family of prior densities on θ that we are
contemplating. The selection of a particular prior from the family is important
in Bayesian data analysis, and when making this choice one will often want to
consider the marginal likelihood of the data under the prior νh, given by mh(y) =∫

`y(θ)νh(θ) dθ, as h varies over the hyperparameter space H. Here, `y(θ) = pθ(y)
is the likelihood function. Values of h for which mh(y) is relatively low may be
considered poor choices, and consideration of the family {mh(y), h ∈ H} may
be helpful in narrowing the search of priors to use. It is therefore useful to have
a method for computing the family {mh(y), h ∈ H}. For the purpose of model
selection, if c is a fixed constant, the information given by {mh(y), h ∈ H} and
{cmh(y), h ∈ H} is the same. From a computational and statistical point of
view however, it is usually easier to fix a particular hyperparameter value h∗ and
focus on {mh(y)/mh∗(y), h ∈ H}. Given two hyperparameter values h and h∗,
the quantity B(h, h∗) = mh/mh∗ is called the Bayes factor of the model indexed
by h vs. the model indexed by h∗ (we write mh instead of mh(y) from now on).
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In this paper we present a method for estimating the family {B(h, h∗), h ∈
H}. We have in mind situations where B(h, h∗) cannot be obtained analyti-
cally and, moreover, we need to calculate B(h, h∗) for a large set of h’s, so that
computational efficiency is essential. Our approach requires that there are k hy-
perparameter values h1, . . . , hk, and for l = 1, . . . , k, we are able to get a sample
θ
(l)
i , i = 1, . . . , nl, from νhl,y, the posterior density of θ given Y = y, assuming

that the prior is νhl
.

To set the framework, consider the trivial case where k = 1, and we have
a sample from the posterior νh1,y generated by an ergodic Markov chain. Our
objective is to estimate {B(h, h1), h ∈ H}. For any h such that νh(θ) = 0
whenever νh1(θ) = 0, we have

1
n

n∑
i=1

νh(θi)
νh1(θi)

→
∫

νh(θ)
νh1(θ)

νh1,y(θ) dθ (1.1)

=
mh

mh1

∫
`y(θ)νh(θ)/mh

`y(θ)νh1(θ)/mh1

νh1,y(θ) dθ

=
mh

mh1

∫
νh,y(θ)
νh1,y(θ)

νh1,y(θ) dθ =
mh

mh1

.

Therefore, the left side of (1.1) is a consistent estimate of the Bayes factor
B(h, h1).

To fix ideas, consider as a simple example the following standard three-level
hierarchical model:

conditional on ψj , Yj
indep∼ φψj ,σj

, j = 1, . . . ,m (1.2a)

conditional on µ, τ, ψj
i.i.d.∼ φµ,τ , j = 1, . . . ,m (1.2b)

(µ, τ) ∼ λc1,c2,c3,c4 , (1.2c)

where φm,s denotes the density of the normal distribution with mean m and
standard deviation s. In (1.2a), the σi’s are assumed known. In (1.2c), λc1,c2,c3,c4

is the normal / inverse gamma distribution indexed by four hyperparameters (see
Section 3). This is a very commonly used model but, as we discuss later, in some
situations it is preferable to replace (1.2b) with ψj

i.i.d.∼ tv,µ,τ , where tv,µ,τ is the
density of the t distribution with v degrees of freedom, location µ and scale τ .
In this case, consider now the estimate in the left side of (1.1). The likelihood of
(µ, τ) is

`Y (µ, τ) =
∫

. . .

∫ m∏
j=1

φψj ,σj
(Yj)

m∏
j=1

tv,µ,τ (ψj) dψ1 . . . dψm.
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This likelihood cannot be computed in closed form, and therefore its cancellation
in (1.1) gives a non-trivial simplification: calculation of the estimate requires
only the ratio of the densities of the priors and not the posteriors.

Consider (1.2) with tv,µ,τ instead of φµ,τ in the middle stage, and suppose
now that we would like to select v, with the choice v = ∞ signifying the choice
of the normal distribution φµ,τ . The distribution of Y is determined by ψ =
(ψ1, . . . , ψm). A completely equivalent way of describing the model is therefore
through the two-level hierarchy in which we let θ = (ψ, µ, τ), and stipulate:

conditional on θ, Yj
indep∼ φψj ,σj

, j = 1, . . . ,m

(ψ, µ, τ) ∼ νh,

where νh(ψ, µ, τ) =
(∏m

j=1 tv,µ,τ (ψj)
)
λc1,c2,c3,c4(µ, τ). Here, the hyperparameter

is h = (v, c1, c2, c3, c4), which includes the number of degrees of freedom. Estima-
tion of the family of Bayes factors {B(h, h1), h ∈ H} therefore enables a model
selection step.

We now discuss briefly the accuracy of the estimate on the left side of (1.1).
When νh is nearly singular with respect to νh1 over the region where the θi’s are
likely to be, the estimate will be unstable. (Formally, the estimate will satisfy
a central limit theorem if the chain mixes fast enough and the random variable
νh(θ)/νh1(θ) (where θ ∼ νh1,y) has a high enough moment. This is discussed in
more detail in Section 2.3.) From a practical point of view, this means that there
is effectively a “radius” around h1 within which one can safely move.

In all but the very simplest models, the dimension of H is greater than 1, and
therefore estimation of the Bayes factor as h ranges over H raises serious compu-
tational difficulties, and it is essential that for each h, the estimate of B(h, h1) is
both accurate and can be computed quickly. Our approach is to select k hyper-
parameter points h1, . . . , hk, and get Markov chain samples from νhl,y for each
l = 1, . . . , k. The prior νh1 in the denominator of the left side of (1.1) is replaced
by a mixture w1νh1 + · · · + wkνhk

, with appropriately chosen weights. We show
how judiciously chosen control variates can be used in conjunction with multiple
Markov chain streams to produce accurate estimates even with small samples,
so that the net result is a computationally feasible method for producing reliable
estimates of the Bayes factors for a wide range of hyperparameter values. Our
approach is motivated by and uses ideas developed in Kong, McCullagh, Meng,
Nicolae and Tan (2003), which deals with the situation where we have indepen-
dent samples from k unnormalized densities, and we wish to estimate all possible
ratios of the k normalizing constants. Owen and Zhou (2000) and Tan (2004)
also discuss the use of control variates to increase the accuracy of Monte Carlo
estimates. In Section 4 we return to these three papers and discuss in detail how
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our approach fits in the context of this work. The paper is organized as follows.
Section 2 contains the main methodological development; there, we present our
method for estimating the family of Bayes factors and state supporting theoret-
ical results. Section 3 illustrates the methodology through a detailed example
that involves a number of issues, including selection of the parametric family in
the model. Section 4 gives a discussion of other possible approaches and related
work, and the Appendix gives the proof of the main theoretical result of the
paper.

2. Estimation of the Family of Bayes Factors

Suppose that for l = 1, . . . , k, we have Markov chain Monte Carlo (MCMC)
samples θ

(l)
i , i = 1, . . . , nl from the posterior density of θ given Y = y, assuming

that the prior is νhl
, having the form

νhl,y(θ) =
`y(θ)νhl

(θ)
mhl

.

We assume that the k sequences are independent of one another.
We will not assume we know any of the mhl

’s. However, we now explain
how knowledge of the Bayes factors mhl

/mh1 , for l = 2, . . . , k would result in
two important benefits. If we knew these Bayes factors we could then form the
estimate

B̂(h, h1) =
k∑

l=1

nl∑
i=1

νh(θ(l)
i )∑k

s=1 nsνhs(θ
(l)
i )mh1/mhs

. (2.1)

Let n =
∑k

s=1 ns, and assume that ns/n → as, s = 1, . . . , k. We then have

B̂(h, h1) =
k∑

l=1

nl∑
i=1

`y(θ
(l)
i )νh(θ(l)

i )∑k
s=1 ns`y(θ

(l)
i )νhs(θ

(l)
i )mh1/mhs

=
mh

mh1

k∑
l=1

1
nl

nl∑
i=1

nl
n νh,y(θ

(l)
i )∑k

s=1
ns
n νhs,y(θ

(l)
i )

a.s.−→ mh

mh1

k∑
l=1

∫
alνh,y(θ)∑k

s=1 asνhs,y(θ)
νhl,y(θ) dθ =

mh

mh1

. (2.2)

The almost sure convergence in (2.2) occurs under minimal conditions on the
Markov chains θ

(l)
i , i = 1, . . . , nl. Asymptotic normality requires more restrictive

conditions, and is discussed in Section 2.3. To compute B̂(h, h1), the n quantities∑k
s=1 nsνhs(θ

(l)
i )mh1/mhs are calculated once, and stored. Then, for every new
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value of h, the computation of B̂(h, h1) requires taking n ratios and a sum. Since
this is to be done for a large number of h’s, it is essential that for each l, the
sequence θ

(l)
i , i = 1, . . . , nl be as independent as possible, so that the value of n

be made as small as possible.
We now briefly recall the use of control variates in Monte Carlo sampling.

Suppose we wish to estimate the expected value of a random variable Y , and
we can find a random variable Z that is correlated with Y , and such that E(Z)
is known (without loss of generality, E(Z) = 0). Then for any β, the estimate
Y − βZ is an unbiased estimate of E(Y ), and the value of β minimizing the
variance of Y −βZ is β = Cov (Y,Z)/Var (Z). The idea may be used when there
are several variables Z1, . . . , Zr that are correlated with Y .

In the present context, we may consider the functions

Zj(θ) =
νhj

(θ)mh1/mhj
− νh1(θ)∑k

s=1(ns/n)νhs(θ)mh1/mhs

, j = 2, . . . , k,

whose expectations under
∑k

s=1(ns/n)νhs,y are 0. The calculation of these func-
tions requires knowledge of the Bayes factors mhs/mh1 , s = 2, . . . , k.

The method proposed in this paper can now be briefly summarized as fol-
lows.
1. For each l = 1, . . . , k, get Markov chain samples θ

(l)
i , i = 1, . . . , Nl from νhl,y.

Based on these, the Bayes factors mhs/mh1 , s = 2, . . . , k are estimated. The
sample sizes Nl should be very large, so that these estimates are very accurate.

2. For each l = 1, . . . , k, we obtain new samples θ
(l)
i , i = 1, . . . , nl from νhl,y.

Using these, together with the Bayes factors computed in Step 1 we form the
estimate B̂reg(h, h1), which is similar to (2.1), except that we use the functions
Zj , j = 2, . . . , k as control variates.

The samples in the two steps are used for different purposes. Those in Step 1 are
used solely to estimate mhs/mh1 , s = 2, . . . , k, and in fact, once these estimates
are formed, the samples may be discarded. The samples in Step 2 are used to
estimate the family B(h, h1). On occasion, special analytical structure enables
the use of numerical methods to estimate mhs/mh1 , s = 2, . . . , k, as long as
k is not too large—so Step 1 is bypassed. A review of the literature for this
approach is given in Kass and Raftery (1995). Ideally, the samples in Step 2
should be independent or nearly so, which may be accomplished by subsampling
a very long chain. If we have a Markov transition function that gives rise to a
uniformly ergodic chain, it is possible to use this Markov transition function to
obtain perfect samples (Hobert and Robert (2004)), although the time it takes
to generate a perfect sample of length nl may be much greater than the time to
generate the Markov chain of length nl.
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One may ask what is the point of having two steps of sampling, i.e., why not
just use the samples from Step 1 for both estimation of mhs/mh1 , s = 1, . . . , k,
and for subsequent estimation of the family B(h, h1). The reason for having the
two stages is that the estimate of B(h, h1) needs to be computed for a large
number of h’s, and for every h the amount of computation is linear in n, so this
precludes a large value of n. Therefore, given that a relatively modest sample size
must be used, we need to reduce the variance of the estimate as much as possible,
and this is the reason for carrying out Step 1. The amount of computation to
generate the Step 1 samples is typically one or two orders of magnitude less than
the amount of computation needed to calculate the estimates of B(h, h1) from
the Step 2 samples (see the discussion at the end of Section 3).

To summarize, the benefit of the two-step approach is a better tradeoff be-
tween statistical efficiency and computational time. To see this, it is helpful to
consider a very simple example in which the variances of various estimators can
actually be computed. Consider the unnormalized density qh = thI(t ∈ (0, 1)),
and let mh be the normalizing constant. Now suppose we wish to estimate mh/m1

as h ranges over a grid of 4, 000 points in the interval (1.5, 2.5) and that we are
able to generate i.i.d. observations from q1/m1 and q3/m3. We may use the esti-
mator in Kong et al. (2003) (discussed later in this paper), which estimates both
mh/m1 and m3/m1 from the same sample. Given one minute of computer time,
using the machine whose specifications are described in Section 3, the require-
ment that we calculate such a large number of ratios of normalizing constants
limits the total sample size to n = 2× 90. A formula for the asymptotic variance
ρ2(h) of the Kong et al. (2003) estimate is given in Tan (2004, equation (8)), and
in this situation all quantities that are needed in the formula are available ex-
plicitly. Now if we take the minute and divide it into two parts, 3 seconds and 57
seconds, then with the 3 seconds we can estimate m3/m1 with essentially perfect
accuracy, and with the remaining 57 seconds, if we use the estimate B̂(h, 1), we
can handle a sample size of n × 57/60. A formula for the asymptotic variance
τ2(h) of this estimator—which uses the value of m3/m1 calculated in the first
stage—is given in Theorem 1 of the present paper, and can also be evaluated ex-
plicitly. The ratio τ2(h)/ρ2(h) is bounded above by 0.2 over the entire grid, and
so with the same computer resources, the variance of the two-stage estimator is
uniformly at most 0.2× 60/57 ≈ .21 that of the one-stage estimator. (The gains
if we use B̂reg instead of B̂ can be far greater; see Section 3 for an illustration.)

In Section 2.1 we show how the MCMC approach to Step 1 may be imple-
mented. In Section 2.2 we show how estimation in Step 2 may be implemented,
and also discuss the benefits of using the control variates. In Section 2.3 we give
a result regarding asymptotic normality of the estimates of the Bayes factors.
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2.1. Estimation of the Bayes Factors mhs/mh1

We now assume that for l = 1, . . . , k, we have a sequence θ
(l)
i , i = 1, . . . , Nl

from a Markov chain corresponding to the posterior νhl,y. Also, these k sequences
are independent of one another. Let N =

∑k
l=1 Nl, and al = Nl/N . We wish to

estimate mhl
/mh1 , l = 2, . . . , k.

Meng and Wong (1996) considered this problem and, to understand their
method, it is helpful to consider first the case where k = 2 and we wish to
estimate d = mh2/mh1 . For any function α defined on the common support of
νh1,y and νh2,y such that

∫
α(θ)νh1(θ)`y(θ)νh2(θ) dθ < ∞, we have∫

α(θ)νh2(θ)νh1,y(θ) dθ∫
α(θ)νh1(θ)νh2,y(θ) dθ

=
(1/m1)

∫
α(θ)νh2(θ)`y(θ)νh1(θ) dθ

(1/m2)
∫

α(θ)νh1(θ)`y(θ)νh2(θ) dθ

=
mh2

mh1

.

Therefore,

d̂ =

N1∑
i=1

α(θ(1)
i )νh2(θ

(1)
i )

/
N1

N2∑
i=1

α(θ(2)
i )νh1(θ

(2)
i )

/
N2

(2.3)

is a consistent estimate of d, under the minimal assumption of ergodicity of the
two chains.

Meng and Wong (1996) show that when {θ(j)
i }Nj

i=1 are independent draws
from νhj ,y, the optimal α to use is

αopt(θ) =
1

a1νh1(θ) + a2νh2(θ)/d
, (2.4)

which involves the quantity we wish to estimate. This suggests the iterative
scheme

d̂(t+1) =

N1∑
i=1

[νh2(θ
(1)
i )/(a1νh1(θ

(1)
i ) + a2νh2(θ

(1)
i )/d̂(t))]

/
N1

N2∑
i=1

[νh1(θ
(2)
i )/(a1νh1(θ

(2)
i ) + a2νh2(θ

(2)
i )/d̂(t))]

/
N2

, (2.5)

for t = 1, 2, . . ..
For the general case where k ≥ 2, let d = (mh2/mh1 , . . . ,mhk

/mh1), but it is
more convenient to work with the vector of component-wise reciprocals of d, call
it r. For i = 2, . . . , k, and j = 1, . . . , k, j 6= i, let αij be known functions defined
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on the common support of νhi
and νhj

satisfying
∫

αij(θ)νhi
(θ)`y(θ)νhj

(θ) dθ <

∞. Let

bii =
∑

j 6=i Eνhj,y

(
αij(θ)νhi

(θ)
)

2 ≤ i ≤ k,

bij = Eνhi,y

(
αij(θ)νhj

(θ)
)

i 6= j,
(2.6)

and

B =


b22 −b23 . . . −b2k

−b32 b33 . . . −b3k
...

...
. . .

...
−bk2 −bk3 . . . bkk

 , b =


b21

b31
...

bk1

 .

Then assuming that B is nonsingular, we have r = B−1b. If B̂α and b̂α are
the natural estimates of B and b based on the functions αij and the samples
{θ(j)

i }Nj

i=1, j = 1, . . . , k, then r may be estimated via

r̂ = B̂
−1
α b̂α. (2.7)

Meng and Wong (1996) consider the functions

αij =
aiaj∑k

s=1 asrsνhs

, (2.8)

which involve the unknown r. The natural extension of (2.5) is r̂(t+1) = B̂
−1
αt

b̂αt ,
with the vector of functions αt given by (2.8), where we use r̂(t) instead of r.

2.2. Using control variates

The use of control variates has had many successes in Monte Carlo sampling,
and a particularly important paper is Owen and Zhou (2000). This paper con-
siders the use of control variates in conjunction with importance sampling, when
the importance sampling density is a mixture, and the paper motivates some of
the ideas below.

We now assume that we have samples θ
(l)
i , i = 1, . . . , nl, from νhl,y, l =

1, . . . , k, with independence across samples, and that we know the constants
d2, . . . , dk. For unity of notation, we define d1 = 1. As before n =

∑k
l=1 nl and

nl/n = al. The estimate B̂(h, h1) in (2.1) is an average of n draws from the
mixture distribution pa =

∑k
s=1 asνhs,y. However, these are not independent

and identically distributed since they form a stratified sample: we have exactly
ns draws from νhs,y, s = 1, . . . , k, a fact which causes no problems.

We wish to estimate the integral

Ih =
∫

`y(θ)νh(θ)
mh1

dθ = B(h, h1).
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Define the functions

Hj(θ) =
`y(θ)νhj

(θ)
mhj

− `y(θ)νh1(θ)
mh1

, j = 2, . . . , k.

We have ∫
Hj(θ) dθ = 0, or equivalently Epa

(Hj(θ)
pa(θ)

)
= 0,

where the subscript indicates that the expectation is taken with respect to the
mixture distribution pa. Therefore, for every β = (β2, . . . , βk) the estimate

Îh,β =
1
n

k∑
l=1

nl∑
i=1

`y(θ
(l)
i )νh(θ

(l)
i )

mh1
−

∑k
j=2 βj

[
`y(θ

(l)
i )

(νhj
(θ

(l)
i )

mhj
− νh1

(θ
(l)
i )

mh1

)]
∑k

s=1 asνhs,y(θ
(l)
i )

is unbiased. As written, this estimate is not computable, because it involves the
normalizing constants mhj

, which are unknown, and also the likelihood `y(θ),
which may not be available. We rewrite it in computable form as

Îh,β =
1
n

k∑
l=1

nl∑
i=1

νh(θ(l)
i ) −

∑k
j=2 βj

[
νhj

(θ(l)
i )/dj − νh1(θ

(l)
i )

]∑k
s=1 asνhs(θ

(l)
i )/ds

. (2.9)

We would like to use the value of β, call it βopt, that minimizes the variance
of Îh,β, but this βopt is generally unknown. As in Owen and Zhou (2000), we

can do ordinary linear regression of Y
(h)
i,l on predictors Z

(j)
i,l , where

Y
(h)
i,l =

νh(θ(l)
i )∑k

s=1 asνhs(θ
(l)
i )/ds

, Z
(j)
i,l =

νhj
(θ(l)

i )/dj − νh1(θ
(l)
i )∑k

s=1 asνhs(θ
(l)
i )/ds

, j = 2, . . . , k,

(2.10)
and all required quantities are available. We then use the least squares estimate
β̂, i.e., the estimate of Ih is Îh,β̂. It is easy to see that Îh,β̂ is simply β̂0, the
estimate of the intercept term in the bigger regression problem where we include
the intercept term, i.e.,

Îh,β̂ = β̂0. (2.11)

One can show that if the k sequences are all i.i.d. sequences, then β̂ converges
to βopt, and Îh,β̂ is guaranteed to be at least as efficient as the naive estimator

B̂(h, h1). But when we have Markov chains this is not the case, especially if the
chains mix at different rates. In Section 2.3 we consider the estimates β̂ and Îh,β̂

directly. In particular, we give a precise definition of the nonrandom value β∗
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that β̂ is estimating (it is β
(h)
lim in equation (A.3)), and show that the effect of

using β̂ instead of β∗ is asymptotically negligible.
It is natural to consider the problem of estimating βopt in the Markov chains

setting. Actually, before thinking about minimizing the variance of (2.9) with
respect to β, one should first note the following. The constants as = ns/n, s =
1, . . . , k, used in forming the values Y

(h)
i,l are sensible in the i.i.d. setting, but

when dealing with Markov chains one would want to replace ns with an “effective
sample size,” as discussed by Meng and Wong (1996). Therefore, the real problem
is two-fold:
• How do we find optimal (or good) values to use in place of the as’s in the

Y
(h)
i,l ’s?

• Using the Y
(h)
i,l ’s based on these values, how do we estimate the value of β

that minimizes the variance of (2.9)?

Both problems appear to be very difficult. Intuitively at least, the method de-
scribed here should perform well if the mixing rates of the Markov chains are not
very different. But in any case, the results in Section 2.3 show that, whether or
not Îh,β̂ is optimal, it is a consistent and asymptotically normal estimator whose
variance can be estimated consistently.

Note that if we do not use control variates, our estimate is just

1
n

k∑
l=1

nl∑
i=1

νh(θ(l)
i )∑k

s=1 asνhs(θ
(l)
i )/ds

,

which is exactly (2.1).

Reduction in Variance from Using the Control Variates. Consider the
linear combination of the responses Y (h) and predictors Z(j) given by

L1 =
k∑

j=2

ajZ
(j) + Y (h).

(We are dropping the subscripts i, l.) A calculation shows that if h = h1 then
L1 = 1, meaning that we have an estimate with zero variance. Similarly, for
t = 2, . . . , k, let Lt be the linear combination given by

Lt =
k∑

j=2

ajZ
(j) +

( 1
dt

)
Y (h) − Z(t).

If h = ht, then Lt = 1. Thus if h ∈ {h1, . . . , hk}, our estimate of the Bayes

factor B(h, h1) has zero variance. This is not surprising since, after all, we are



ESTIMATION OF MANY BAYES FACTORS 547

assuming that we know B(hj , h1), for j = 1, . . . , k; however, this does indicate
that if we use these control variates, our estimate will be very precise as long as
h is close to at least one of the hj ’s. This advantage does not exist if we use the
plain estimate (2.1).

The intercept term in the regression of the Y
(h)
i,l ’s on the Z

(j)
i,l ’s is simply a

linear combination of the form

β̂0 =
k∑

l=1

nl∑
i=1

wi,lY
(h)
i,l . (2.12)

The wi,l’s need to be computed just once, so for every new value of h the calcu-
lation of B̂reg(h, h1) requires n operations, which is the same as the number of
operations needed to compute B̂(h, h1) given by (2.1). To summarize, using con-
trol variates can greatly improve the accuracy of the estimates, at no (or trivial)
increase in computational cost.

2.3. Asymptotic normality and estimation of the variance

Here we state a result that says that under certain regularity conditions
B̂reg(h, h1) and B̂(h, h1) are asymptotically normal, and we show how to esti-
mate the variance. As discussed in Section 2.2, we typically prefer that θ

(l)
i , i =

1, . . . , nl, be an i.i.d. sample for each l. Nevertheless, our results pertain to the
more general case where these samples arise from Markov chains. (As before,
we assume that nl/n → al ∈ (0, 1) and, when dealing with the asymptotics,
strictly speaking we need to make a distinction between nl/n and its limit; how-
ever we write al for both as this makes the bookkeeping easier, and blurring the
distinction never creates a problem.)

Recall that Y
(h)
i,l and Z

(j)
i,l , j = 2, . . . , k, are defined in (2.10) and, for economy

of notation, we define Z
(1)
i,l to be 1 for all i, l. Let R be the k × k matrix defined

by
Rjj′ = E

(∑k
l=1 alZ

(j)
1,l Z

(j′)
1,l

)
, j, j′ = 1, . . . , k.

We assume that for the Markov chains a strong law of large numbers holds
(sufficient conditions are given, for example, in Theorem 2 of Athreya, Doss and
Sethuraman (1996)), and we refer to the following conditions.

A1 For each l = 1, . . . , k, the chain {θ(l)
i }∞i=1 is geometrically ergodic.

A2 For each l = 1, . . . , k, there exists ε > 0 such that E
(∣∣Y (h)

1,l

∣∣2+ε)
< ∞.

A3 The matrix R is nonsingular.

Theorem 1. Under conditions A1 and A2

n1/2
(
B̂(h, h1) − B(h, h1)

) d−→ N
(
0, τ2(h)

)
,
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and under conditions A1−A3

n1/2
(
B̂reg(h, h1) − B(h, h1)

) d−→ N
(
0, σ2(h)

)
,

with τ2(h) and σ2(h) given by equations (A.9) and (A.7) below.

The proof is given in the Appendix, which also explains how one can estimate
the variances.

Theorem 1 assumes that the vector d is known—either because it can be
computed analytically or because the sample sizes from Stage 1 sampling are so
large that this is effectively true. Buta (2010) has obtained a version of Theorem 1
that takes into account the variability from the first stage. Very briefly, if N is the
total sample size from the first stage, and if N → ∞ and n → ∞ in such a way
that n/N → q ∈ [0,∞), then n1/2

(
B̂(h, h1)−B(h, h1)

) d−→ N
(
0, qτ2

S1(h)+τ2(h)
)
,

where τ2
S1(h) is a correction term that inflates the variance when the sample sizes

in Stage 1 are finite. Also, she has a similar result for the estimate that uses
control variates.

The variances of B̂reg(h, h1) and B̂(h, h1) depend on the choice of the points
h1, . . . , hk, and finding good values of k and h1, . . . , hk is in general a very difficult
problem. In our experience, we have found that the following method works
reasonably well. Having specified the range H, we select trial values h1, . . . , hk,
and in pilot runs plot the variance function τ2(h), or σ2(h); then if we find a
region where this is unacceptably large, we “cover” this region by moving some
hl’s closer to the region, or by simply adding new hl’s in that region, which
increases k.

3. Illustration

There are many classes of models to which the methodology developed in Sec-
tion 2 applies. These include the usual parametric models, and also Bayesian non-
parametric models involving mixtures of Dirichlet processes (Antoniak (1974)),
in which one of the hyperparameters is the so-called total mass parameter—
very briefly, this hyperparameter controls the extent to which the nonparametric
model differs from a purely parametric model. Another application involves some
problems in Bayesian variable selection, and this is described in Doss (2007). In
this section we give an example involving the hierarchical Bayesian model de-
scribed in Section 1. While models of much greater complexity can be considered,
this relatively simple example has the advantage that the data can be visualized
quickly, and the hyperparameters have a straightforward interpretation so that
our analysis can be easily understood.
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Table 1. Fifteen studies on aspirin and colon cancer. Here, PPW represents
the dose (number of 325 mg pills per week), RR is the observed risk ratio
for aspirin vs. no aspirin, LRR is its logarithm, and SE(LRR) is an estimate
of the standard error of LRR.

Publication PPW RR LRR SE(LRR)

Coogan, 00 4 0.50 −0.69 0.172
Friedman, 98 3 0.70 −0.36 0.068
Garcia-Rod., 01 7 0.60 −0.51 0.207
Giovannucci, 94 2 0.68 −0.39 0.154
Giovannucci, 95 2 0.56 −0.58 0.242
LaVecchia, 97 4 0.70 −0.36 0.182
Muscat, 94 3 0.64 −0.45 0.212
Paganini-Hill, 89 7 1.50 0.41 0.195

Publication PPW RR LRR SE(LRR)

Peleg, 94 7 0.25 −1.39 0.547
Reeves, 96 2 0.79 −0.24 0.277
Rosenberg, 91 4 0.50 −0.69 0.240
Rosenberg, 98 4 0.70 −0.36 0.128
Schr. & Ev., 94 1 0.74 −0.30 0.202
Suh, 93 7 0.24 −1.43 0.374
Thun, 91 4 0.48 −0.73 0.234

Meta-Analysis of Data on Non-Steroidal Anti-Inflammatory Drugs and
Cancer Risk

Over the last decade, a large number of epidemiological studies have reported
a link between intake of nonsteroidal anti-inflammatory drugs (NSAIDs) and
cancer risk. The studies, which involve different cancers and different NSAIDs,
strongly suggest that long-term intake of NSAIDs results in a significant reduction
in cancer risk for all the major types: colon, breast, lung, and prostate cancer. In
Harris, Beebe-Donk, Doss and Burr (2005) we carry out a comprehensive review
of the published scientific literature on NSAIDs and cancer. Our review spans
90 papers, which investigate several NSAIDs and ten cancers, including the four
major types. We have extracted data from these papers to make tables such as
Table 1, which pertains to aspirin and colon cancer. The table gives, for each of
15 studies, the dose, reported risk ratio (for NSAID use vs. non-NSAID use), and
the log reported risk ratio together with a standard error. (Harris et al. (2005)
does not give these standard errors; it gives 95% confidence intervals for the risk
ratios, which can be used to form 95% confidence intervals for the log risk ratios,
which in turn can be used to determine the standard errors.) See Harris et al.
(2005) for more information on this table and references for the 15 studies.

As can be seen from the table, there is some inconsistency in the studies,
with some indicating a large reduction in cancer risk, while others indicate a
smaller reduction, in spite of a large dose. This is not surprising, since there
is heterogeneity in the patient and control pools (characteristics such as age,
ethnicity, and health status vary greatly across the studies). It is therefore of
interest to carry out a meta-analysis of these studies. Although there have been
a few meta-analyses in the literature, these have been rather informal: all of
them have used fixed effects models, and none have taken into account the dose
information.
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Assume temporarily that all studies involved the same dose. In a random-
effects meta-analysis, for each study j there is a latent variable, say ψj , that gives
the true log risk ratio that would be obtained if the sample sizes for that study
were infinite. One is then led to a model such as (1.2), in which the distribution of
the study-specific effect is the normal distribution in (1.2b). Two modelling issues
now arise. The first is that whereas the first normality assumption (line (1.2a))
is supported by a theoretical result (the approximate normality of functions of
binomial estimates), the second normality assumption (line (1.2b)) is not but is
typically made for the sake of convenience. In fact, data for several of the other
cancers include outliers (see Harris et al. (2005)), and therefore one may wish
to use a t distribution instead, this decision being made prior to looking at the
colon cancer data. An important modelling issue is then to decide on the number
of degrees of freedom.

The second issue is to determine the parameters of the normal / inverse
gamma prior λc in (1.2c). Here c = (c1, c2, c3, c4), where c1, c2, c4 > 0 and
c3 ∈ R and, under this prior, the distribution of (µ, τ) is as follows: γ = 1/τ2 ∼
Gamma(c1, c2) and, conditional on τ , µ ∼ N (c3, c4τ

2). This prior is commonly
used because it is conjugate to the family N (µ, τ2). With appropriate hyper-
parameters, λ can be made to be a flat (“noninformative”) prior, and common
recommendations are to take c1 and c2 to be very small (so that the gamma
distribution on γ is an approximation to dγ/γ, the improper Jeffrey’s prior), and
to take c3 = 0 and c4 to be very large. Indeed, this is the recommendation made
in the examples in the Bugs documentation and tutorials. Nevertheless, such a
set of hyperparameter values is now sometimes criticized because for small values
of c1 and c2 the gamma distribution gives high probability to large values of γ

(equivalently small values of τ), which greatly encourages the ψj ’s to all be equal
to µ. In other words, this causes excessive shrinkage. See for example Gelman
(2006).

We wish to address both these issues and now also would like to take into
account the dose. Let Lj be the log of the observed risk ratio for study j. Let xj

be the dose, defined as number of pills per day (PPW/7), for study j. Consider
the linear model

Lj = αj + ψjxj + εj , j = 1, . . . ,m, (3.1)

where αj and ψj are parameters specific to study j, and εj is normally distributed
with mean 0 and standard deviation σj (given in Column 5 of Table 1). Note
that αj = 0, since xj = 0 implies that the treatment and control groups are
identical, so that Lj has mean 0. Thus, (3.1) is rewritten as Lj = ψjxj + εj ,
from which we see that ψj has the interpretation as the true log risk ratio if
the treatment group had taken 1 pill per day. Thus if we let Yj = Lj/xj , we
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have Yj = ψj + ε̃j , j = 1, . . . ,m, where ε̃j is normal with mean 0 and standard
deviation σ̃j = σj/xj .

We now consider the hierarchical model

Yj
indep∼ φψj ,σ̃j

, j = 1, . . . ,m, (3.2)

with the distribution of ψ determined by the following:

conditional on µ, τ, ψj
i.i.d.∼ tv,µ,τ , j = 1, . . . ,m, (3.3a)

(µ, τ) ∼ λc. (3.3b)

Letting θ = (ψ, µ, τ), the likelihood of Y = (Y1, . . . , Ym) is given by (3.2), and the
prior on θ is given by (3.3), which is indexed by h = (v, c). Loosely speaking, the
value of v determines the choice of the model, and the c’s determines the prior.
We may therefore fix some value h1 and consider the family of Bayes factors
B(h, h1) as h varies. We can estimate the family if for values hj , j = 1, . . . , k, of
the hyperparameter h, we have samples from the posterior distributions νhj ,Y of
the entire vector θ.

We considered four different values of c in which c3 = 0, c4 = 1, 000 were fixed
(since there does not seem to be any controversy about these two parameters)
and we took c1 = c2 and let the common value, denoted ε, start at 0.005 and
increase by factors of 5 up to 0.625. We took the values of the degrees of freedom
parameter to be v = 1, 4, 12, for a total of 12 values of the hyperparameter h. For
each of these 12 values we ran a Markov chain of length about 1 million and used
these to calculate the vector of ratios of normalizing constants, via the method
of Meng and Wong (1996) reviewed in Section 2.1. We then ran new Markov
chains to produce a sample of size 100 from each of the 12 posteriors. These
samples, which were actually subsamples from longer chains (burn-in of 1, 000,
then taking every 50th value), can be considered i.i.d. for practical purposes, and
were used to calculate the estimate B̂reg(h, h1) of Section 2.2. We took h1 to
be the specification corresponding to v = 4 and ε = 0.125, since preliminary
experiments indicated that this value of h gave a relatively high value of mh.
Figure 1 shows B̂reg(h, h1) as v and ε vary. The maximum standard error over
the range of the graph was less than 0.01.

The two plots in Figure 1 show different views of the same graph. From
the left plot we see that a t distribution works better than does a normal, with
the optimal number of degrees of freedom being about 3 or 4. The plot also
shows clearly that a very small number of degrees of freedom is not appropriate.
The right plot shows that as ε → 0, the Bayes factor converges to 0 rapidly
(in particular, fixing v = 4, the recommendation in the Bugs literature to use
ε = 0.001 gives a Bayes factor of about 0.036, and for ε = 0.0001 it is 0.0037),
giving strong evidence that very small values of ε should not be used.
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Figure 1. Model assessment for the aspirin and colon cancer data. The
Bayes factor as a function of v, the number of degrees of freedom in (3.3a),
and ε, the common value of c1 and c2 in the gamma prior in (3.3b), is shown
from two different angles. Here the baseline value of the hyperparameter
corresponds to v = 4 and ε = 0.125.

For some models the improper prior dγ/γ gives rise to a proper posterior,
and for others, including model (3.3b), it is possible to prove that the posterior
is improper (Berger (1985, p.187)), so that the pathological behavior resulting
from ε → 0 should be expected. For some more complicated models, whether
the posterior is proper or not is unknown (posterior propriety may even depend
on the data values), and in these cases, plots such as those in Figure 1 may be
useful because they may lead one to investigate a possible posterior impropriety.

The choice of hyperparameter h does have an influence on our inference.
Let ψnew denote the latent variable for a future study, a quantity of interest in
meta-analysis. We considered two specifications of h: (v = ∞, ε = 0.001) and
(v = 4, ε = 0.625). The first choice may be considered a “default choice,” and
the second a choice guided by consideration of the plot of Bayes factors. For the
choice (v = ∞, ε = 0.001), we have E(ψnew) = −0.87 and P (ψnew > 0) = 0.04,
whereas for (v = 4, ε = 0.625), we have E(ψnew) = −0.95 and P (ψnew > 0) =
0.08. In other words, the t model suggests a stronger aspirin effect, but the
inference is more tentative.

Remarks on Computation and Accuracy

• We now give an idea of how the computational effort is distributed. The
Stage 1 samples (12 chains, each of length 106) took 183 seconds to generate
on a 3.8 GHz dual core P4 running Linux. By contrast, the plot in Figure 1,
which involves a grid of 4, 000 points, took one hour to compute, in spite of
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Figure 2. Improvement in accuracy from using control variates. Plot gives
Var

(
B̂reg(h, h1)

)/
Var

(
B̂(h, h1)

)
as h ranges over the same region as in Fig-

ure 1.

the fact that it is based on a total sample size n of only 1, 200, for what must
be considered a rather simple model. Clearly using a very large value of n is
not feasible, and this is why we need to run the preliminary chains in order
to get a very accurate estimate of d.

• We now illustrate the extent to which B̂reg(h, h1) is more efficient than
B̂(h, h1). Figure 2 gives a plot of the ratio of the variances of the two es-
timates as h varies. Both B̂reg(h, h1) and B̂(h, h1) use the design discussed
earlier, which involves a total sample size of 1, 200. This figure is obtained
by generating 100 Monte Carlo replicates of B̂reg(h, h1) and B̂(h, h1) for each
h in a grid somewhat more coarse than the one used in Figure 1. As can
be seen from the figure, the ratio is about 0.01 over most of the grid, and is
less than 0.1 over the entire grid, with the exception of the values of h for
which df = 0.5 (for those values, the Bayes factor itself is very small, and the
two estimates each have miniscule variances). We also note that the ratio is
exactly 0 at the design points.

4. Discussion

When faced with uncertainty regarding the choice of hyperparameters, one
approach is to put a prior on the hyperparameters, that is, add one layer to
the hierarchical model. This approach, which goes under the general name of
“Bayesian model averaging,” can be very useful. On the other hand, there are
several good reasons why one may want to avoid it. First, the choice of prior on
the hyperparameters can have a great influence on the analysis. One is tempted
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to use a “flat prior” but, as is well known, for certain parameters such a prior
can in fact be very informative. In the illustration of Section 3, a flat prior
on the degrees of freedom parameter in effect skews the results in favor of the
normal distribution. Second, one may wish to do Bayesian model selection, as
opposed to Bayesian model averaging, because the subsequent inference is then
more parsimonious and interpretable. These points are discussed more fully in
George and Foster (2000) and Robert (2001, Chap. 7).

There are a number of papers that deal with estimation of Bayes factors via
MCMC. Chen, Shao and Ibrahim (2000, Chapter 5) and Han and Carlin (2001)
give an overview of much of this work, and we mention also the more recent
paper by Meng and Schilling (2002), which is directly relevant. Most of these
papers deal with the case of a single Bayes factor, whereas the present paper
is concerned with estimation of large families of Bayes factors. Nevertheless in
principle, any of the methods in this literature can be applied to estimate the
vector d.

Especially important is Kong et al. (2003), whose work we describe in the
notation of the present paper. The situation considered there has k known unnor-
malized densities qh1 , . . . , qhk

, with unknown normalizing constants mh1 , . . . ,mhk
,

respectively, and for l = 1, . . . , k, there is an i.i.d. sample θ
(l)
1 , . . . , θ

(l)
nl from

qhl
/mhl

. The problem is the simultaneous estimation of all ratios mhl
/mhs , l, s =

1, . . . , k, or equivalently, all ratios dl = mhl
/mh1 , l = 1, . . . , k. In a certain frame-

work, they show that the maximum likelihood estimate (MLE) of d is obtained
by solving the system of k equations

d̂r =
1
n

k∑
l=1

nl∑
i=1

qhr(θ
(l)
i )∑k

s=1 asqhs(θ
(l)
i )/d̂s

, r = 1, . . . , k. (4.1)

To put this in our context, let qhl
(θ) = `y(θ)νhl

(θ), l = 1, . . . , k, and suppose
we have i.i.d. samples from the normalized qhl

’s. We may imagine that we have
k + 1 unnormalized densities qh1 , . . . , qhk

, qh, with a sample of size 0 from the
normalized qh. The estimate of mh/mh1 then becomes

1
n

k∑
l=1

nl∑
i=1

νh(θ(l)
i )∑k

s=1 asνhs(θ
(l)
i )/d̂s

.

We recognize this as precisely B̂(h, h1) in (2.1), except that d̂1, . . . , d̂k are formed
by solving (4.1), i.e., are estimated from the sequences θ

(l)
1 , . . . , θ

(l)
nl , l = 1, . . . , k.

Thus, B̂(h, h1) is the same as the estimate of Kong et al. (2003), except that the
vector d is precomputed based on previously run very long chains. Therefore,
it is perhaps natural to consider estimating d on the basis of these very long
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Markov chains using the method of Kong et al. (2003) (as opposed to the method
discussed in Section 2.1), and we now discuss this possibility.

In their approach, Kong et al. (2003) assume that the qhl
’s are densities with

respect to a dominating measure µ, and they obtain the MLE µ̂ of µ (µ̂ is given
up to a multiplicative constant). They can then estimate the ratios mhl

/mhs

since the normalizing constants are known functions of µ. Their approach works
if for each l, θ

(l)
1 , . . . , θ

(l)
nl is an i.i.d. sample. Although they extend it to the case

where these are a Markov chain, in the extension qhl
is replaced by the Markov

transition functions Phl
(·, θ(l)

i ), i = 0, . . . , nl − 1, assumed absolutely continuous
with respect to a sigma-finite measure µ (precluding Metropolis-Hastings chains),
and if each of these is known only up to a normalizing constant—as is typically
the case—then the system (4.1) becomes a system of n × k equations. This is
prohibitively difficult to solve.

Tan (2004) shows how control variates can be incorporated in the likelihood
framework of Kong et al. (2003). When there are r functions Hj , j = 1, . . . , r,
for which we know that

∫
Hj dµ = 0, the parameter space is restricted to the

set of all sigma-finite measures satisfying these r constraints. For the case where
θ
(l)
i , i = 1, . . . , nl, are i.i.d. for each l = 1, . . . , k, he obtains the MLE of µ in this

reduced parameter space, and therefore a corresponding estimate of mh/mh1 , and
shows that this approach gives estimates that are asymptotically equivalent to
estimates that use control variates via regression. His estimate can still be used
when we have Markov chain draws, but is no longer optimal—for the same reason
that the estimate in the present paper is not optimal (see the discussion in the
middle of Section 2.2). The optimal estimator is obtained by using the likelihood
that arises from the Markov chain structure, and in the case of general Markov
chains its calculation is computationally very demanding. See Tan (2006, 2008)
for advances in this direction. Tan (2004) also obtains results on asymptotic
normality of his estimators that are valid when we have the i.i.d. structure, but
it should be possible to obtain versions for Markov chain draws, under regularity
conditions such as those of the present paper.

Owen and Zhou (2000) use control variates in conjunction with importance
sampling. In the notation above, they assume that the qhl

’s are normalized den-
sities, and that for every l, they have an i.i.d. sample of size nl from qhl

. As
before, let al = nl/

∑k
s=1 ns. Because these are normalized densities, each of

the k variables qhl
(θ)/

(
as

∑k
s=1 qhs(θ)

)
has expectation 1 under the distribution∑k

s=1 asqhs , and so can be used as control variates. Their method does not work
directly in our situation because the qhl

= `y(θ)νhl
(θ) are unnormalized densi-

ties. It is therefore natural to consider estimating the normalizing constants of
qhl

, l = 1, . . . , k, from the Stage 1 runs. Indeed, there are methods for doing this
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from Markov chain output (Chib (1995), Chib and Jeliazkov (2001)). However,
estimation of ratios of normalizing constants tends to be far more stable than
estimation of the normalizing constants themselves. For example, if we wish to
estimate mh/mh1 , then a procedure that involves estimating mh and mh1 sepa-
rately and then taking the ratio is not guaranteed to provide accurate estimates
even when h = h1, whereas in this case the simple estimate (1.1) gives an unbi-
ased estimate with zero variance. Moreover, if we run Markov chains for models
indexed by h1, . . . , hk, the estimate of a single ratio mhs/mh1 using the method
of Section 2.1 makes use of all the chains, providing greater stability. The control
variates that we use are essentially equivalent to those used by Owen and Zhou
(2000), but their computation requires only knowledge of the vector d.

R functions for producing the estimates B̂(h, h1) and B̂reg(h, h1), and plots
such as those in Figure 1 for the hierarchical model (3.2)–(3.3) and relatives, are
available from the author upon request.
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Appendix: Proof of Theorem 1

Under Conditions A1 and A2 we have a central limit theorem for the averages
n−1

l

∑nl
i=1 Y

(h)
i,l and n−1

l

∑nl
i=1 Z

(j)
i,l Y

(h)
i,l for l = 1, . . . , k, and j = 2, . . . , k (corollary

to Theorem 18.5.3 of Ibragimov and Linnik (1971)); however, there are other sets
of conditions that could be used. For example, the ε > 0 is not needed, i.e., a
finite second moment suffices if the chain is reversible (Roberts and Rosenthal
(1997))—for instance if the chain is a Metropolis algorithm, or if it is a two-
cycle Gibbs sampler—or if it is uniformly ergodic (Cogburn (1972)). These are
the most commonly used assumptions, but for a fuller discussion of central limit
theorems for Markov chains see Chan and Geyer (1994).

We first prove the assertion regarding B̂reg(h, h1). Let Z be the n×k matrix
whose transpose is

Z ′ =


1 . . . 1 1 . . . 1 . . . 1 . . . 1

Z
(2)
1,1 . . . Z

(2)
n1,1 Z

(2)
1,2 . . . Z

(2)
n2,2 . . . Z

(2)
1,k . . . Z

(2)
nk,k

...
. . .

...
...

. . .
...

. . .
...

. . .
...

Z
(k)
1,1 . . . Z

(k)
n1,1 Z

(k)
1,2 . . . Z

(k)
n2,2 . . . Z

(k)
1,k . . . Z

(k)
nk,k

 ,
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and let Y = Y (h) = Y =
(
Y

(h)
1,1 , . . . , Y

(h)
n1,1, Y

(h)
1,2 , . . . , Y

(h)
n2,2, . . . , Y

(h)
1,k , . . . , Y

(h)
nk,k

)′.
Note: we sometimes suppress the superscript h in order to lighten the notation.
The least squares estimate is

(
β̂

(h)
0 , β̂

(h))
= n(Z ′Z)−1 Z ′Y /n, assuming that

Z ′Z is nonsingular. (Here, β̂
(h)

= (β̂(h)
2 , . . . , β̂

(h)
k )).

Note that

1
n

k∑
l=1

nl∑
i=1

Z
(j)
i,l Z

(j′)
i,l =

k∑
l=1

nl

n

1
nl

nl∑
i=1

Z
(j)
i,l Z

(j′)
i,l

a.s.−→ Rj,j′

by the strong law of large numbers (clearly Z
(j)
i,l are bounded random variables).

Therefore Z ′Z/n
a.s.−→ R, so by A3 we have

n(Z ′Z)−1 a.s.−→ R−1 (A.1)

and, in particular, with probability one, Z ′Z is nonsingular for large n. We have

Z ′Y

n
=


1
n

∑k
l=1

∑nl
i=1 Z

(1)
i,l Yi,l

...
1
n

∑k
l=1

∑nl
i=1 Z

(k)
i,l Yi,l

 a.s.−→


∑k

l=1 alE
(
Z

(1)
1,l Y1,l

)
...∑k

l=1 alE
(
Z

(k)
1,l Y1,l

)
 . (A.2)

Let v = (v1, . . . , vk) be the vector on the right side of (A.2). From (A.1) and (A.2)
we have (

β̂
(h)
0 , β̂

(h)) a.s.−→
(
β

(h)
0,lim, β

(h)
lim

)
= R−1v. (A.3)

Consider (2.9), using β
(h)
lim for β. We have

Î
h,β

(h)
lim

=
1
n

k∑
l=1

nl∑
i=1

(
Yi,l −

∑k
j=2 β

(h)
j,limZ

(j)
i,l

)
=

k∑
l=1

al

(
1
nl

nl∑
i=1

Ui,l

)
, (A.4)

where Ui,l = Yi,l−
∑k

j=2 β
(h)
j,limZ

(j)
i,l . Let µl(h) = E(U1,l). By A2, E(|U1,l|2+ε) < ∞

and therefore, by A1 we have

n
1/2
l

(∑nl
i=1 Ui,l

nl
− µl(h)

)
d−→ N

(
0, σ2

l (h)
)
,

where
σ2

l (h) = Var (U1,l) + 2
∑∞

g=1 Cov (U1,l, U1+g,l). (A.5)

Since the Markov chains are independent, this implies that

n1/2
(
Î
h,β

(h)
lim

−
∑k

l=1 alµl(h)
)

d−→ N
(
0, σ2(h)

)
, (A.6)
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where
σ2(h) =

∑k
l=1 alσ

2
l (h). (A.7)

Note that (1/n)
∑k

l=1

∑nl
i=1 Yi,l

a.s.−→ B(h, h1) and (1/n)
∑k

l=1

∑nl
i=1 Z

(j)
i,l

a.s.−→ 0,
j = 2, . . . , k. Therefore, from the first equation in (A.4), Î

h,β
(h)
lim

a.s.−→ B(h, h1)

which, together with (A.6), proves that
∑k

l=1 alµl(h) = B(h, h1).

To conclude the proof, we consider the difference between Î
h,β̂

(h) and Î
h,β

(h)
lim

.

Let e(j, l) = E
(
Z

(j)
1,l

)
. We have

n1/2
(
Î
h,β̂

(h) − Î
h,β

(h)
lim

)
= n1/2

k∑
j=2

(βj,lim − β̂j)

(
1
n

k∑
l=1

nl∑
i=1

Z
(j)
i,l

)

=
k∑

j=2

(βj,lim − β̂j)

(
k∑

l=1

al n
1/2

nl∑
i=1

[
Z

(j)
i,l − e(j, l)

nl

])
,

(A.8)

where the second equality in (A.8) follows from the fact that
∑k

l=1 ale(j, l) = 0.
Now, for each l = 1, . . . , k, and j = 2, . . . , k, by A1, n1/2

∑nl
i=1

[
(Z(j)

i,l −e(j, l))/nl

]
is asymptotically normal, so in particular is bounded in probability. Together
with (A.3), this implies that the right side of (A.8) converges in probability to
0. We conclude that n1/2

(
B̂reg(h, h1) − B(h, h1)

) d−→ N
(
0, σ2(h)

)
.

The proof for B̂(h, h1) is simpler. Let fl = E(Y1,l), and note that
∑k

l=1 alfl =
B(h, h1). We have

n1/2
(
B̂(h, h1)−B(h, h1)

)
= n1/2

(
1
n

k∑
l=1

nl∑
i=1

Yi,l−fl

)
=

k∑
l=1

a
1/2
l

∑nl
i=1(Yi,l−fl)

n
1/2
l

d−→N
(
0, τ2(h)

)
,

in which

τ2(h) =
∑k

l=1 alτ
2
l (h), where τ2

l (h) = Var (Y1,l) + 2
∑∞

g=1 Cov (Y1,l, Y1+g,l).
(A.9)

The variance term σ2
l (h) in (A.5) is the asymptotic variance of the standard-

ized version of the average
∑nl

i=1 Ui,l. If we knew the Ui,l’s, we could estimate
σ2

l (h) by estimating the initial segment of the series in (A.5) using standard
methods from time series (see Geyer (1992)) or via batching. Now the Ui,l’s
involve β

(h)
lim, which is unknown, but our proof indicates that the effect of using

β̂
(h)

instead of β
(h)
lim in the expression for Ui,l is asymptotically negligible.
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