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A Appendix: Proof of Theorem 3.3.

We start the proof with the negative result. The proof is standard. We ex-
hibit a small perturbation that cannot be detected. The perturbed density
should remain a probability density function with a bounded second deriva-
tive. It should be however very wiggly so that the exponential mixing would
smooth it out to make it hardly detectable through ψ. Very convenient can-
didates could be high derivatives of the normal density, but the supports of
these functions are not bounded, while the support of ϑ is bounded at least
from below. We therefore use derivatives of approximations of the normal
density. Here are the details.

Consider

πm(ξ) = πm(ξ; c, d) =
{
1−

(ξ − c

d

)2}m
1{ξ ∈ (c− d, c+ d)}

for some c, d, where 1 denotes the indicator function. πm is approximately
the normal pdf normalized improperly, cf. (11) below. Note that for k ≤ m:∫ c+d

c−d
euξπ(k)m (ξ) dξ = (−1)kuk

∫
euξπm(ξ) dξ. (1)

and

π(2k)m (c) = (−1)kd−2k

(
m

k

)
(2k)! (2)

Write

πm(ξ) = (1− ξ − c

d
)m(1 +

ξ − c

d
)m

and taking the derivative of the RHS:
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π2km (ξ)

= d−2k
2k∑
i=0

(
2k

i

)
(−1)i

m!

(m− i)!
(1− ξ̃)m−i m!

(m− 2k + i)!
(1 + ξ̃)m−2k+i

= d−2k
k∑

i=0

(−1)iai, say.

(3)

For simplicity we write ξ̃ = (ξ − c)/d. Note that

ai+1

ai
=

2k − i

i+ 1

m− i

m− 2k + i+ 1

1 + ξ̃

1− ξ̃

It follows that the RHS of (3) is a sum of unimodal terms with alternating
signs (i.e., there is an l such that a1, . . . , al is an increasing sequence, while
al, . . . , ak is a decreasing one), where l is defined by:

2k − l

l + 1

m− l

m− 2k + l + 1
= {1 + O(1)}1− ξ̃

1 + ξ̃
. (4)

Then

al ≥ al −
∑
j=1

(al+2j−1 − al+2j)−
∑
j=1

(al−2j+1 − al−2j)

= (−1)l
2k∑
i=0

(−1)iai

= al − al+1 +
∑
j=1

(al+2j − al+2j+1)− al−1 +
∑
j=1

(al−2j − al−2j−1)

≥ −al,

(5)

where, if necessarily, the sequences are padded by zeros at the ends. But
then for some C = O(1), C may vary from line to line:

al = (2k)!

(
m

l

)(
m

2k − l

)
(1− ξ̃)m−l(1 + ξ̃)m−2k+l

≤ C(2k)!
m2m(1− ξ̃)m−l(1 + ξ̃)m−2k+l

ll(m− l)m−l(2k − l)2k−l(m− 2k + l)m−2k+l

= C(2k)! (1− ξ̃2)m−2k
{k(1− ξ̃)

2k − l

}2k−l {k(1 + ξ̃)

l

}l {m
k

}2k

×
{
1 +

l

m− l

}m−l{
1 +

2k − l

m− 2k + l

}m−2k+l

(6)
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To deal with the following terms of the RHS of (6) we assume that 0 < l ≤ k.
The case 2k > l ≥ k is dealt similarly. The case of l ∈ {0, 2k} is simple:{k(1− ξ̃)

2k − l

}2k−l {k(1 + ξ̃)

l

}l
=

{k(1− ξ̃)

2k − l

}2(k−l){1 + ξ̃

1− ξ̃

2k − l

l

}l

≤ 2k
{1 + ξ̃

1− ξ̃

2k − l

l + 1

}l

≤ 3k
{m− 2k + l + 1

m− l

}l
, by (4)

≤ 3k

(7)

The next bound is easy,{
1 +

l

m− l

}m−l{
1 +

2k − l

m− 2k + l

}m−2k+l
< e2k, (8)

since (1+1/x)x < ex for any x > 0. We conclude from (3), (5), (7), and (8):

∥π(2k)m ∥∞ ≤ al ≤ C(2k)!
{
c2
m

k

}2k
(9)

for c2 > 1.
Let

∆m,k(ξ) =
d2k

(2k + 2)!(c1c2)2k
π(2k)m (ξ)

where we take m = ⌈c1k⌉. Note that by (9) ∆
(2)
m,k is uniformly bounded,

while by (2)

∆m,k(c) ≥ c3k
−2(c1c2)

−2k

(
m

k

)
≥ c−k

4 (10)

for some c4 > 1. However by (1)∫
ξ−1

{
euξ − 1

}{
ϑ(ξ) + ξ∆m,k(ξ)

}
dξ

= ψ(u) +
d−2(m−k)

(2k + 2)!c2k2
u2k

∫ b

a
πm(ξ)euξ dξ

= ψ(u) + (−1)k
{
1 + O(1)

} d2k

(2k + 2)!c2k2
u2k

∫ b

a
e−m(ξ−c)2/d2euξ dξ

= ψ(u) + (−1)k
{
1 + O(1)

} √
2πd2k+1

(2k + 2)!m1/2c2k2
u2keuc.
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Hence if

d2k+1

(2k + 2)!m1/2(c1c2)2k
= O(n−1/2),

or k log k − log n → ∞, then one would not be able to test between ϑ to
ϑ + ξ∆m,k. In particular this happens when k = log n/ log log n. However,
then, by (10), nα∆m,k(c) → ∞ for any α > 0. This proves that ϑ cannot be
estimated in any nα, α > 0 rate.

We move now to the positive result. We suggest an estimator of the
mixing density ϑ whose rate of convergence is easy to evaluate. Of course,
the practical way would be the standard least squares as discussed in Sub-
section 3.3, but then rates are difficult to evaluate. We suggest therefore in
the proof a kernel estimator of g given by

∫
ψ̂(u)K̄(u) du for some K̄ given

below. Here are the details.
If ψ(u) =

∫
g(u; ξ)ϑ(ξ) dξ, let ψs = ψs(u) = e−us(ψ(u)-1). Assume for

simplicity (but wlog) that by assumption ϑ(ξ) = 0 for ξ ̸∈ (s0 − d, s0 + d).
Since

ψs(u) =

∫
eu(ξ−s)ξ−1ϑ(ξ) dξ − e−us

∫
ξ−1ϑ(ξ) dξ

ψ(k)
s (u) =

∫
(ξ − s)keu(ξ−s)ξ−1ϑ(ξ) dξ − (−1)kske−us

∫
ξ−1ϑ(ξ) dξ,

then formally:√
m

2πd2

m∑
k=0

(
m

k

){−1

d2
}k
ψ(2k)
s (u)

=

√
m

2πd2

∫
πm(ξ; s, d)eu(ξ−s)ξ−1ϑ(ξ) dξ

−
√

m

2πd2
πm(s; 0, d)e−us

∫
ξ−1ϑ(ξ) dξ,

where πm(·) = πm(·; s, d). Note that for any smooth bounded function h
with two bounded derivatives:√

m

2πd2

∫
πm(ξ; s, d)h(ξ) dξ

=

√
m

d2

∫
φ
{√

m(ξ − s)/d
}
h(ξ) dξ + O(m−1),

= h(s) + O(m−1),

(11)
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where φ is the standard normal density. Hence

√
m

2πd2

m∑
k=0

(
m

k

)(−1

d2

)k
ψ(2k)
s (u) → s−1ξ(s) as m→ ∞. (12)

Let ψ̂s be an estimator of ψs. Let K be a smooth kernel of order 2m,
integrated to 1, and with bounded support kernel. Then by (12) ϑ(s) can
be estimated by

ϑ̂(s) = s

√
m

2πd2

m∑
k=0

(
m

k

)(−1

d2

)k
∫
K(u)ψ̂(2k)

s (u) du

= s

√
m

2πd2

m∑
k=0

(
m

k

)(−1

d2

)k
∫
K(2k)(u)ψ̂s(u) du

=

∫
K̄(u)ψ̂s(u) du

(13)

where

K̄(u) ≡ s

√
m

2πd2

m∑
k=0

(
m

k

)(−1

d2

)k
K(2k)(u).

Since we have already developed the machinery we pick

K(u) = γm

√
2m

2πσ2
π2m(u;u0, σ)

where γm = 1 + O(1). Hence by (9)

∥K̄∥∞ ≤ s
m

2πσd

m∑
k=0

(
m

k

)(cm
k

)2k
(2k)! = O(cmmm). (14)

If ψs can be estimated at a standard polynomial rate, ψ̂ − ψ = Op(n
−γ),

then, by (13) and (14)m ψ̂ induce an error of O(cmmm/nγ). To this we
the bias of O(m−1) as given by (11) should be added. The minimization of
the error estimate is obtained therefore of the order of the value at m when
these two terms are equal:

m logm− γ log n = logm.

By taking m = mn = α log n/ log log n the rate of

ϑ̂(s)− ϑ(s) = Op

(
n−α log logn/ logn

)
,

is achieved for any α < 1. We have shown that the optimal rate of conver-
gence is nαn for some αn → 0 slowly, which complete the proof.
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