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Abstract: In this article, we develop a sufficient dimension reduction theory for time

series. This does not require specification of a model but seeks to find a p×d matrix

Φd with the smallest possible number d (≤ p) such that the conditional distribution

of xt|Xt−1 is the same as that of xt|ΦT
d Xt−1, where Xt−1 = (xt−1, . . . , xt−p)

T ,

resulting in no loss of information about the conditional distribution of the series

given its past p values. We define the subspace spanned by the columns of Φd as

the time series central subspace and estimate it by maximizing Kullback-Leibler

distance. We show that the estimator is consistent when p and d are known.

In addition, for unknown d and p, we propose a consistent estimator of d and a

graphical method to determine p. Finally, we present examples and a data analysis

to illustrate a theory that may open new research avenues in time series analysis.

Key words and phrases: Density estimator, Kullback-Leibler distance, nonlinear

time series, threshold, time series central subspace.

1. Introduction

Time series analysis has been an active area of research for decades, its in-
trinsic nature is that of correlated observations. This severely restricts the direct
applicability of many conventional statistical methodologies that are primarily
suited for analyzing independent and identically distributed data. Unique chal-
lenges posed by time series data sets have given rise to two broad approaches:
the time domain approach and the frequency domain approach. While there are
many useful parametric and nonparametric methods for analyzing time series
data, there is a never-ending quest to build new methodologies to analyze the
time series data that arise in a variety of fields such as economics, meteorology,
engineering, geophysics, social, and environmental science.

Estimation approaches from classical regression theory are useful in building
linear/nonlinear models for time series data {x1, · · · , xt; t ≥ 1}, where there is
an obvious dependence between xt and the past values {xt−1, . . . , x1}; see e.g.,
Brockwell and Davis (1996), Shummway and Stoffer (2000), Fan and Yao (2003),
Tsay (2005), and Wei (2006).

To address the issue of dimension reduction in time series, Xia and Li (1999),
and Xia, Tong, and Li (1999, 2002) considered a single-index model that avoids
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the curse of dimensionality. Recently, Xia, Tong, Li, and Zhu (2002) proposed a
dimension reduction method in regression that is also applicable to time series
with known lag; however, their focus is only on estimation of dimensions in the
mean function. For an ensemble of time series, Li and Shedden (2002) presented
a dimension reduction method that identifies a small number of independent
time series components such that each time series in the ensemble is a differ-
ent linear combination of the components. Their notion of dimension reduction,
however, differs from our proposal below. Becker and Fried (2003) used a dy-
namic version of Sliced Inverse Regression (SIR; Li (1991)) as an exploratory tool
for analyzing multivariate time series, where the lag is chosen using preliminary
information. Hall and Yao (2005) discussed an estimation method that approx-
imates the conditional distribution function of xt given the past using a single
linear combination of the past. To the best of our knowledge, there is no for-
mal sufficient dimension reduction theory in time series that overcomes the curse
of dimensionality without making specific model assumptions, or using specific
numbers of dimensions and lag. Development of such a formal theory for time
series, and illustration of its use in practice, are the main goals of this article.

The primary goal of time series analysis is forecasting, which requires infer-
ence about the conditional distribution of xt|Xt−1, for some suitable lag p ≥ 1,
Xt−1 = (xt−1, . . . , xt−p)T . Typically, the lag p is not known. However, there
are diagnostic ways and estimation methods for determining a value of p before
proceeding with the inference (Ng and Perron (2005)). It is also important to
note that with known p, we may only need a few linear combinations of Xt−1

in the final model (Xia and Li (1999), and Xia, Tong, and Li (1999, 2002)),
determination of which is one of our main focuses.

In Section 2, we develop a theory of sufficient dimension reduction in time
series by introducing a notion called time series central subspace. In Section 3,
we propose an estimation of the time series central subspace and state the main
results. In Section 4, we carry out Monte Carlo simulations, followed by analysis
of data sets. In Section 5, we give a brief discussion summarizing our approach
and results. All the necessary proofs are given in the Appendix.

2. Central Subspace in Time Series

In time series it is useful to make inference about the conditional distribution
of xt given the past, xt−1, . . . , x1. However, in many data sets one determines a
value of p ≥ 1 to make inference about the conditional distribution of xt|Xt−1,
for some p ≥ 1. Here, we first assume that such a lag value p exists and is known,
and then consider the case of unknown p.

Our goal is to find finitely many linear combinations, ΦT
1 Xt−1, . . . ,ΦT

q Xt−1,
q ≤ p, such that the conditional distribution of xt|Xt−1 is same as the conditional
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distribution of xt|(ΦT
1 Xt−1, . . . ,ΦT

q Xt−1). This is equivalent to finding a p × q

matrix Φ = (Φ1, . . . ,Φq) such that

xt Xt−1|ΦT Xt−1, (2.1)

that is to say, xt is independent of Xt−1 given ΦT Xt−1. Then the p×1 vector Xt−1

can be replaced by the q × 1 vector ΦT Xt−1 without loss of information. This
represents a useful reduction in the dimension of Xt−1 where all the information
in Xt−1 about xt is contained in the q-linear combinations.

We define a dimension reduction subspace for xt on Xt−1 as any subspace
S(Φ) of Rp for which (2.1) holds. Note that (2.1) holds trivially for Φ = Ip

(Identity matrix), which implies that a dimension reduction space always exists.
Since our primary aim is to reduce the dimension we seek a minimum dimension
reduction space for xt on Xt−1. To this end, we define the intersection of all
dimension reduction spaces as a Time Series Central Subspace, denoted
by Sxt|Xt−1

(Φd), if the intersection is itself a dimension reduction space, where
dim(Sxt|Xt−1

(Φd)) = d and Φd = (Φ1, . . . ,Φd). Clearly, a time series central
subspace is a minimum dimension reduction subspace; this provides an initial
phase when an adequate parsimoniously parameterized time series model is not
yet available.

Although our notion of time series central subspace bears similarity to the
central subspace in regression (Cook (1994, 1998a)), an important difference is
that the former implicitly depends on lag p, usually unknown in practice and
requiring estimation, whereas p is usually known in regression. The definition
of time series central subspace is general enough to include many linear and
nonlinear time series models, as shown below. Nonetheless, we do require Φ to
be independent of time t.

Time series central subspaces may not exist. The following Proposition guar-
antees the existence of a time series central subspace. We omit its proof because
it follows from arguments similar to those in Cook (1998a). For a more general
result on the existence, see Yin, Li and Cook (2008).

Proposition 1. Let S(η) and S(γ) be dimension reduction subspaces for xt on
Xt−1. If Xt−1 has a density f(xt−1) > 0 for xt−1 ∈ ΩXt−1 ⊂ Rp and f(xt−1) = 0
otherwise, and if ΩXt−1 is a convex set, then S(η)∩S(γ) is a dimension reduction
subspace.

As an illustration, let p = 3, Xt−1 = (xt−1, xt−2, xt−3)T , and set xt =
φ1xt−1 +φ2xt−2 +φ3xt−3 +εt, where xt’s and εt are normal random variables and
{Xt−1} is independent of εt. Then the vector (φ1, φ2, φ3)T forms a basis for a time
series central subspace. On the other hand, for fixed p = 3, when xt = φ1xt−1,
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we have that S((1, 0, 0)T ), S((0, 1, 0)T ), and S((0, 0, 1)T ) are all minimum dimen-
sion reduction subspaces. In this case, there does not exist a time series central
subspace because the intersection of dimension reduction subspaces is empty.

We conclude this section with identification of the bases for time series central
subspaces corresponding to three well-known time series models. For an autore-
gressive model of order p, xt = φ1xt−1 + · · · + φpxt−p + εt, where {εt} is a white
noise sequence independent of Xt−1 = (xt−1, . . . , xt−p)T , the vector (φ1, . . . , φp)T

forms a basis for a time series central subspace with d = 1. A general Threshold
Autoregressive model of order p is defined in Tong and Lim (1980); also see Chan,
Petrucelli, Tong and Woolford (1985), and Xia, Li and Tong (2007). More specif-
ically, for an integer l, let −∞ = r0 < r1 < · · · < rl = ∞ denote the thresholds
and define xt =

∑l
k=1{

∑p
i=1 φ

(k)
i xt−i + ε

(k)
t } I(xt−p∗ ∈ (rk−1, rk]), where I(A) is

the indicator function of a set A, xt−p∗ is the threshold variable for some fixed
1 ≤ p∗ ≤ p, for each 1 ≤ k ≤ l, {ε(k)

t } is a white noise sequence independent of
Xt−1 = (xt−1, . . . , xt−p)T , and {ε(j)

t } is independent of {ε(j′)
t } for 1 ≤ j 6= j′ ≤ l.

Let Φk = (φ(k)
1 , . . . , φ

(k)
p )T for 1 ≤ k ≤ l. If for example, l ≤ p and Φi 6∝ Φj for

i 6= j, where 6∝ is ‘not proportional to’, then the matrix Φ = (Φ1, . . . ,Φl, `p∗)
forms a basis for a time series central subspace, where `p∗ is a vector with its
p∗th element equal to 1 and is 0 elsewhere. Finally, consider an autoregressive
conditionally heteroscedastic (ARCH) model (Engle (1982)), xt = σtεt, where εt

are independent and identically distributed random variables with mean 0 and
variance 1, and for q < p, σ2

t = θ0 + θ1x
2
t−1 + θ2x

2
t−2 + · · · + θqx

2
t−q. Then, Φ is

composed of vectors ei (a vector with ith element equal to 1 and 0 elsewhere), for
i = 1, . . . , q. In addition, if we know that the model is ARCH, then we can set
Xt−1 = (x2

t−1, . . . , x
2
t−p)

T , which implies d = 1; hence our estimation procedure
may be more efficient.

For the rest of the article, we assume the existence of the time series central
subspace. Examples above show that our definition of time series central sub-
space is general. However, it does not include moving average, autoregressive-
moving average, or generalized autoregressive conditionally heteroscedastic mod-
els, which may be viewed as infinite order autoregression.

3. Estimation

To estimate Sxt|Xt−1
(Φd), we begin by assuming that d(≤ p) and p in Xt−1

are known. It is natural to ask if the estimation of Φd may be carried out using
well-known sufficient dimension reduction methods in regression such as SIR (Li
(1991)) and Sliced Average Variance Estimation (SAVE; Cook and Weisberg
(1991)). These are powerful methods in regression, but they impose a stringent
requirement on the distribution of Xt−1, that severely limits their use in time
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series analysis; see Xia, Tong, Li, and Zhu (2002, p.365). Li (1991) points out
that removal of outliers upon closer examination of the distribution of regressors
may help the analysis using SIR; however, the removal may create problems in
time series analysis. The minimum average variance estimation method of Xia,
Tong, Li, and Zhu (2002) is another useful way of addressing the problem of
dimension reduction in time series. However, their approach focuses only on
estimation of dimensions in the mean function.

All this leads us to suggest a sufficient dimension reduction method for time
series analysis, that stems from the expected conditional log-likelihood approach
of Yin and Cook (2005) for single-index regression in the independent and identi-
cally distributed case. We believe that our sufficient dimension reduction method
is particularly suitable for time series analysis because it does not constrain the
distribution of Xt−1, nor does it limit consideration to the mean or variance
functions.

3.1. Expected conditional log-likelihood

Let p(·, ·), p(·|·), and p(·) denote joint, conditional, and marginal densities,
respectively. For p × q matrices h with q ≤ p, we consider an objective function
Ψ(h) that measures the mutual information (Cover and Thomas (1991)) between
hT Xt−1 and xt, defined by

Ψ(h) = E
{

log
p(hT Xt−1, xt)

p(xt)p(hT Xt−1)

}
= E

{
log

p(xt|hT Xt−1)
p(xt)

}
. (3.1)

We want to maximize this objective function over all p × d matrices h with
hT h = Id. Since p(xt) does not involve h, maximizing Ψ(h) is the same as
maximizing the expected conditional log-likelihood. This mutual information is
the Kullback-Leibler divergence between the joint density, p(hT Xt−1, xt), and the
product of the marginal densities, p(xt)p(hT Xt−1), quantifying the dependence of
xt on hT Xt−1. The following proposition shows that this is a reasonable method
for identifying the time series central subspace.

Proposition 2. Let h1, h2 and hd be p×q1, p×q2, and p×d matrices, respectively,
where q1, q2, d ≤ p.

(i) If S(h1) = S(h2), then Ψ(h1) = Ψ(h2).

(ii) Ψ(Ip) ≥ Ψ(h1), and equality holds if and only if xt Xt|hT
1 Xt−1. Con-

sequently, Ψ(Ip) = Ψ(Φd) ≥ Ψ(hd), and equality holds if and only if
Sxt|Xt−1

(Φd) = S(hd).

(iii)Ψ(h1) ≥ 0. Moreover, if d > q2 > q1 ≥ 1, then Ψ(Ip) = Ψ(Φd) =
maxhd

Ψ(hd) > maxh2 Ψ(h2) > maxh1 Ψ(h1).
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Part (i) of Proposition 2 says that only S(h) matters when maximizing Ψ(h)
and not the particular basis of the subspace. Hence, we may use the constraint
hT h = Id for identifiability. Part (ii) helps us confirm whether S(h) is a dimension
reduction subspace or not by comparing Ψ(h) with Ψ(Ip), if Ψ(Ip) is known. More
importantly, Part (ii) says that arg maxhd

Ψ(hd) is always a basis for the time
series central subspace. Part (iii) provides a theoretical justification for sequential
search of the time series central subspace by showing that the information content
increases with the dimension until dimension d is achieved. This result will also
be useful in Section 3.3.

3.2. Computational algorithm

If all the densities were known, then we could use the first equality in (3.1)
as the basis of a sample version

Ψn(h) =
1
n

n∑
t=1

log
p(hT Xt−1, xt)

p(xt)p(hT Xt−1)
,

and maximize it over all p × d matrices h subject to the constraint. In prac-
tice, however, the densities in Ψn(h) are not known and we have to estimate
them nonparametrically. For this, we need a one-dimensional density estimate of
p(xt) and, for fixed h, multi-dimensional density estimates of p(hT Xt−1, xt) and
p(hT Xt−1). General guidelines for choice of kernels and selection of bandwidths
can be found in Silverman (1986) and Scott (1992).

In our computations, we use a Gaussian kernel for one-dimensional den-
sity estimation, and product Gaussian kernels for multi-dimensional density es-
timation. More specifically, let G denote the univariate Gaussian kernel, and
(u1, . . . , uk)T be the k × 1 random vector, for k ≥ 1. Denote the ith observation
by (u1i, . . . , uki)T , then the k-dimensional density estimate is:

pn(u1, . . . , uk) =
(

n

k∏
j=1

anj

)−1 n∑
i=1

k∏
j=1

G

(
uj − uji

anj

)
, (3.2)

where anj = bksjn
−1/(4+k) for j = 1, . . . , k, bk = {4/(k + 2)}1/k+4, and sj is

the corresponding sample standard deviation of uj that must be updated during
iteration. Inclusion of sj in the bandwidth term is not necessary; however, doing
so usually improves the estimation. The constant bk is the optimal bandwidth
in the sense of minimizing mean integrated square error (Silverman (1986, p.87),
and Scott (1992, p.152)). This choice performs well in our simulations and data
analysis.



DIMENSION REDUCTION IN TIME SERIES 753

Finally, we replace the densities in Ψn(h) by their corresponding estimates
defined in (3.2) and maximize

Ψ̂n(h) =
1
n

n∑
t=1

log
pn(hT Xt−1, xt)

pn(xt)pn(hT Xt−1)

over all p × d matrices h satisfying the constraint hT h = Id. A method that
naturally incorporates this constraint is the Sequential Quadratic Programming
procedure (Gill, Murray and Wright (1981, Chap. 6)). The code for our algorithm
is available in MATLAB from the authors.

Note that it is also possible to construct an alternative sample version of
Ψ(h) in (3.1). One may construct this using, for example, the local linear (or
polynomial) smoother of conditional density proposed by Fan, Yao and Tong
(1996) with smoothing parameters chosen based on the Residual Squares Crite-
rion of Fan and Gijbels (1995) (also see Fan, Heckman and Wand (1995)), and
thus carry out maximization of the resulting sample version. Incidentally, note
that our approach is same as local constant approximation. There are also a
host of other nonparametric smoothers of conditional density we can use, such as
those proposed by De Gooijer and Zerom (2003) and Hyndman and Yao (2002).
We plan to pursue this alternative approach in future. Here, we are encouraged
by the large sample properties of our estimator seen in Section 3.4, and by the
performance of our method in simulations and data analysis in Section 4.

3.3. Estimation of dimension d and lag p

In practice, we need to estimate d and p since they are usually unknown.
Reiterating a comment made in Section 2, an important difference between di-
mension reduction in regression and that in time series is that, in the former
context, we need only estimate d since p is usually known (Li (1992), Schott
(1994), Cook (1998b), and Xia, Tong, Li, and Zhu (2002)), whereas, the lag p

also requires estimation in our context. Motivated by Proposition 2 (iii) and
by a recent work of Woo and Sriram (2006) for finite mixtures, we propose an
estimator of d using the estimating function Ψ̂n above. In addition, we propose
a graphical method for determining p that differs from traditional approaches in
time series analysis (Ng and Perron (2005)).

The estimators of d and p, respectively, are defined as follows.

Step 1: Note that if p = 1, then d = 1, and there is no need for dimension
reduction. The procedure starts by fixing a value of lag p(≥ 2) and determines

d̂p = min
{

k(≤ (p − 1)) : ĉk ≤ τp,n

}
, (3.3)
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where ĉk = Ψ̂n(ĥp,(k+1)) − Ψ̂n(ĥp,k) with ĥp,k = arg maxhk
Ψ̂n(hk), and the

maximization is over all p×k matrices hk, {τp,n; n ≥ 1} a sequence of non-negative
threshold values chosen in such a way that it converges to zero as n → ∞. For our
simulations and data analysis in Section 4, we set the threshold value τp,n = 0
and take χ2

p(α)/(2n), where χ2
p(α) is the 100(1 − α) percentile of Chi-square

distribution with p degrees of freedom.
The procedure defined in (3.3) successively compares ĉk (> 0 because of

Proposition 2 (iii)) with the threshold value, and stops at the first value of k
for which ĉk is at or below the threshold. This yields an estimate d̂p of d for a
given value of p, which in turn yields an estimate ĥp,d̂p

of the time series central

subspace with the maximum value Ψ̂n(ĥp,d̂p
). Obviously, if ĉk never falls below

the threshold, then d̂p = p.

Step 2: Repeat Step 1 for each p = 2, 3, . . .. This process yields a sequence
of estimates {d̂p} and a corresponding sequence of maximum values {Ψ̂n(ĥp,d̂p

)}.
Two procedures, graphical or information criteria, may be used to determine p.
Graphically, we can plot {Ψ̂n(ĥp,d̂p

)} versus p and look for the value of p̂ at which

Ψ̂n(ĥp̂,d̂p̂
) is essentially the largest; that is, the subsequent values of Ψ̂n(ĥp,d̂p

) are

about the same or less than Ψ̂n(ĥp̂,d̂p̂
), creating a shoulder-like situation at p = p̂.

Hence the name Shoulder Plot. This gives us an estimate of lag p.
We may also use the Akaike Information Criterion (AIC) or the Bayesian

information criterion (BIC) to determine p;

BIC : p̂ = arg min
p

{−2nΨ̂n(ĥp,d̂p
) + pd̂p ln(n)}

AIC : p̂ = arg min
p

{−2nΨ̂n(ĥp,d̂p
) + 2pd̂p}.

For instance, in Model 2 (see Section 4), given d̂p = 1, BIC and AIC detect
the correct lag (p = 6) 79% and 76% of times, respectively. These are slightly
less accurate than our answers using Shoulder plot in Section 4, but are still
reasonable. We use the Shoulder Plot in all our examples because it has visual
appeal and simplicity.

Note that Steps 1 and 2 yield estimates p̂ and d̂p̂. The idea behind a Shoulder
Plot is similar to an Elbow Plot, which plots the (decreasing) eigenvalues against
the serial numbers in a principal component analysis. In data analysis, our
process begins with estimation of d and p, followed by estimation of the time
series central subspace. Our calculations do require use of multi-dimensional
density estimation. However, even if the value of lag p is large, the dimensionality
of densities used in our iterative algorithm to determine d is at most (d + 1), or
close to it. In practice, d is usually small, say, d ≤ 3, and our multi-dimensional
density estimation does not suffer from the curse of dimensionality.
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It is known that sufficient dimension reduction methods such as SIR and
SAVE have a naturally nested structure for the extracted linear combinations. In
our context, our simulations do suggest that S(ĥp,i) ⊆ S(ĥp,i+1) for i = 1, . . . , d.
However, we do not yet have a theoretical proof of this observation. Nonetheless,
observe that this nested structure is a stronger result than the one in Proposition
2 (iii).

Note that p is fixed in the definition of time series central subspace. In
practice, p is usually unknown and there are different methods to estimate it.
Our Shoulder Plot approach is one viable way of estimating p. For instance, we
recognize that there are two possible ways of using our approach: One adopt a
‘dual’ approach where we fix d and search for the best p and then find the best
pair of d and p; search for the best d and p using the matrix of dimension by
lag. It is possible that these two approaches lead to different values of p. Never-
theless, different values of p may eventually lead us to satisfactory models with
possibly different structures, providing a good fit of the data at hand. Despite
having different structures, all these models are sufficient, hence their respective
dimensions are also sufficient.

3.4. Consistency of the estimators

In this section, we establish the consistency of the estimate of the time series
central subspace and of d. Unlike in Section 3.2, we do not restrict to Gaussian
kernels. Suppose Mi is a sequence of k-dimensional random vectors with density
p(·) and distribution function F . Consider a density estimator of p(·) as

fn(M) =
1

nak
n

n∑
i=1

K

(
M − Mi

an

)
for M ∈ Rk, where K : Rk → R+ is a probability density, limK(M) = 0
uniformly for ‖M‖ → ∞, an > 0, and limn→∞ an = 0. Let κι = {t : fn(xt) >

ι, fn(hT Xt−1) > ι, fn(hT Xt−1, xt) > ι} for any fixed p × d matrix h such that
hT h = Id. Here ι is chosen in the following way: let ε → 0, and ι → 0, but
(ε/ι) → 0 as n → ∞ for ε > 0 and ι > 0. Let nι be the number of observations
whose indices are not in κι.

Theorems 1 and 2 stated below are proved in the Appendix utilizing Lemmas
1 and 2 found there. In Theorem 1, the distance for convergence is ‖(Ip −
Φ̂qΦ̂T

q )Φd‖2 (Xia, Tong, Li, and Zhu (2002)).

Theorem 1. Assume the conditions of Lemma 1 and that (nι/n) → 0 in prob-
ability as n → ∞. Let Φ̂n = arg maxh Ψ̂ι

n(h) and Φd = arg maxh Ψ(h), where
Ψ̂ι

n(h) = (1/n)
∑n

t=1 J(t ∈ κι) log(fn(hT Xt−1, xt)/[fn(xt)fn(hT Xt−1)]), J(t ∈ κι)
is the indicator function for κι, Ψ(h) is as in (3.1) and the maximization is over
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all p×d matrices h such that hT h = Id. Then Φ̂n converges to Φd with probability
one as n → ∞.

Theorem 2. Assume the conditions of Lemma 1, Lemma 2, and Theorem 1.
Let d̂ι

p = min{k(≤ (p − 1)) : ĉι
k ≤ τp,n}, where ĉι

k is the same as ĉk defined at
(3.3) with Ψ̂n replaced by Ψ̂ι

n defined in Theorem 1. If for each fixed p, τp,n → 0
as n → ∞, then d̂ι

p converges to d with probability one as n → ∞, where d is the
dimension of time series central subspace.

Corollary. Under the conditions of Theorems 1 and 2, we have that Φ̂n,d̂ι
p

con-

verges to Φd. Here, Φ̂n,d̂ι
p

is the same as Φ̂n with d replaced by d̂ι
p.

The proof of the Corollary follows from same arguments as in Theorem 1;
hence, it is omitted. Restriction to the set κι in Theorems 1 and 2 above is
a common truncation tool for proving theoretical results (See, e.g., Härdle and
Stoker (1989)). In practice, we do not use such a restriction.

4. Simulation and Data Analysis

In this section, we use the measures proposed by Ye and Weiss (2003)
and Xia, Tong, Li, and Zhu (2002) to assess the accuracy of our estimates.
Ye and Weiss (2003) use the vector correlation coefficient (Hotelling (1936))
ρ = |Φ̂T

d ΦdΦT
d Φ̂d|1/2, where |A| denotes the determinant of a matrix A. Note

that 0 ≤ ρ ≤ 1, and when ρ = 1, Sxt|Xt−1
(Φ̂d) = Sxt|Xt−1

(Φd). Therefore,
higher values of ρ imply that the two spaces are closer and, hence, the esti-
mates are more accurate. On the other hand, the method in Xia, Tong, Li, and
Zhu (2002) (see also Li, Zha and Chiaromonte (2005)) measures the distance
between Sxt|Xt−1

(Φ̂q) and Sxt|Xt−1
(Φd) using m2 = ‖(Ip − ΦdΦd

T )Φ̂q‖2 if q < d,
m2 = ‖(Ip − Φ̂qΦ̂T

q )Φd‖2 if q ≥ d. Here, smaller values of m2 yield more accurate
estimates. For each simulation, we used sample sizes n = 100, 200 and 300, and
we performed 200 Monte Carlo replications. The error {εt} was taken to be a
sequence of independent standard normal random variables.

Model 1. xt = −1− cos((π/2)(xt−1 + 2xt−4)) + 0.2εt(−2xt−1 + 2xt−2 − 2xt−3 +
xt−4 − xt−5 + xt−6), where p = 6 and d = 2. Here, in addition to a nonlinear
mean function, the error term εt involves a linear function depending on the past
of the series. For p = 6 and p = 10, Table 1 gives the average values of ρ and m2,
respectively for fixed d = 2. The two different m2 values in each cell correspond
to estimates Φ̂1 and Φ̂2, respectively. The results show that the estimates are
accurate. In addition, accuracy is better when correct lag (p = 6) is used as
compared to using a wrong lag (p = 10). More importantly, the results attest to
the fact that our estimation procedure can perform reasonably well even when
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Table 1. Model 1: Average values of accuracy measures ρ and m2 based on
200 Monte Carlo replications.

n lag p ρ m2

100 10 0.7000 0.3006 0.2720
100 6 0.8711 0.0924 0.1460
200 10 0.8356 0.1519 0.1918
200 6 0.9379 0.0304 0.0843
300 10 0.8954 0.1087 0.1278
300 6 0.9713 0.0127 0.0429

Table 2. Model 2: Average values of accuracy measures ρ and m2, and
frequency of estimated dimension for 0-threshold, 0.05-threshold and 0.01-
threshold, all based on 200 Monte Carlo replications. The true dimension is
d = 1.

n lag p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.9965 0.0069 f1=114 f1=180 f1=197

f2+=86 f2+=20 f2+=3
100 6 0.9985 0.0030 f1 = 46 f1=174 f1=196

f2+=154 f2+=26 f2+=4
200 10 0.9989 0.0021 f1=94 f1=191 f1=197

f2+=106 f2+=9 f2+=3
200 6 0.9995 0.0010 f1=115 f1=194 f1=199

f2+=85 f2+=6 f2+=1
300 10 0.9994 0.0011 f1=165 f1=199 f1=200

f2+=35 f2+=1 f2+=0
300 6 0.9997 0.00005 f1=184 f1=200 f1=200

f2+=16 f2+=0 f2+=0

the conditional mean is nonlinear and the conditional variance is also a function
of the past. To infer p using Shoulder Plot, we set d = 2 and computed Ψ̂n(ĥp,2)
with p = 4, 5, 6, 7 for 100 simulated data sets, each with n = 300. For 45% of
the data sets, the Shoulder Plot correctly indicated that p̂ = 6. Note that the
percentage of correct identification is relatively low. However, this is expected
because there is a dimension in the variance function.

Model 2. xt = −1 − cos((π/2)(xt−3 + 2xt−6)) + 0.2εt, where p = 6 and d =
1. Table 2 shows that our estimates of Φ1 are rather accurate, even with the
wrong lag p = 10. In Table 2, we report fi, the frequency of d̂p = i, based
on 200 Monte Carlo replications using threshold values τp,n = 0 (0-threshold),
χ2

p(0.05)/(2n) (0.05-threshold), and χ2
p(0.01)/(2n) (0.01-threshold). Here, fi+

denotes the frequency of d̂p ≥ i. For sample sizes n = 100 and 200, Table 2
indicates that, in terms of correctly identifying d, d̂p with 0.05-threshold and
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a. Shoulder plot for Model 2. b. Forecast for Wolf yearly sunspot data:.

c. Shoulder plot for Wolf yearly sunspot data.

Figure 1. a: Shoulder plot of average values (“Mean”), average − stan-
dard deviation values (“-Std.”) and average + standard deviation values
(“+Std.”) of Ψ̂n(ĥp,1) versus p = 4, 5, 6, 7, based on 100 simulated datasets,
each with sample size n = 300; b: Overlay plot of observed sunspot num-
bers (Sunspot) and forecast values from AR(9), AR(1, 2, 9), and our model:
Years 1992−2006; c: Shoulder plot of Ψ̂n(ĥp,2) values (second column of
Table 5) versus p = 2, . . . , 12.

0.01-threshold perform better (even when p = 10) than that with 0-threshold.
For n = 300, the performance of d̂p with 0-threshold is much better, but 0.05-
and 0.01- thresholds show near perfect performance.

To infer p using Shoulder Plot, we set d = 1 and computed Ψ̂n(ĥp,1) with
p = 4, 5, 6, 7 for 100 replicated data sets, each with n = 300. For 95% of the
data sets, the Shoulder Plot correctly indicated p̂ = 6. We also computed the
average and the standard deviation of Ψ̂n(ĥp,1) values for each p = 4, 5, 6, 7 based
on the 100 simulated data sets. The resulting Shoulder Plot in Figure 1a clearly
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Table 3. Model 3: Average values of accuracy measures ρ and m2, and
frequency of estimated dimension for 0-threshold, 0.05-threshold and 0.01-
threshold, all based on 200 Monte Carlo replications. The true dimension is
d = 2.

n lag p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.90 0.10 0.10 f1 = 49 f2=67 f1=137 f2=54 f1=155 f2=45

f3+=84 f3+=9 f3+=0
100 6 0.97 0.04 0.03 f1=26 f2=52 f1=41 f2=148 f1=50 f2=145

f3+=122 f3+=11 f3+=5
200 10 0.97 0.03 0.02 f1=60 f2=80 f1=85 f2=83 f1=113 f2=71

f3+=60 f3+=32 f3+=16
200 6 0.99 0.01 0.01 f1=23 f2=82 f1=34 f2=147 f1=37 f2=149

f3+=95 f3+=23 f3+=17
300 10 0.98 0.02 0.02 f1=58 f2=85 f1=71 f2=91 f1=87 f2=84

f3+=57 f3+=38 f3+=29
300 6 0.99 0.01 0.01 f1=14 f2=93 f1=21 f2=156 f1=21 f2=159

f3+=93 f3+=23 f3+=20

indicated that p̂ = 6.

Model 3. xt = −1− cos((π/2)(xt−1))− cos((π/2)(1/
√

5)(xt−3 +2xt−6))+0.2εt,
where p = 6 and d = 2. Table 3 shows that the accuracy of estimates of Φ2 are
reasonable. As for estimation of d, Table 3 shows that d̂p with 0.05-threshold and
0.01-threshold correctly estimated the true dimension, d = 2, about 73% to 80%
of the times, for all sample sizes and when the lag p is 6. However, it also shows
that wrong specification of lag adversely affected the performance of d̂p, resulting
in severe underestimation for 0.05- and 0.01-threshold. On the other hand, the
0-threshold did not perform well and, in fact, considerably overestimated the true
dimension.

Finally, we set d = 2 and computed Ψ̂n(ĥp,2) with p = 4, 5, 6, 7 for 100
simulated data sets, each with n = 300. For 94% of the data sets, the Shoulder
Plot correctly indicated that p̂ = 6.

Model 4.

xt = −1 + (0.4)
( 1√

5

)
(xt−1 + 2xt−4) − cos

((π

2

)( 1√
5

)
(xt−3 + 2xt−6)

)
+exp

(
−

( 1√
15

)2
(−2xt−1 + 2xt−2 − 2xt−3 + xt−4 − xt−5 + xt−6)2

)
+0.2εt,

where p = 6 and d = 3. This is Example 3 of Xia, Tong, Li, and Zhu (2002).
Table 4 shows that the accuracy of estimates of Φ3 are better for large sample
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Table 4. Model 4: Average values of accuracy measures ρ and m2, and
frequency of estimated dimension for 0-threshold, 0.05-threshold and 0.01-
threshold, all based on 200 Monte Carlo replications. The true dimension is
d = 3.

n p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.65 0.25 0.18 f1=20 f2=105 f1=41 f2=155 f1=62 f2=138

0.23 f3=63 f4+=12 f3=1 f4+=0 f3=0 f4+=0
100 6 0.85 0.11 0.06 f1=2 f2=67 f1=10 f2=187 f1=28 f2=172

0.10 f3=102 f4+=29 f3=3 f4+=0 f3=0 f4+=0
200 10 0.79 0.14 0.10 f1=11 f2=125 f1=14 f2=183 f1=17 f2=183

0.15 f3=63 f4+=1 f3=3 f4+=0 f3=0 f4+=0
200 6 0.93 0.07 0.02 f1=32 f2=33 f1=45 f2=114 f1=49 f2=134

0.04 f3=135 f4+=0 f3=41 f4+=0 f3=17 f4+=0
300 10 0.86 0.09 0.08 f1=9 f2=110 f1=11 f2=179 f1=12 f2=184

0.09 f3=79 f4+=2 f3=10 f4+=0 f3=4 f4+=0
300 6 0.96 0.04 0.01 f1=1 f2=67 f1=1 f2=159 f1=1 f2=180

0.02 f3=132 f4+=0 f3=40 f4+=0 f3=19 f4+=0

sizes and the true lag. Comparison of our m2 values in Table 4 with those in
Table 2 of Xia, Tong, Li, and Zhu (2002) shows that the refined minimum average
variance estimation method of Xia, Tong, Li, and Zhu (2002) performed better
than our estimation method. However, this is to be expected because, unlike our
method, their method focuses on estimation of dimensions in the mean function.
On the other hand, their method may not perform well for our Model 1, where
there is a dimension in the error term. Table 4 shows that d̂p using the 0-
threshold correctly estimated the true dimension, d = 3, about 51% to 68% of
the time for all sample sizes and when p = 6. Note that the performance of d̂p

with 0-threshold was slightly better than that of Xia, Tong, Li, and Zhu (2002)
for n = 100, but the latter method performed better than ours for n = 200 and
300, as shown in their Table 2. Table 4 also shows that wrong specification of
lag adversely affected the performance of d̂p, resulting in severe underestimation
for all the three thresholds. On the other hand, even when the lag was correctly
specified, the 0.05- and 0.01-threshold did not perform well for any sample size.

To infer p using Shoulder Plot, we set d = 3 and computed Ψ̂n(ĥp,3) with
p = 4, 5, 6, 7 for 100 simulated data sets, each with n = 300. For 96% of the data
sets, the Shoulder Plot correctly indicated that p̂ = 6.

Results for models 2, 3 and 4 above seem to suggest that when d = 1 or 2,
the 0.05-threshold performs better, but when d = 3, the 0-threshold performs
better. Thus, we suggest use of 0.05-threshold to estimate d when we prefer a
smaller dimension; otherwise, use 0-threshold. Our simulations also indicate that
the Shoulder plot is an effective way of identifying the unknown lag p.



DIMENSION REDUCTION IN TIME SERIES 761

Table 5. Wolf yearly sunspot data: Ψ̂n(ĥp,d) values for p = 2, . . . , 12, and
d = 1, 2 and 3. For each p, d̂p determined by 0.05-threshold is denoted by *.

p d=1 d=2 d=3
2 0.7229 0.7533∗ N/A
3 0.7259 0.7578∗ 0.7185
4 0.7258 0.7593∗ 0.7581
5 0.7255 0.7682∗ 0.7768
6 0.7377 0.7744∗ 0.7825
7 0.7590 0.7999∗ 0.8049
8 0.7634 0.8011∗ 0.8069
9 0.7846 0.8177∗ 0.8197
10 0.7843∗ 0.8146 0.8235
11 0.7837 0.8186∗ 0.8256
12 0.7818 0.8201∗ 0.8153

Wolf Yearly Sunspot Data: This data set has 307 observations for the years
1700 to 2006 and it has been extensively studied by many authors using various
linear and nonlinear models; see, for example, Yule (1927), Bartlett (1950), Whit-
tle (1954), Brillinger and Rosenblatt (1967), Xia, Tong, and Li (1999), and Wei
(2006). We compare the results of our data analysis with those in Wei (2006),
who fits the following three autoregressive models: (i) AR(2) , (ii) AR(9) , and
(iii) AR(1, 2, 9). Based on estimated error variance, Wei (2006) concludes that
both models (ii) and (iii) are adequate for the data. For our analysis, we consid-
ered the sunspot numbers for the years 1700 to 1991 with n = 292. Our process
began with estimation of d and p, followed by estimation of time series central
subspace. We then built a model, based on which we computed the sunspot
number forecasts for the remaining fifteen years: 1992 to 2006.

To estimate d, we set p = 2, . . . , 12 and computed Ψ̂n(ĥp,d) for d = 1, 2
and 3. Table 5 lists the Ψ̂n(ĥp,d) values for each p and d, except for the trivial
case p = 1. Using (3.3) with 0.05-threshold, we concluded that d̂p = 2 for all
2 ≤ p ≤ 12, except when p = 10, for which d̂p = 1. Note that d̂p for each p

is indicated by an asterisk in Table 5. Since d̂p = 2 uniformly for all p, except
for p = 10, we decided to use d = 2. The Shoulder Plot in Figure 1c, based on
Ψ̂n(ĥp,2) values for p = 2, . . . , 12 (2nd column in Table 5), seems to indicate that
the largest value is at p = 12, but the Shoulder is at p = 9, where the value
is essentially very close to the largest value. That is, the subsequent values are
about the same or less than Ψ̂n(ĥ9,2). In fact, our determination of p = 9 agrees
with other approaches; for example, the R software with command ‘sunspot.ar
<- ar(sunspot.year)’ determines lag p = 9.
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Based on above determinations, we obtained an estimate of a 9 × 2 basis
matrix Φ̂d = (Φ̂1, Φ̂2). Subsequently, we used these estimates and the follow-
ing trial-and-error approach involving plots to build a time series model. First,
we examined 2-dimensional plots of xt vs Φ̂T

1 Xt−1 and xt vs Φ̂T
2 Xt−1, and the

3-dimensional plot of xt vs Φ̂T
1 Xt−1 and Φ̂T

2 Xt−1, which revealed a linear pat-
tern. This motivated us to regress xt on the predictors Φ̂T

1 Xt−1 and Φ̂T
2 Xt−1

with coefficient estimates significantly different from zero based on t-tests. We
then created 2-dimensional and 3-dimensional plots of the resulting residuals
vs Φ̂T

1 Xt−1 and Φ̂T
2 Xt−1. Nonparametric smoothing applied to each of the 2-

dimensional residual plots showed cyclical patterns, suggesting that cosine func-
tions might be reasonable approximations. We then fine-tuned the cosine func-
tions so as to match the smoothed curves, determining the following nonlinear
terms: cos{(π/2)Φ̂T

1 Xt−1 +π} and cos{(π/2)Φ̂T
2 Xt−1−(π/4)}. With these linear

and nonlinear terms, we fitted a variety of models with and without interactions,
and eventually arrived at the following “best” model:

x̂t = 0.48 − 1.25Φ̂T
1 Xt−1 + 0.75Φ̂T

2 Xt−1 + 0.50 cos
(π

2
Φ̂T

1 Xt−1 + π
)

+0.25 cos
(π

2
Φ̂T

2 Xt−1 −
π

4

)
.

All the coefficients in the above model were found to be significant with standard
error of estimates 0.18, 0.05, 0.03, 0.09, and 0.08, respectively.

To compare our model with models (ii) and (iii) above, we calculated the
forecasts for the sunspot numbers for the years 1992 to 2006 and computed the
Mean Square Relative Error = k−1

∑k
t=1(zt − ẑt)2/zt, where zt is the observed

sunspot number, ẑt is its forecast value and k is the number of (future) obser-
vations. The mean square relative error for our model, models (ii), and (iii) are
2.6714, 6.0688 and 5.8319, respectively. Our model produces an mean square
relative error which is less than half those of Wei’s models. An overlay plot of
forecast values from each of these models and the observed sunspot numbers for
the years 1992 to 2006 is given in Figure 1b. This data analysis shows that our
approach can lead us to a time series model that outperforms some of the other
available models for the sunspot data. Finally, as in Ghaddar and Tong (1981),
we used our model to obtain forecast of sunspot numbers for 2007 to 2017, and
these are given in Table 6.

5. Discussion

The literature has seen a proliferation of parametric and nonparametric
methods for time series analysis. Nonetheless, few use a sufficient dimension
reduction approach in time series analysis. Well-known sufficient dimension re-
duction methods in regression, such as SIR, impose stringent requirements that
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Table 6. Wolf yearly sunspot data: Forecasts for the years 2007 to 2017
based on our model.

Year Sunspot Number
2007 17.1352
2008 24.2818
2009 52.6491
2010 77.5360
2011 93.0935
2012 95.1516
2013 82.9389
2014 64.6360
2015 50.1982
2016 35.8053
2017 21.5584

severely limit their use in time series analysis. In this article, we develop a new
theory of sufficient dimension reduction in time series based on the notion of
the time series central subspace; this provides an initial phase when an adequate
parsimoniously parameterized time series model is not yet available. Although
the notion of the time series central subspace bears similarity to that of the
central subspace in regression, an important difference is that a time series cen-
tral subspace implicitly depends on lag p, which is usually unknown in practice
and requires estimation. Our definition of time series central subspace is general
enough to include many linear and nonlinear time series models.

In our method, we suggest use of either 0-threshold or 0.05-threshold to
estimate d. The choice of threshold certainly affects the value of d̂p, which
increases as τp,n decreases. The use of Shoulder Plot to estimate p seems quite
informative in our analysis because of its visual appeal and simplicity.

Generally, in nonparametric methods (density estimation as well as nonpara-
metric regression), the choice of kernel is less critical than the choice of bandwidth
(Härdle (1990); and Scott (1992, p.133)). Here, the focus is on obtaining direc-
tions, and hence the nonparametric estimation using kernels is an intermediate
step and not the primary focus per se. Intuitively, even if the estimated densities
are not as accurate as required in usual density estimation, but as long as the
estimated shapes of densities are similar to the true ones, the estimated direc-
tions should not be severely affected. In theoretical studies, multivariate kernels
are used to prove theorems. However, in practice, the product kernel is often
recommended; see Scott (1992, p.152) and Silverman (1986). In addition, multi-
variate Gaussian kernel reduces to a product Gaussian kernel if the variables are
standardized. We found Gaussian kernels to be adequate because they performed
well in the simulations and data analysis reported on in Section 4. Additional
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simulations (not reported here) indicate that the choice of bandwidth has little
effect in our context.

Overall, the theory of dimension reduction in time series poses many chal-
lenges, but a variety of encouraging results presented through simulations seem
to suggest that our method has the potential for providing a viable and mean-
ingful alternative to traditional time series analysis. In fact, the performance of
our method for Wolf yearly sunspot suggests that it might be quite useful in time
series analysis.

In this article, we consider the estimation of a time series central subspace
and other related issues. However, new dimension reduction methods such as the
central mean subspace (Cook and Li (2002)), which focuses on the mean function
of time series, has yet to be developed. Research along these lines is currently
underway.
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Appendix: Assumptions and Proofs

Proof of Proposition 2. (i) If S(h1) ⊆ S(h2), then it is possible to write
h1 = h2K for some matrix K. Therefore, with simple algebra,

Ψ(h2) − Ψ(h1) = E

[
E xt|hT

2 Xt−1

{
log

p(xt|hT
2 Xt−1)

p(xt|KT hT
2 Xt−1)

}]
≥ 0.

The inequality follows from a result on page 14 of Kullback (1959). Suppose
S(h1) = S(h2). Then K can be a nonsingular square matrix in the above argu-
ment, and the inequality becomes an equality.

(ii) As in (i), we can write

Ψ(Ip) − Ψ(h1) = E

[
Ext|Xt−1

{
log

p(xt|Xt−1)
p(xt|hT

1 Xt−1)

}]
≥ 0

with equality if and only if p(xt|Xt−1) = p(xt|hT
1 Xt−1). But, xt Xt−1|hT

1 Xt−1

if and only if p(xt|Xt−1) = p(xt|hT
1 Xt−1). Hence the first assertion in (ii). From
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this and the definition of the time series central subspace Sxt|Xt−1
(Φd), for which

the property xt Xt−1|ΦT
d Xt−1 holds, we have that Ψ(Ip) = Ψ(Φd) ≥ Ψ(hd).

Now, if Ψ(Φd) = Ψ(hd), then Sxt|Xt−1
(Φd) = S(hd) by the uniqueness of the time

series central subspace. The other way conclusion follows from (i).

(iii) Since

Ψ(h1) = E
{

log
p(xt, hT

1 Xt−1)
p(xt)p(hT

1 Xt−1)

}
,

Ψ(h1) ≥ 0 by a result of Kullback (1959, p.14).
Let α = arg maxh1 Ψ(h1), and, for any p × (q2 − q1) matrix β, by using

Kullback’s result (1959, p.14), we have

maxΨ(h2) − max Ψ(h1) ≥ Ψ(α, β) − Ψ(α)

= E αT Xt−1,βT Xt−1

[
E xt|αT Xt−1,βT Xt−1

{
log

p(xt|αT Xt−1, β
T Xt−1)

p(xt|αT Xt−1)

}]
≥ 0.

However, equality cannot hold unless p(xt|αT Xt−1, β
T Xt−1) = p(xt|αT Xt−1) for

any β; that is xt βT Xt−1|αT Xt−1, for any β, and hence xt Xt−1|αT Xt−1.
Thus, Ψ(Ip) = Ψ(α) by the definition of the central subspace. This produces the
contradiction that d ≤ (d − 1).

The following assumptions apply to Lemma 1 stated below and the Theorem
1 stated in Section 3.4.

Bounded variation. Define the ∅x
y-operator for functions g : Rk → R1 and

x, y ∈ Rk by

∅x
yg =

∑
(ε1,...,εk)∈{0,1}k

(−1)
Pk

j=1 εjg
{

ε1x1 + (1 − ε1)y1 + · · · + εkxk + (1 − εk)yk

}
(Reyni (1962)). Suppose P is the set of all finite partitions of Rk into rectangles
and ∅x

yg is expressed by the corresponding limit if some components of x and
y are positive or negative infinity. Then g is said to be of bounded variation if
sup{g(s), s ∈ P} < ∞, where g(s) is defined for s =

∑l
i=1[xi, yi) by

∑l
i=1 |∅xi

yi
g|.

Assumptions A1. As in Sen (1974), {hT Xt,−∞ < t < ∞} is a stationary φ-
mixing sequence for any p×d matrix h, defined on a probability space (Ω, A , P )
with each hT Xt having a continuous distribution F . That is, if M k

−∞ and M∞
k+n

are σ-fields generated by {hT Xt, t ≤ k} and {hT Xt, t ≥ k + n}, respectively,
and if A ∈ M k

−∞ and B ∈ M∞
k+n, then for all k, n ≥ 0, and φn ≥ 0, |P (A ∩

B) − P (A)P (B)| ≤ φnP (A), where {φn} is independent of h, {φn} ↓ in n and
limn→∞ φn = 0.



766 JIN-HONG PARK, T. N. SRIRAM AND XIANGRONG YIN

Assumptions A2. For each m ≥ 0, Am(φ) =
∑∞

n=1(n + 1)mφ
1/2
n , for {φn} in

Assumption A1, satisfies Am(φ) < ∞ for some m ≥ 1.

Now, under assumptions A1 and A2, the conclusion of Theorem 3.2 of Sen
(1974) holds for hT Xt with the upper bound Cφλ−2(m+1) (for λ ≥ 1), where Cφ

(< ∞) only depends on {φn}. Using this upper bound and the arguments in
the proof of Theorem 1(b) of Rüschendorf (1977), one can prove the following
lemma. (A similar result as Lemma 1 was established by Masry (1996) over
compact subsets of Rd for the regression function and its partial derivatives for
strongly mixing processes).

Lemma 1. Assume A1 and A2, and that
∑∞

n=1{γ/(
√

nak
n)}2(m+1) < ∞ for all

γ ∈ R+, where {an} is a sequence of bandwidths of the kernel density estimator
fn defined in Section 3.4. Suppose the kernel K in fn is of bounded variation.
Also, let the density functions satisfy the following conditions: p(xt) is uniformly
continuous, p(hT Xt−1) is uniformly continuous in h and Xt−1, and p(hT Xt−1, xt)
is uniformly continuous in h, Xt−1, and xt, where hT h = Id. Then the following
results hold with probability one as n → ∞:

sup
xt∈R1

|fn(xt) − p(xt)| → 0,

sup
h∈Rp×d,Xt−1∈Rp

|fn(hT Xt−1) − p(hT Xt−1)| → 0,

sup
h∈Rp×d,Xt−1∈Rp,xt∈R1

|fn(hT Xt−1, xt) − p(hT Xt−1, xt)| → 0.

Proof of Theorem 1. Note that the constraint hT h = Id does not guarantee
that a matrix maximizing the objective function Ψ(h) is unique, but the subspace
corresponding to it is unique. Hence, for identifiability, we may replace any basis
matrix that maximizes the objective function by its orthogonal projection matrix,
which is unique. Thus, without loss of generality and for the simplicity of our
proof, we assume that the matrix solution is unique.

If Φ̂n does not converge to Φd with probability 1, there is a subsequence
which is still indexed by n, and a p × d matrix Φ0 satisfying ΦT

0 Φ0 = Id and
Φ0 6= Φd, such that Φ̂n → Φ0. Thus, for any ε > 0 and large enough n, we have

fn(xt) = p(xt) + δ1,t, (A.1)

fn(Φ̂T
n Xt−1) = p(Φ̂T

n Xt−1) + η2,t = p(ΦT
0 Xt−1) + δ2,t, (A.2)

fn(Φ̂T
n Xt−1, xt) = p(Φ̂T

n Xt−1, xt) + η3,t = p(ΦT
0 Xt−1, xt) + δ3,t, (A.3)

such that |δk,t| < ε for all t and k = 1, 2, 3. Note that (A.1) and the first equalities
in (A.2) and (A.3) follow from the conclusions of Lemma 1, whereas the uniform
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continuity conditions in Lemma 1 lead to the second equalities in equations (A.2)
and (A.3). From these, we have

log fn(xt) = log p(xt) + log
{

1 +
δ1,t

p(xt)

}
,

log fn(Φ̂T
n Xt−1) = log p(ΦT

0 Xt−1) + log
{

1 +
δ2,t

p(ΦT
0 Xt−1)

}
,

log fn(Φ̂T
n Xt−1, xt) = log p(ΦT

0 Xt−1, xt) + log
{

1 +
δ3,t

p(ΦT
0 Xt−1, xt)

}
,

Therefore, by the definition of κι in Section 3.4, for large n, on this set we have
p(xt) > ι/2, p(hT Xt−1) > ι/2, p(hT Xt−1, xt) > ι/2. Since (ε/ι) → 0, for Ψ̂ι

n

defined in the Theorem 1 we have that

Ψ̂ι
n(Φ̂n) =

1
n

n∑
t=1

J(t ∈ κι) log
p(ΦT

0 Xt−1, xt)
p(xt)p(ΦT

0 Xt−1)
+ o(1) = Ψ̄ι

n(Φ0) + o(1).

But,

Ψ̄ι
n(Φ0) − Ψ(Φ0) =

{
1
n

n∑
t=1

log
p(ΦT

0 Xt−1, xt)
p(xt)p(ΦT

0 Xt−1)
− Ψ(Φ0)

}

− 1
n

n∑
t=1

J(t ∈ κc
ι) log

p(ΦT
0 Xt−1, xt)

p(xt)p(ΦT
0 Xt−1)

= τ1 − τ2.

From (nι/n) → 0 and the Ergodic Theorem, both τ1 and τ2 tend to 0 with
probability one as n → ∞. Hence, limn→∞ Ψ̂ι

n(Φ̂n) = Ψ(Φ0) with probability
one. Since Ψ̂ι

n(Φ̂n) ≥ Ψ̂ι
n(Φd) by definition, taking limit on both sides we get

Ψ(Φ0) ≥ Ψ(Φd). On the other hand, by the definition of Φd, Ψ(Φ0) ≤ Ψ(Φd),
and therefore Ψ(Φ0) = Ψ(Φd). Due to uniqueness Φ0 = Φd, a contradiction.
Therefore, Φ̂n → Φd with probability 1.

Lemma 2. Assume the conditions of Lemma 1 and Theorem 1. For each fixed
p and k, maxhp,k

Ψ̂ι
n(hp,k) → maxhp,k

Ψ(hp,k), as n → ∞.

Proof of Lemma 2. For simplicity, we assume that arg maxhp,k
Ψ(hp,k) is

unique. By the arguments in the proof of Theorem 1 and its conclusion, we
have that limn→∞ maxhp,k

Ψ̂ι
n(hp,k) = maxhp,k

Ψ(hp,k), with probability one.
Proof of Theorem 2. Let ck = maxhp,(k+1)

Ψ(hp,(k+1)) − maxhp,k
Ψ(hp,k). By

Proposition 2 (iii), it follows that ck > 0 if k < d, and ck = 0 if k ≥ d. Hence,
d = min{k(≤ (p − 1)) : ck = 0}. Moreover, for each k, by Lemma 2 we have
ĉι
k → ck as n → ∞. Recall that d̂ι

p = min{k(≤ (p − 1)) : ĉι
k ≤ τp,n}. Since

τp,n → 0 as n → ∞, it follows that d̂ι
p → d as n → ∞, with probability one.
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