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Supplementary Material

A Appendix: Proof of Theorem 3.3.

We start the proof with the negative result. The proof is standard. We ex-
hibit a small perturbation that cannot be detected. The perturbed density
should remain a probability density function with a bounded second deriva-
tive. It should be however very wiggly so that the exponential mixing would
smooth it out to make it hardly detectable through . Very convenient can-
didates could be high derivatives of the normal density, but the supports of
these functions are not bounded, while the support of ¥ is bounded at least
from below. We therefore use derivatives of approximations of the normal
density. Here are the details.
Consider
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for some ¢, d, where 1 denotes the indicator function. 7, is approximately
the normal pdf normalized improperly, cf. (11) below. Note that for £k < m:
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and taking the derivative of the RHS:
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For simplicity we write £ = (¢ — ¢)/d. Note that
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It follows that the RHS of (3) is a sum of unimodal terms with alternating

signs (i.e., there is an [ such that aq,...,q; is an increasing sequence, while
a, . ..,ay is a decreasing one), where [ is defined by:
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where, if necessarily, the sequences are padded by zeros at the ends. But
then for some C'= O(1), C may vary from line to line:
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To deal with the following terms of the RHS of (6) we assume that 0 < [ < k.
The case 2k > | > k is dealt similarly. The case of | € {0, 2k} is simple:
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since (14 1/x)* < e* for any z > 0. We conclude from (3), (5), (7), and (8):
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where we take m = [ci1k]. Note that by (9) A®
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while by (2)
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for some ¢4 > 1. However by (1)
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Hence if
J2k+1
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= o(n 1),

or klogk — logn — oo, then one would not be able to test between ¥ to
¥+ Ay, k. In particular this happens when k = logn/loglogn. However,
then, by (10), n®A,, (c) — oo for any a > 0. This proves that ¢ cannot be
estimated in any n®, a > 0 rate.

We move now to the positive result. We suggest an estimator of the
mixing density 9} whose rate of convergence is easy to evaluate. Of course,
the practical way would be the standard least squares as discussed in Sub-
section 3.3, but then rates are difficult to evaluate. We suggest therefore in
the proof a kernel estimator of g given by [ &(u)f( (u) du for some K given
below. Here are the details

If Y(u) = [g(u; &) ¥(E)dE, let s = s(u) = e *5(¢p(u)-1). Assume for
simplicity (but wlog) that by assumption 9¥(§) = 0 for £ & (sp — d, so + d).
Since
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then formally:
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where m,,(-) = mn(-;s,d). Note that for any smooth bounded function h
with two bounded derivatives:
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where ¢ is the standard normal density. Hence
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Let 12)3 be an estimator of 5. Let K be a smooth kernel of order 2m,
integrated to 1, and with bounded support kernel. Then by (12) 9(s) can
be estimated by
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Since we have already developed the machinery we pick
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where v, = 1+ o(1). Hence by (9)
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If ¥ can be estimated at a standard polynomial rate, 1/3 — 1 = Op(n77),
then, by (13) and (14)m ¢ induce an error of O(¢™m™/n?). To this we
the bias of O(m~!) as given by (11) should be added. The minimization of
the error estimate is obtained therefore of the order of the value at m when
these two terms are equal:

where
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By taking m = m, = alogn/loglogn the rate of
J(s) — 0(s) = Op (n—oolosn/logn)

is achieved for any o < 1. We have shown that the optimal rate of conver-
gence is n®" for some «;, — 0 slowly, which complete the proof.



