Statistica Sinica 20(2010): Supplement 1

Extended Tapered Block Bootstrap
Xiaofeng Shao
University of Illinois at Urbana-Champaign

Supplementary Material

This note contains proofs for Theorems 3.1 and 3.2.

Appendix

In the appendix, C' > 0 denotes a generic constant that may vary from line
to line. Denote by Zy = {0,1,2---,}. For v = (v, -+ ,v,)" € (Z4+)P, x € RP,
write x¥ = II?_ 2}, ! = IIL_, (v;!). For a vector z = (z1,---,z4)" € RY, let
||| = Z?Zl |z;| denote the ' norm of . Write ¢, = DVH (u)/v!. The following
three statements correspond to the equations (4), (5) and (6) in the paper and
are needed in our proofs.

o I+(t—5)A0
cov*(fi, fo) = OU/R)+lwl? D wih)wi{h—(t—s)} (11)
h=1+(t—s)V0
< {1+ O(L/k)}.

N
H(Xy) = H(p)+V'N"'Y (X, —p)+ Ry, (1.2)

=1
H(Xy) = H(w+V' (XN —n) + Ry. (1.3)

Proof of Theorem 3.1: (i) We apply a Taylor expansion to H (X% ) around p and
write H(X3%) — H(p) = Jon + Jin + Jan, where

Jov = Y, Xy —w' Siv= Y Xy -,
folli=1 [[of1=2

1
Ty = 33 ()7 (Xf - )" /0 (1= w) DU H{p+ w(Xy — u)}dw.
llolli=3
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In the sequel, we shall show

E{Nvar*(Jin)} = O(1/N), (1.4)
E{Nvar*(Jon)} = O(1/N?), (1.5)
E{Ncov*(Jon,Jin)} = O(I/N), (1.6)
E{M;Nvar*(Jon)} = 0%+ B2 +0(17?). (1.7)

If (1.4)-(1.7) hold, then by the Cauchy-Schwarz inequality, we get
NE|cov* (Jon, Jon)| < NEY?{var* (Jon ) YEY 2 {var*(Jon)} = O(1/N) = o(I72)

and NE|cov*(Jin, Jon)| = O(1/N3/2) = 0(172) under the assumption that [ =
o(N'/3). Thus the conclusion follows.

To show (1.4), we note that for every ||v||; = 2, there exist vy,vo € (ZT)™,
|vi]i = 1, |Jveli = 1 and v = v; + v2. Then we have (X% — p)¥ = (X3 —
u)" (X3 — p)** and

N
* vk 1 * ~ o~ ~ o~
var {(XN - M)v} = mvar Z (th - M)Ul (th - M)UQ{ftlfw - E(ftlftQ)}
t1,t2=1
1 N
= Ni Yo (X = ) (Key — )" (Xag — ) (Xgy — )" (1.8)
t1,t2,t3,t4=1

XCOV*(JEH ftzv ftsft4)'
It is straightforward to show that uniformly in (¢1,¢9,t3,t4),

N4 k !

cov* (fo, foo, fes fra) = yEIPAES > > wi(ha)wi(ho)wi(hg)wi(ha)
UL 51 g g3 vja=1 haho,ha, ha=1
= COV*{]_(SJ'1 = tl — hl, Sj2 = tg — hg), (19)

1(Sj =t3 — hs, Sj4 =14 — h4)} = O(l)

Hence it follows from Assumption 3.2 (with r = 4) that

N
* Va3 C
ElNvar' {(Xx —m)" N < 5 D, IB{(X — )" (X, — )" (X — )"
t1,t2,t3,t4=1
c N
(Xe, =)} < 3 > {leov(XPE, X2 )eov(XpE, Xp2))
t1,t2,t3,ta=1
Hcov(Xt”ll,XZ’SI)COV(XS,XZZE)] + |cov(X? lef)cov(X”2 XZ’31)|

t1 to )

Heum(Xp!, Xp2, XpH Xp?)[} = O(N 7.
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Thus (1.4) holds. Under Assumption 3.1, we have that
var*(Jon) < CE{|[ X% — pll®(1+ [l + | X5 — ul®)} (1.10)

which implies (1.5) by Lemma 0.1. Next, to show (1.6), we write

cov*(Jon, Jin) = Z Z Z Cvy Cogtus

lorlli=1Jlv2ll1=1 [lvs[l1=1

xeov' {(Xy — )™, (X — ) (X§y — )™}
Note that for any three random variables X, Y, Z, cov(X,Y Z) = E{ X -E(X)}{Y —
EY)HZ-E(Z)} +E(Y)cov(X, Z)+E(Z)cov(X,Y). Then for each (v, ve,v3),
we have cov* {(X% — )%, (X% — u)?2(X% — p)3} = Wiy + Wan + Wi, where

Wiy = E[{(Xy —p)" = E((Xy — )" ) HEN - 0)” —E*(X§ — 1))}
{(XF = )" —E (X} — 1))},
Wan = EY(Xy — p)?cov™ {(X5 — )", (X} — 1)},
Wiy = E*(X§ — p)Scov™{(X} — )", (XX — n)™}
Write Wiy = N73 Zi\it%tg:l(th — )" ( Xy — )2 (X — )3 CF (t1, to, t3), where
CF(t17t27t3) = E*[{fh - E*(ftl)}{ftz - E*(fm)}{fts - E*(ft:s)}]

N3 k l
= Fapy Y wlhului)

7=1 hi,ho,h3=1
XE[{I(S]' =1t — hl) — P(S] =1t — hl)}{l(Sj =19 — hg)
—P(Sj =t — h2) {1(S; = t3 — h3) — P(S; = t3 — h3)}].

It is not hard to see that |C'F(t1,t2,t3)] < Cl uniformly over (t1,t2,t3). So
[EWin)| < CINTS e leum{(Xey, — )", (Xey — )2, (Xeg — p)*}| =
O(I/N?) under Assumption 3.2. Similarly, we have
N ~ ~ ~
Way = N7 37 (Xuy =) (X = )" (Xiy = ) E* (fi)oov* (Fu, fiy)
t1,t2,t3=1
and [E(Way)| < CN~2. The same argument yields |E(W3y)| = O(N~2) under
Assumption 3.2. Therefore (1.6) holds.
It remains to show (1.7). Let Y; = V/(X; — u). Then

N
M -
M;Nvar*(Jon) = Wl > YiYicov* (fi, fo) (1.11)

t,s=1
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In view of (1.1), the above expression is the same as the TBB variance estimator
(PP (2001)) except for the mean correction, so (1.7) basically follows from the
argument in the proof of Theorem 1 in PP (2001). We omit the details.

(ii). Following the proof of Part (i), the result follows from the following

statements:
var{ Nvar*(Jix)} = O(N?), (1.12)
var{ Nvar*(Jon)} = O(N™?), (1.13)
var{Nvar*(Jon)} = Bal/N +o(l/N), (1.14)

since if (1.12)-(1.14) hold, then by the Cauchy-Schwarz inequality and (1.4)-(1.7),
var{ Ncov*(Jon, Jin)} = O(1/N), var{Ncov*(Jon, Jon)} = O(N2)

and var{ Ncov*(Jin, Jon)} = o(l/N).
To show (1.12), we note from (1.8) that for each v = v1 + vo, ||vi|1 = 1,

[v2][1 =1,

N

* VK 1
var[var' {(Xy — )"} = 575 > cov{(Xy — )" (Xey — 1) (X — )"
tj=1,j=1,-.8

(Xoy = )" (Xas = )" (Xig = 1) (Xay — )" (Xog — 1)}
xcov* (fi, fo, fis fru) oV (fis fro For frs)-

By Theorem 2.3.2 in Brillinger (2001), the major summand that involves the
covariance of X;s can be expressed as linear combinations of product of cumulants
up to the 8-th order. Assumption 3.2 (with » = 8), in conjunction with (1.9),
implies that var[var*{(X3 — )’} = O(N~%), which results in (1.12). According
to (1.10) and Lemma 0.1, we have

var{Nvar* (Jan)} < ON?E{E"| X, — ul® + E*| X5 — 22 < ON~4,

Finally, (1.14) follows from (1.11) and the argument in Theorem 2 of PP (2001).
The proof is complete.

o

Proof of Theorem 3.2: Let Xp = 372 cov(Xp, X;). Since VN(Xy — p) —p
N(0,%F), we have VN{H(Xy) — H(u)} —p N(0,02%) by the delta method.
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Let ®(z) be the standard normal cumulative distribution function. By Polya’s
theorem,

sup [PVN{H(Xx) = H()} < 2] = @(a/or)| = o(1) as N = oc.

Then the first assertion follows if we can show that

sup [P*[VN(H(X3) ~ E*(H(X3)} < ] = @(a/or)| = op(1) as N = oo

Recall the notation ¥; = V/(X; — p1). Based on (1.3), we have
— — N ~ ~
H(X%) —E{H(X3)} = N ) _Yi{fi —~E*(f)} + Ry — E*(Ry).
t=1

Since VNE*|RY| = 0,(1), which is to be shown below, it suffices in view of
Lemma 4.1 of Lahiri (2003) to show that

N
VMK Y Vil fi =B (f)} —p N(0,0F)
t=1

in probability. Note that

N
(k) ~'/MY Vi fy = (k1)
t=1

k
Jj=

> W(h)mYSﬁh,
1 h=1
which is identical to the bootstrap sample mean delivered by the TBB applied
to the series Y; (PP (2001)) except for a mean correction. Thus the remaining
proof basically follows the argument in the proof of PP’s (2001) Theorem 3. We
omit the details.

By Slutsky’s theorem, the second assertion follows from v/ N[E*{H (X})} —
H(XN)] = 0p(1). In view of (1.2) and (1.3), it suffices to show that

VNE*RY| = o,(1), (1.15)
N
NN VAR (fi) =1} = op(1), (1.16)
t=1
VNRy = o,(1). (1.17)

The assertion (1.15) is true since

E{E'|/iv} < CE{E'|X - ul?} < C/N,
E{E’|Jonl} < CEE{| X% — P+ [l + 1X5 — ul®)}) < ON72,
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where we have applied Lemma 0.1. Further, since E*(f;) = N/(N — 1+ 1) when
[ <t <N —1[1+1, and is bounded, (1.16) follows. Finally, a Taylor expansion of
H(Xy) around pu yields

1
Ry =2 Z ()N Xy — ,u)”/o (1 —w)D"H{p+w(Xy — p)}dw.

[[olli=2

Under Assumption 3.1 on H (), it is straightforward to derive that max{|D"H (x)| :
o] =2} < C(1+ [l2[|**1), so

E(|Ry|) < CE{|| Xy — pl?(1 + |l + | Xy — pl ")} < ONTH,

by Lemma 3.2 of Lahiri (2003). Thus (1.17) holds and this completes the proof.
¢

LemMA 0.1, Assume X; € L7709, 6 >0 forr > 2, r € N and A(|(r +1)/2];1) <
00. Then E{E*| X% — pl|"} < ON—T/2.

Proof of Lemma 0.1: It suffices to show that for any v;, j = 1,---,m, where
v; is a m-dimensional unit vector with j-th element being 1 and 0 otherwise,
E{E*|(X} — u)"|"} < CN~"/2. Denote by Z; = Z;(j) = (X; — p)?%. Under our
moment and mixing assumptions, by Lemma 3.2 of Lahiri (2003), we have

r

N
E|> Z| <CN"2. (1.18)
t=1
Let Hj =S4 wi(h) SN Z{1(S; =t — h) — P(S; =t — h)}. Note that
) N k "
E*(Xx - ™" = NTE*|> Zfi] <CNE*|) H,
t=1 j=1
k N "
+ONT YN wy(h)>ZP(S; =t — h)

j=1h=1 t=1

= CNira/l -+ VQ)

It is easy to see that

N T
2. 2
t=1
kool

N
C
+— - - —1
E ;_1: h§1j w(h) ;:1: Zat—h<0ort—h>N-—I)

[E(V2)| < CE

T
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which is bounded by CN"/2 in view of (1.18). Regarding V4, we apply Burkholder’s
inequality and get

r/2 r/2
k k k
Vi<CE* > H| <C|> E | < CKPVY R H
j=1 j=1 j=1
whereas by (1.18),
l N T C l N—i+h |"
h=1 t=1 h=1 t=h
N—-I]| 1 r C l N—-Il+h r
~1
< (N—-1+1) Zwl(h)zg+h + N Zwl(h) Z Z
g=0 |h=1 h=1 t=h

By a variant of Lemma 3.2 of Lahiri (2003), E| 22:1 wy(h)Zy|" < CI"/2. Thus
we can derive [E(Vy)| < Ck'/21"/? and E{E*|(X% — p)%|"} < CN~"/2. The
conclusion is established.

%



