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The Hebrew University of Jerusalem and Humboldt-Universität zu Berlin

Abstract: We consider a semiparametric model for the weight function in a biased

sample model. The object of our interest parametrizes the weight function, and

it is non-Euclidean. The model discussed is motivated by the estimation of the

mixing distribution of individual utility functions in the DAX market. We discuss

the estimation rate of different functionals of the weight functions.

Key words and phrases: Empirical pricing kernel, exponential mixture, inverse

problem, mixture distribution, risk aversion.

1. Introduction

A sample X1, . . . , Xn is considered biased if it is sampled from a density p

which is represented as

p(x) =
q(x)w(x)∫
q(u)w(u)du

. (1.1)

Here q is some ‘natural’ pdf (probability density function) for the problem, rep-
resenting the ‘true’ underlying distribution, while w is a given weight function
that biases the sample. In a standard example, X represents the severity of
the disease, and q is the density of X among patients at admission to the hos-
pital. However, it may be more convenient to take a random sample from the
population of patients who are in the hospital at a given time. If the time of hos-
pitalization is proportional to the severity of the case, then the sample is taken
from the density p, which is equal to q ‘length biased’ with w(x) ≡ x. Vardi
(1985) was the first to systematically analyze these models; asymptotic theory
was developed in Gill, Vardi and Wellner (1988); Gilbert, Lele and Vardi (1999)
extended the model to the situation where the weight function depends on some
parameter, w(x) = w(x; f); the large sample properties were discussed in Gilbert
(2000). Equation (1.1) has some similarities to the classical choice-based sam-
ple problem, Manski and Lerman (1977), or retrospective case-control studies,
Mantel (1973). In fact one can consider the situation as if one has an infinite
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(a) (b) (c)

Figure 1. The DAX data, 24/03/2000 half a year look ahead: (a) p, the
historical density; (b) q, the risk neutral density; (c) The estimate of f , the
mixing density. Figures are taken from DHM.

sample from the control group, and hence q is known, and a finite sample from
the control, the biased sample. The likelihood ratio between the two is the given
w(x; f). The main difficulty we face in this paper is the particular form of w(x; f)
we have.

Technically speaking, our paper is about estimating f , the parameter of the
weight function, w(x) = w(x; f). In the model we consider, q is taken as known,
while the weight function is parametrized by a non-Euclidean parameter. This
brings us to an inverse problem of estimating and demixing the weight function.

In subject matter, our model is motivated by the research on risk aversion
and proclivity, and more precisely on the empirical pricing kernel (EPK), see
Detlefsen, Härdle and Moro (2007) (hereafter DHM). The EPK describes the
apparent utility behavior as function of the individual investors utility function.
In this model q is the risk neutral density of asset pricing, and is derived from
theoretical considerations. The density p on the other hand is the density of the
empirical (historical) prices. See parts (a) and (b) of Figure 1 for an example.
In asset pricing the EPK links a risk neutral investor’s behavior to individual
utilities, which gives in our notation a semiparametric modeling of the weight
function w. The integral function of the pricing kernel q/p is the utility function
used by a representing individual. Knowing p and q yields the exact form of the
utility function, cf. Ait-Sahalia and Lo (2000), and Rosenberg and Engle (2002).
The risk neutral (state price) density (SPD) q can be calculated from market
data on European options. There are more than 5,000 observations each day for
maturity from one week to two years. The SPD can therefore be estimated very
precisely. Much empirical research work has demonstrated the so called EPK
paradox: the resulting utility function is partially concave and partially convex,
more precisely of the Friedman and Savage type, Friedman and Savage (1948).
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Figure 2. The utility function U(·; ξ) of (3.5) (α1 = 2, α2 = 2.25, c = 2)
for two different values of ξ (solid lines), and of (3.8) for two values broken
lines.

This so called risk aversion puzzle has also been recently discussed in Chabi-Yo,
Garcia and Renault (2008); a recursive utility approach to dynamic pricing kernel
estimation is published in Gallant and Hong (2007); a fundamental reference on
asset pricing theory is the book by Cochrane (2005).

It is assumed in DHM that the observed density of the DAX value has density
of the form p(x) = cq(x)w(x; f), where q ∈ {qν , ν ∈ N ⊆ Rd} is the theoretical
derived risk neutral density, assumed to follow a given parametric function, and
c is a normalization factor, that is, of the type (1.1). The weight function is
theoretically derived as

w(x; f) =
1
U ′ (x), (1.2)

where U is the market utility function, and prime denotes derivative. The mar-
ket utility is estimated for option data and available historical data, and it also
showed the risk aversion puzzle for the DAX stock market. In DHM an aggre-
gation mechanism was proposed that similarly to Chabi-Yo, Garcia and Renault
(2008) uses a switching point ξ. This point characterizes the investors switch
from a bearish (low return) to a bullish (high return) risk aversion pattern. A
graph of two different utility functions u(·; ξ) with switching points ξ1 < ξ2 is
presented in Figure 2.
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Simply averaging the utilities is not possible since utilities for different in-
vestors are incomparable. One therefore specifies first a utility level u and aggre-
gates the outlooks on the returns Ri with u = U(Ri; ξi), i = 1, 2, . . . . The aggre-
gate estimator of the switching return equals average{U−1(u, ξi), i = 1, 2, . . . } if
all investors have the same market power. Denoting the investors inverse utility
function by g and assuming a distribution of switching points, the market utility
function Uf is itself assumed to be a function of the mixture of the individual
investors:

x = U−1
f (u) =

∫
Ξ

g(u; ξ)f(ξ)dξ. (1.3)

Here ξ ∈ Ξ denotes an investor type, f is the density of the investors’ distribution,
and {g(·; ξ) : ξ ∈ Ξ} is the (known) class of possible inverse utility functions of
the different investors. A subject of type ξ has the inverse utility function g(·; ξ)
or, equivalently, he has the utility function u(·; ξ) satisfying g{u(x; ξ); ξ} ≡ x.
The problem we consider is finding the density f. We obtain from (1.1)−(1.3)
the representation:

p(x) = cq(x)
∫

∂

∂u
g(u; ξ)f(ξ)dξ,

where u solves
x =

∫
g(u; ξ)f(ξ)dξ. (1.4)

See Figure 1 for an example taken from DHM of estimates of p, q, and f . See
also Figure 2 for an example of g−1(·; ξ).

Aggregation problem (1.3) is a way of aggregating preferences that is not
based on the equilibrium theory usually associated with Walras (1874). The
situation considered here is of a different type and is hypothetical when applied
to real markets. The DAX market data were mentioned as suitable for testing
the disaggregation techniques described in the paper.

Aggregation procedure (1.3) relates to the situation where the price of an
asset is obtained as the result of a survey of investors (or experts) before they
made trades. Thus, this price should be considered as a forecast for the next
period, not a reflection of the struggle for limited resources in the market between
investors with different preferences and endowments.

The survey proceeds as following. Each market participant is asked what the
price will be if the conditions in the market are, for example, extremely good.
Extremely good corresponds to some utility level ũ1 in the minds of investors. In
this way all investors agree that they are discussing an economic situation with
the same utility level. As the next step, each investor forms his forecast about
how high the prices would be in such a situation. Those forecasted prices are
recorded and averaged to produce an aggregate opinion of all market participants
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(or experts). If the investors have equal market power, their individual opinions
will be averaged with equal weights. The forecast for different economic situations
corresponding to other utility levels is formed in a similar way.

To sum up, (1.3) describes a mechanism for forming a forecast about future
prices. It gives an idea of which opinions prevailed in a group of investors or
experts that was able to predict prices correctly before trading, for example if
they were more optimistic or pessimistic investors (experts), and to what degree.

In this paper we investigate the estimation of the non-Euclidean parameter
f of a few utility functions. The result is typical for inverse problems, in that
slightly different assumption yield completely different results. In fact, we present
three similar models, similar to those investigated in DHM, that exhibit these
behaviors:

(i) there is no consistent estimator of f ;

(ii) f can be estimated at a regular nonparametric rate of n−α;

(iii)f can be estimated, but at a very slow rate.

Interestingly, there is a a sort of uncertainty principle: the better we can
estimate the function U−1(u), the worse we can demix it and estimate f . This
is not unexpected. We cannot estimate f well when large differences in f have
only minor impact on

∫
g(·; ξ)f(ξ)dξ.

The structure of the rest of the paper is as follows. In Section 2, we suggest an
algorithm for calculating the generalized maximum-likelihood estimator (GMLE)
for the semiparametric weight function of the model suggested by DHM. Rates
of convergence of the demixing estimator for the DHM’s model are discussed in
Section 3, as well as of estimates of the mixture itself.

2. EPK: Model and an EM estimator

We consider the EPK problem. We start from (1.4) and we assume that q

is known. In practice, it is assumed only to belong to some parametric family
{qν}. However, we deal in the following with rates that are much slower than
the parametric

√
n rate, and the estimate of ν is based on a much larger sample

than the estimates of the rest of the parameters. Therefore, the assumption that
ν is known considerably simplifies the discussion without impacting the results.

Rewrite (1.4) as

p

{ ∫
g(u; ξ)f(ξ)dµ(ξ)

} ∫
∂

∂u
g(u; ξ)f(ξ)dµ(ξ)

= cq

{ ∫
g(u; ξ)f(ξ)dµ(ξ)

}{ ∫
∂

∂u
g(u; ξ)f(ξ)dµ(ξ)

}2

, (2.1)
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where µ is some dominating measure (e.g., Lebesgue or the counting measure).
Noting that the LHS of (2.1) integrates to 1, c can be found to yield

p

{ ∫
g(u; ξ)f(ξ)dµ(ξ)

}
=

q{
∫

g(u; ξ)f(ξ)dµ(ξ)}
∫

∂
∂ug(u; ξ)f(ξ)dµ(ξ)∫

q{
∫

g(v; ξ)f(ξ)dµ(ξ)}{
∫

∂
∂ug(v; ξ)f(ξ)dµ(ξ)}2dv

.

The market utility U(x) = U(x; f) is given by

x ≡
∫

g
{

U(x; f); ξ
}

f(ξ)dµ(ξ) ≡ ψf

{
U(x; f)

}
.

We obtain

p(x) =
q(x)

∫
∂
∂ug(U(x; f); ξ)f(ξ)dµ(ξ)∫

q(y)
∫

∂
∂ug(U(y; f); ξ)f(ξ)dµ(ξ)dy

=
q(x)ψ′

f{ψ
−1
f (x)}∫

q(y)ψ′
f{ψ

−1
f (y)}dy

. (2.2)

The statistical model assumed by DHM is that we obtain a simple random sample
from p, where p is parametrized in (2.2) by the non-Euclidean parameter f . A
natural approach is to estimate f by the MLE or a variant of it, which we
develop now. Note that ∇fψf (u) = g(u; ·), and by taking the gradient of x ≡∫

g{ψ−1
f (x); ξ}f(ξ)dµ(ξ) we obtain

0 = g{ψ−1
f (x); ·} + ψ′

f{ψ−1
f (x)}∇fψ−1

f (x).

The derivative of the log-likelihood is given therefore by

˙̀
f (ξ) =

n∑
i=1

1
ψ′

f{ψ
−1
f (Xi)}

[
∂

∂u
g{ψ−1

f (Xi); ξ} −
ψ′′

f

ψ′
f

{ψ−1
f (Xi)}g{ψ−1

f (Xi); ξ}
]

− nAf (ξ),

=
n∑

i=1

1
ψ′

f{Ui}

{
∂

∂u
g{Ui; ξ} −

ψ′′
f

ψ′
f

(Ui)g(Ui; ξ)
}
− nAf (ξ),

with Ui = ψ−1
f (Xi), and for all ξ ∈ suppf, where Af (ξ) is the mean of the first

term under f . Since the density of Ui is given by

rf (u) = p{ψf (u)}ψ′
f (u) =

q{ψf (u)}{ψ′
f (u)}2∫

q{ψf (v)}{ψ′
f (v)}2dv

,

we obtain that

Af (ξ) =

∫
q{ψf (u)}{ψ′

f (u) ∂
∂ug(u; ξ) − ψ′′

f (u)g(u; ξ)}du∫
q{ψf (v)}{ψ′

f (v)}2dv
.

We discusse now how a GMLE can be constructed, and suggest a pseudo-EM
algorithm, that is justified as being the limiting result of proper EM algorithms
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applied in approximate models. To be clear, the approximation introduced in the
following is needed only as a justification for an algorithm applied to the formal
model. The algorithm itself is “exact” and maximizes the exact likelihood. The
technical problem we want to circumvent is the exact functional dependency of Xi

and Ui which affects the EM. As an intermediate step we weaken the functional
dependency into a proper statistical dependency.

The model of a random sample from the density p can be well-approximated
as σ → 0 by a Xi = ψf (Ui)+εi, i = 1, . . . , n, where ε1, . . . , εn is a random sample
from N(0, σ2) independent from the random sample U1, . . . , Un taken from the
density rf . Now, the log-likelihood of the joint density is given by

`f =
n∑

i=1

[
log q{ψf (Ui)} + 2 log{ψ′

f (Ui)}
]
− nCf − 1

2σ2

n∑
i=1

(Xi − ψf (Ui))2,

where Cf = log
∫

ql{ψf (v)}{ψ′
f (v)}2dv. By a well-known formula for the Bayes

estimator in the Gaussian measurement error model, here the distribution of
ψf (Ui)−Xi, given Xi, is normal with mean σ2f ′

X(Xi)/fX(Xi) and second moment
σ4f ′′

X(Xi)/fX(Xi) + σ2, where fX is the marginal density of Xi. At the limit
as σ2 → 0, the conditional expectation of the log-likelihood, given the Xi’s,
amounts therefore to replacing Ui by ψ−1

f (Xi). We conclude that the limiting
EM algorithm iterates therefore between the following steps.

The E step:
Ui ← ψ−1

f (Xi), i = 1, . . . , n, (2.3)

The M step:

f ← argmax
[ n∑

i=1

{
log q{ψf (Ui)} + 2 log{ψ′

f (Ui)}
}
− nCf

]
.

Let U = (U1, . . . , Un), X = (X1, . . . , Xn), and denote the E-step by U =
ψ−1

f (X). The M-step can be accomplished by solving the likelihood equation:

0 = ˙̀M
f (ξ; U) =

n∑
i=1

[
q′{ψf (Ui)}
q{ψf (Ui)}

g(Ui; ξ) +
2

ψ′
f (Ui)

∂

∂u
g(Ui, ξ) − Ċf (ξ)

]
, (2.4)

for all ξ ∈ suppf, where

Ċf (ξ) =

∫
[(q′{ψf (v)}/q{ψf (v)})g(v; ξ) + (2/ψ′

f (v)) ∂
∂ug(v, ξ)]q{ψf (v)}{ψ′

f (v)}2dv∫
q{ψf (v)}{ψ′

f (v)}2dv

= E f

[
q′{ψf (U)}
q{ψf (U)}

g(U ; ξ) +
2

ψ′
f (U)

∂

∂u
g(U, ξ)

]
= E f{Tf (U ; ξ)}, say.
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However, there is no need in the M-step to find the exact maximizer of the
log-likelihood. All that is needed is that the likelihood be strictly increasing
(if possible at all) at every M-step. Therefore, the exact M-step given above
can be replaced by an approximate M-step, that is obtained by considering an
approximate Newton-Raphson solution of (2.4), where the Op(

√
n) terms in the

Hessian of the log-likelihood are discarded. That is the term

n∑
i=1

{
∇fTf (Ui; ξ) − E f∇fTf (U ; ξ)

}
.

We consider therefore the Newton-Raphson EM (NR-EM) algorithm:

fi+1 =

{
f̃i , fi + H−1

fi
`M
fi
{·; ψ−1

fi
(X)} `f̃i

> `fi

the solution of (2.3) otherwise,

where Hf : L2(µ) → L2(µ) is the operator Hf (ξ, ζ) = Cov f{Tf (U ; ξ), Tf (U ; ζ)}.

3. EPK: Rates of Convergence

In the previous section we considered the MLE estimate of f . In this sec-
tion we consider simple estimators of the type suggested by DHM. Using these
estimators we will be able to discuss possible minimax rates of convergence. In
essence, we start with a naive nonparametric estimator of the mixture, and in
the second step we improve it or demix it for f .

One simple method for demixing the EPK is to start with (1.4) which can
be written as

1 = c

∫
∂

∂u
g(u; ξ)f(ξ)dξ

q

p

{ ∫
g(u; ξ)f(ξ)dξ

}
= c

∂

∂u

q

p

{ ∫
g(u; ξ)f(ξ)dξ

}
.

Hence q/p{
∫

g(u; ξ)f(ξ)dξ} = α + βu for some α and β, or∫
g(u; ξ)f(ξ)dξ =

(p

q

)−1
(α + βu). (3.1)

The utility function of an individual is defined up to affine transformation. To
assure that it is well defined, we assume that that at the return of 1 the value
of the utility is 0, and that of the derivative is 1. In terms of the inverse utility
function this translates to g(0, ξ) ≡ ∂

∂ug(0, ξ) ≡ 1. Hence

α =
p(1)
q(1)

(3.2)
β =

p′(1)
q(1)

− p(1)
q(1)

q′(1)
q(1)

.
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The parameter f is therefore the solution of∫
g(u; ξ)f(ξ)dξ = ψ(u) (3.3)

for some ψ given explicitly by (3.1) and (3.2). Since q is estimated as a parametric
density (based on a much larger sample), and p can be estimated at a standard
non-parametric rate based on a direct sample from p, ψ can as well be estimated
at a regular density estimation rate.

The analysis of this section starts with (3.3). We assume that ψ and its rele-
vant derivatives can be estimated at a polynomial rate ‖ψ̂(i) −ψi‖∞ = Op(n−αi)
for some αi > 0. The natural estimator suggested by DHM is given by the in-
verse function of a weighed density estimator. Under strict monotonicity and
boundness, the inverse function inherits most properties from the density kernel
estimator.

Note that model (3.3) looks like a linear model. For example, if f is ap-
proximated by a finite distribution with point mass at ξ1, . . . , ξm, and (3.3) is
considered at the k points u1, . . . , uk, then it can be written as

ψ̂(ui) =
m∑

j=1

βjg(ui; ξj) + εi, i = 1, . . . , k. (3.4)

(3.4) looks like a standard linear model and, indeed, we suggest estimating f by
solving it. However, it is not. Most linear model assumptions are violated, e.g.,
ε1, . . . , εk are not i.i.d. and they are not independent of the random u1, . . . , uk.

The basic idea of this section is as follow. We assume that we have some
naive nonparametric estimator of ψ. We then proceed to use the pseudo linear
model (3.4) to to estimate the mixing distribution and to improve the estimate
of ψ itself. We show that this method yields the minimax rates.

How fast can f be estimated? In the rest of the section we present simple
examples following DHM. These examples show that in a very similar models
very different types of behavior can be obtained. It can be that (i) There is no
consistent estimator of f ; (ii) f can be estimated at a regular nonparametric rate
of n−α; (iii) f can be estimated but at a very slow rate. Thus one can suspect
that any optimistic result of demixing depends too heavily on assumptions, and
are a priori not robust (at least in the minimax sense). In particular, any result
should be checked to stand against different changes in the model.

3.1. Switching between two utilities

Following DHM assume that for x, ξ > 0,

U(x; ξ) = α2(1 − c)1−1/α2

{
[x − ξ]1/α1

+ ∨ (x − c)1/α2

}
− α2(1 − c), (3.5)
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where α2 > α1 > 1 are given, c < 0, and [x]+ = x1(x > 0). See Figure 2. Then

g(u; ξ) = min
{

βα2{u + α2(1 − c)}α2 + c, βα1{u + α2(1 − c)}α1 + ξ
}

,

where β = α−1
2 (1 − c)−1+1/α2 . To simplify the notation and generalize the dis-

cussion, we consider a slightly more general case.

Theorem 3.1. Suppose q is known and bounded away from 0 on a open interval,
p has s > 2 bounded derivatives, and

g(u; ξ) =

{
g2(u) −∞ < u ≤ h(ξ)

g1(u) + ξ ∞ > u > h(ξ)
, ξ > 0,

where g1, g2 are continuous with bounded derivatives, and h given by

h−1 = g2 − g1 (3.6)

is a strictly increasing function. Then, f can be estimated with an Op

(n−(s−2)/(2s+1)) error.

Proof. Note that g(u; ξ) is continuous in ξ. Equation (3.3) can be translated to

ψ(u) =
∫ h−1(u)

ξf(ξ)dξ + g2(u)F{h−1(u)} + g2(u)
{

1 − F{h−1(u)}
}

,

where F is the cdf corresponding to the pdf f . Changing variables and consid-
ering (3.6),

ψ{h(s)} =
∫ s

ξf(ξ)dξ − sF (s) + g2{h(s)}.

Taking a derivative gives F (s) = h′(s){g′2{h(s)} − ψ′{h(s)}}. Hence estimating
F at s is equivalent to the estimation of ψ′ at h(s). In other words, f(·) can be
estimated at the same rate as the rate of the estimation of second derivative of
ψ, which in turn is governed by the rate of estimation of the second derivative of
p. Since, by assumption, p has s bounded derivatives, f can be estimated with
an Op(n−(s−2)/(2s+1)) error, cf. Silverman (1986).

3.2. Polynomial and exponential inverse utility function

Theorem 3.1 described a relatively optimistic example. However, modest
changes in the inverse utility function may create situations in which f can hardly
be estimated, or even not at all.

Here is a pessimistic example:
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Theorem 3.2. Suppose the CRRA (constant relative risk aversion) utility

g(u; ζ) = (αζα−1)−1
{

(u + ζ)α − ζα
}

+ 1, u ∈ R, ζ ∈ R+, (3.7)

where α is a known integer. Then there is no consistent estimator of f .

Note that g in (3.7) is scaled such that both its value and its derivative at zero
are equal to 1, that is, it represents one branch of (3.5). The proof of Theorem
3.2 is simple. Since α is an integer, ψ(·) is a function of f only through its first
α moments. Hence, these moments can be estimated, but no other aspects of f

can be estimated or identified.
Seemingly, more and more moments are revealed as α → ∞, and therefore,

by the above argument, f is going to be identified at the limit. However, it
is not clear that the high moments can be estimated effectively. We consider
the limiting case explicitly. The limiting form of the inverse utility function, as
α → ∞ and α/ζ → ξ, is given by

g(u; ξ) ≡ ξ−1(euξ − 1) + 1. (3.8)

The density f is now identified. For example, all its moments can be estimated,
e.g., by

∫
ξif(ξ)dξ = ψ(i+1)(0). We are now going to analyze this model in some

detail. We will argue that if f(·) is assumed to have two bounded derivatives,
then its value at a point can indeed be estimated, but this can be done only at
a very slow convergence rate, slower than any polynomial rate.

Theorem 3.3. Assume that g is given by (3.8) and f is bounded and has two
bounded derivatives. Suppose the minimax rate of estimation of ψ is nγ, γ ∈
(0, 1/2). Then there is an estimator f̂ such that f̂(s)−f(s)=Op(n−α log log n/ log n)
for some α, and for any α > 0 there is no estimator f̃(s) such that f̃(s)−f(s) =
Op(n−α/ log log n).

The proof is given in the on-line supplement, see http://www.stat.sinica.
edu.tw/statistica.

3.3. Smoothing the empirical estimate and an uncertainty principle

We start, as in the previous subsections, with a nonparametric ψ̂. The
purpose of this subsection is to show that this initial estimator can be improved
considerably by a simple projection.

We argued in Subsection 3.2 that there is no reasonable estimator of f for g

given in (3.8). If (3.8) is believed to be true, does this means that there is nothing
to do? The surprising answer is no. Although f cannot be estimated per-se, many

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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of its functionals can be estimated quite easily and quite well. For example, as
mentioned in Subsection 3.2, its moments. Similarly ψ(u), another functional of
f , can be estimated quite easily, considered as a simple linear functional.

Suppose that f is supported on some compact interval [a, b]. Then one can
approximate ψ(u) =

∑m
i=1 βiu

i + Rm(u), where, for some ũ ∈ (0, u);

0 ≤ Rm(u) =
1

(m + 1)!
ψm+1(ũ) =

1
(m + 1)!

∫ b

a
ξmeũξf(ξ)dξ ≤ bmeub

(m + 1)!
. (3.9)

Generally speaking, the faster the coefficients β converge to 0, the easier it is to
estimate ψ and the harder it is to estimate the mixing density g. As (3.9) shows,
we need only a few terms to approximate ψ quite well. In fact we show that in
this smooth case, where as on the one hand f can be hardly estimated, ψ can
be estimated almost at the parametric rate. This is not an accident — these are
two faces of one phenomena. The shape of the observable ψ hardly depends on
the fine details of f , and essentially depends only on a few aspects of f . These
aspects can be estimated well (and hence ψ can be estimated quite precisely).
The other aspects can hardly be estimated and hence f cannot be estimated in a
reasonable rate. This yields an uncertainty principle — the more you are certain
about ψ the less certain you are about f .

Recall that a function g is called completely monotone if (−1)kg(k) ≥ 0, and
it is called a Bernstein function if its first derivative is completely monotone.
It is well-known (Feller (1966)) that g is completely monotone if, and only if,
g(u) =

∫ ∞
0 e−uξdF (ξ). In other words, ψ is a Bernstein function. Nonpara-

metric maximum likelihood estimation for an exponential mixture (and hence
completely monotone density) was discussed in Jewell (1982). Balabdaoui and
Wellner (2007) discussed the estimation of a k-monotone density.

We assume that there is an estimate ψ̂ = ψ̂n at our disposal. For any
u1, . . . , uk > 0, let Σ(u1, . . . , uk) ∈ Rk×k, where Σij(u1, . . . , uk) = Cov {ψ̂(ui),
ψ̂(uj)}. Consider the following assumption:

Assumptions 1. For any n there is k = kn and u1, . . . , uk ∈ (c, d), 0 < c < d,
such that the spectral radius of Σ(u1, . . . , uk) is O(k/n), and maxi |Eψ(ui) −
ψ(ui)|2 = O(log n/n).

Assumption 1 is satisfied by many nonparametric density and regression esti-
mators, when they strictly under-smooth. We care much more about bias than
about variance of the original estimator ψ̂. Thus, we have in mind a kernel es-
timator with bandwidth of order n−1/4+ε. The spectral radius is based on the
assumptions that the estimator at points that are a multiple of the bandwidth
apart are (almost) independent, for example this is trivially the case with ker-
nel estimators having a compact support. The relationships in the assumption
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obtain when the bias of the estimator is O(σ2), the variance is O(1/nσ), and
k = O(σ−1).

Consider now the least squares regression of Y = {ψ̂(u1), . . . , ψ̂(uk)}> on the
design matrix Z ∈ Rk×m, Zij = uj

i . That is, β̂ = (Z ′Z)−1Z ′Y , where β̂ ∈ Rm.
Finally let ψ̃(u) =

∑m
j=1 β̂ju

j , u > 0. We argue that the error achieved by ψ̃ is
almost the parametric rate even though β̂ can be estimated at a strictly lower
rate.

Theorem 3.4. Suppose g(u; ξ) ≡ ξ−1(euξ − 1) and that f is supported on
a compact interval. Assume 1 holds and m = mn = log n/ log log n. Then
k−1

∑k
i=1{ψ̃(ui) − ψ(ui)}2 = Op{(log n)2/n}.

Proof. Let β0 be the true value β0
j =

∫
ξj−1f(ξ)dξ/j!. Write Y = Zβ +ε, where

ε includes both the random error and the bias terms due to both the estimator
and the truncation. The latter term is given in (3.9). By standard least squares
results,

k−1E
k∑

i=1

{
ψ̃(ui) − ψ(ui)

}2
= k−1E

{
ε>Z(Z>Z)−1Z>ε

}
= k−1 trace

{
Z(Z>Z)−1Z>E (εε>)

}
.

Since Z(Z>Z)−1Z> is a projection matrix on a m-dimensional space, the RHS
is bounded by the largest eigenvalue of E (εε>) times m/k. This has three com-
ponents (variance and two biases) and hence

k−1E
k∑

i=1

{
ψ̃(ui) − ψ(ui)

}2
= O

[
m

k

{
k

n
+ k

log n

n
+ k

(bm

m!

)2
}]

.

The factor k before the last two terms is due to the norm of the unit vector in Rk,
and, the last term is by (3.9). The theorem follows by taking m = log n/ log log n.

A more general result can be based on an assumption like the following.

Assumptions 2. For some c, d and each ε there are hε,1, . . . , hε,M(ε) such that

sup
ξ

min
γ

max
c<u<d

∣∣∣∣g(u; ξ) −
M(ε)∑
j=1

γjhj(u)
∣∣∣∣ < ε.

Note that clearly the assumption ensures the existence of γ(·) such that maxc<u<d

|g(u; ξ) −
∑M(ε)

j=1 γj(ξ)hj(u)| < ε, but then there are also βj =
∫

γj(ξ)f(ξ)dξ,

j = 1, . . . ,M(ε), such that maxc<u<d |ψ(u) −
∑M(ε)

j=1 βjhj(u)| < ε.
The following theorem can be proved similarly to Theorem 3.4:



784 YA’ACOV RITOV AND WOLFGANG K. HÄRDLE

Theorem 3.5. Suppose Assumptions 1 and 2 hold. Let εn = argminε{M(ε)
/n+ε}, and let ψ̃ be the least squares estimate of the regression of ψ̂ on hεn,1, . . .,
hεn,M(εn). Then k−1

∑k
i=1{ψ̃(ui) − ψ(ui)}2 = Op(εn).

In practice, Theorems 3.4 and 3.5 may seem to be of limited use — a knowl-
edge of the structure of the span of the individual utility functions is needed, and
the regression is based on an identified efficient base, which may not be natural.
For example, we used a polynomial base for the exponential utility function. The
practical approach is a histogram or discrete approximation of f . Does such a
procedure yield an effective estimator, an estimator which is both statistically
speaking efficient, but at the same time easy to compute and can be be used in
off-the-shelf manner?

This is indeed the case. Let ξ1, . . . , ξM(ε) be reasonably spaced points in the
support of f . With the notation introduced after Assumption 2, and by a similar
argument, for a vector β on the simplex

sup
u

∣∣∣∣ M(ε)∑
j=1

βjg(u; ξj) −
M(ε)∑
j=1

βj

M(ε)∑
l=1

γl(ξj)hl(u)
∣∣∣∣ ≤ ε.

Hence, one can use the base function g(·; ξ1), . . . , g(·; ξM(ε)) as well.

References

Ait-Sahalia, Y. and Lo, A. (2000). Nonparametric risk-management and implied risk aversion.

J. Econometrics 94.

Balabdaoui, F. and Wellner, J. A. (2007). Estimation of a k-monotone density: limit distribution

theory and the spline connection. Manuscript.

Chabi-Yo, F., Garcia, R. M. and Renault, R. (2008). State dependence can explain the risk

aversion puzzle. Rev. Finan. Stud. 21, 973-1011.

Cochrane, J. H. (2005). Asset Pricing (Revised). Princeton University Press, Princeton.
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