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Supplementary Material

This note contains the proofs of the results stated in Section 2 and definition of
some limits which has been used in obtaining the asymptotic distribution of the least
squares estimators. Lemmas 1 and 2 are first stated and proved. They are required to
prove theorem 2.1. Then Theorem 2.1 is proved. Several limits are defined afterwards.

S1. Proof of Consistency

The technique used to prove Theorem 2.1, is that of Wu (1981). Lemma 2 gives a
sufficient condition for strong consistency of the LSEs and Lemma 1 is required to verify
the condition given in Lemma 2 under the condition that the error random variables
are i.i.d. The methodology adopted in the following might be applicable to the case of
undamped periodic signal models.
Lemma S1.1. Let X(1), X(2), . . . be i.i.d. random variables with mean zero and finite
second moment, and let b be a real number such that e|b| ≤ K. Let Π = (0, π)× (0, π) ∈
R2. Then

sup
(α,θ)∈Π

1
N

N∑
t=1

X(t) exp{b cos(αt)} cos(θt) a.s.→ 0, as N → ∞.

Proof of Lemma S1.1. If Z(t) = X(t) when |X(t)| ≤ t
1
2 and is 0 otherwise, then

∞∑
t=1

P [Z(t) 6= X(t)] =
∞∑

t=1

P [|X(t)| > t
1
2 ]

=
∞∑

t=1

∑
2t−1≤n≤2t

P [|X(1)| > n
1
2 ]

≤
∞∑

t=1

2tP [|X(1)| > 2
t−1
2 ]

≤
∞∑

t=1

2t
∞∑

j=t

P [2
j−1
2 ≤ |X(1)| < 2

j
2 ]

≤
∞∑

j=1

P [2
j−1
2 ≤ |X(1)| < 2

j
2 ]

j∑
t=1

2t
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≤ c
∞∑

j=1

2j−1P [2
j−1
2 ≤ |X(1)| < 2

j
2 ] ≤ cE|X(1)|2 <∞.

So, P [Z(t) 6= X(t) i.o.] = 0 and Z(t) and X(t) are equivalent random variables. Thus

sup
(α,θ)∈Π

1
N

N∑
t=1

X(t) exp{b cos(αt)} cos(θt) a.s.→ 0

⇔ sup
(α,θ)∈Π

1
N

N∑
t=1

Z(t) exp{b cos(αt)} cos(θt) a.s.→ 0.

Let Ut = Z(t) − E(Z(t)). Then

sup
(α,θ)∈Π

∣∣∣∣∣ 1
N

N∑
t=1

Z(t) exp{b cos(αt)} cos(θt)

∣∣∣∣∣ ≤ e|b|
1
N

N∑
t=1

|Z(t)| → 0.

Thus, it is enough to show that

sup
(α,θ)∈Π

1
N

N∑
t=1

Ut exp{b cos(αt)} cos(θt) a.s.→ 0.

For any fixed ε > 0, assume that 0 ≤ h ≤ 1
2N1/2K

. Then |hUt cos(θt)eb cos(αt)| ≤
1
2
. Now, using e|x| ≤ 2ex and ex ≤ 1 + x+ 2x2 for |x| ≤ 1

2
, we have

P

[∣∣∣∣∣ 1
N

N∑
t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ ε

]
≤ e−hNε

N∏
t=1

E
(
exp{|hUt cos(θt)eb cos(αt)|}

)
≤ 2e−hNε

N∏
t=1

E
(
exp{hUt cos(θt)eb cos(αt)}

)
≤ 2e−hNε

N∏
t=1

(1 + 2h2σ2K2)

≤ 2e−hNε+2Nh2σ2K2
.

If h =
1

2N1/2K
in the above inequality,

P

[∣∣∣∣∣ 1
N

N∑
t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ ε

]
≤ 2e−

1
2 N

1
2 K−1ε+ 1

2 σ2
≤ ce−

1
2 N

1
2 K−1ε.

Let L = N2. Choose (α1, θ1), . . . , (αL, θL) such that for each (α, θ) ∈ Π, we have a
(αj , θj) satisfying |αj − α| ≤ π

N2
and |θj − θ| ≤ π

N2
. From∣∣∣cos(θt)eb cos(αt) − cos(θjt)eb cos(αjt)

∣∣∣
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=
∣∣∣cos(θt)eb cos(αt) − cos(θjt)eb cos(αt) + cos(θjt)eb cos(αt) − cos(θjt)eb cos(αjt)

∣∣∣
≤ |eb cos(αt)| |cos(θt) − cos(θjt)| + | cos(θjt)|

∣∣∣eb cos(αt) − eb cos(αjt)
∣∣∣

≤ Kt|θj − θ| +Kt|b||αj − α|,

∣∣∣∣∣ 1
N

N∑
t=1

Ut

(
cos(θt)eb cos(αt) − cos(θjt)eb cos(αjt)

)∣∣∣∣∣ ≤ 2
N

N∑
t=1

t
1
2Kt(|θj − θ| + |b||αj − α|)

≤ 2
N

N∑
t=1

t
1
2Kt

π

N2
(1 + |b|)

≤ 2K(1 + |b|) π√
N

→ 0, as N → ∞.

Therefore, for large N ,

P

[
sup
α,θ

∣∣∣∣∣ 1
N

N∑
t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ 2ε

]
≤ P

[
max
j≤N2

∣∣∣∣∣ 1
N

N∑
t=1

Ut cos(θjt)eb cos(αjt)

∣∣∣∣∣ ≥ ε

]
≤ cN2e−

1
2 N

1
2 K−1ε.

Since
∞∑

n=1

n2e−
1
2 n

1
2 K−1ε <∞, we have

sup
(α,θ)∈Π

1
N

N∑
t=1

X(t) exp{b cos(αt)} cos(θt) a.s.→ 0,

as N → ∞, using the Borel Cantelli Lemma.
Lemma S1.2. Let Sε,M =

{
η : |η − η0| > 6ε, |A| ≤M

}
. If for any ε > 0 and for some

M < ∞, lim inf
N→∞

inf
η∈Sε,M

1
N

[
Q(η) −Q(η0)

]
> 0 a.s. then η̂ is a strongly consistent

estimator of η0.
Proof of Lemma S1.2. It is simple and can be proved by contradiction along the same
lines as Wu (1981), so it is not provided here.
Proof of Theorem 2.1: In this proof, we denote η̂ by η̂N = (AN , bN , αN , cN , θN , φN )
to emphasize the dependence on N . Assume that η̂N is not a consistent estimator for
η0 and consider two cases.

Case I: For all sub sequences {Nk} of {N}, |ÂNk
| → ∞. This implies

1
Nk

[
Q(η̂Nk

) −Q(η0)
]

→ ∞. But as η̂Nk
is the LSE of η0 with sample size Nk, we have Q(η̂Nk

) −Q(η0) < 0,
which leads to a contradiction. So η̂N is a strongly consistent estimator of η0.
Case II: For at least one sub sequence {Nk} of {N}, η̂Nk

∈ Sε,M for some ε > 0 and
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some 0 < M <∞. Now we write
1
N

[
Q(η) −Q(η0)

]
= f(η) + g(η), where

f(η) =
1
N

N∑
t=1

[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]2

,

g(η) =
2
N

N∑
t=1

e(t)
[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]
.

Using Lemma 1, we have lim
N→∞

sup
η∈Sε,M

g(η) = 0, a.s. Define sets Si
ε,M , i = 1, . . . , 6, as

Si
ε,M =

{
η : |ηi − η0

i | > ε, |A| ≤M
}
, where ηi, i = 1, . . . , 6 stands for the elements of η,

that is, A, b, α, c, θ and φ. Note that Sε,M ⊂ ∪6
i=1S

i
ε,M = S (say). Therefore,

lim inf
N→∞

inf
Sε,M

1
N

[
Q(η) −Q(η0)

]
≥ lim inf

N→∞
inf
S

1
N

[
Q(η) −Q(η0)

]
.

Our aim is to show that lim inf
N→∞

inf
Si

ε,M

1
N

[
Q(η) −Q(η0)

]
= lim inf

N→∞
inf

Si
ε,M

f(η) > 0, a.s. for

i = 1, . . . , 6 which would imply lim inf
N→∞

inf
Sε,M

1
N

[
Q(η) −Q(η0)

]
> 0 a.s. So, for i = 1,

lim inf
N→∞

inf
S1

ε,M

f(η)

= lim inf
N→∞

inf
|A−A0|>ε

1
N

N∑
t=1

[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]2

= lim
N→∞

inf
|A−A0|>ε

1
N

N∑
t=1

(A−A0)2 exp{2b0(1 − cos(α0t+ c0))} cos2(θ0t+ φ0)

≥ e2b0ε2 lim
N→∞

1
N

N∑
t=1

exp{−2b0 cos(α0t+ c0))} cos2(θ0t+ φ0)

≥ e2b0e−|2b0|ε2 lim
N→∞

1
N

N∑
t=1

cos2(θ0t+ φ0) =
cb0ε

2

2
> 0 a.s.

where cb = 1, if b > 0 and cb = e−|4b0|. Using a similar technique, the inequality holds
for other i as well and the theorem is proved.
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S2. Limits Used in Asymptotic Distribution

For p = 0, 1, 2, . . ., the following limits have been used to obtain the asymptotic
distribution of the LSE η̂ of η0:

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) cos2(θt+ φ) = δ1(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c)(1 − cos(αt+ c))2 cos2(θt+ φ) = δ2(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin2(αt+ c) cos2(θt+ φ) = δ3(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin2(θt+ φ) = δ4(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c)(1 − cos(αt+ c)) cos2(θt+ φ) = δ5(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin(αt+ c) cos2(θt+ φ) = δ6(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin(θt+ φ) cos(θt+ φ) = δ7(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin(αt+ c)}(1 − cos(αt+ c)) cos2(θt+ φ) = δ8(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c)(1 − cos(αt+ c)) sin(θt+ φ) cos(θt+ φ) = δ9(ξ, p);

lim
N→∞

1
Np + 1

N∑
t=1

tpe−2b cos(αt+c) sin(αt+ c) sin(θt+ φ) cos(θt+ φ) = δ10(ξ, p).

Note that

exp{−2|b|} ≤ exp{−2b cos(αt+ c)} ≤ exp{2|b|}. (S2.1)

Using it in the first sequence listed above, with p = 0, we have

e−2|b| 1
N

N∑
t=1

cos2(θt+ φ) ≤ 1
N

N∑
t=1

e−2b cos(αt+c) cos2(θt+ φ) ≤ e2|b|
1
N

N∑
t=1

cos2(θt+ φ).

Now taking limit as N → ∞, we get
e−2|b|

2
≤ δ1(ψ, 0) ≤ e2|b|

2
. For notational simplicity,

δk(ψ, p) = δk(p), k = 1, . . . , 10, has been used in obtaining the asymptotic distribution
of the LSEs.
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Using the inequality given in (S2.1), in δ6(ξ, p), we have

δ6(ξ, p) ≤
{
≥

}
e|2b|

{
e−|2b|

}
lim

N→∞

1
Np+1

N∑
t=1

tp sin(αt+ c) cos2(θt+ φ)

→ e|2b|
{
e−|2b|

}
× 0.

This implies that 0 ≤ δ6(ξ, p) ≤ 0 ⇒ δ6(ξ, p) → 0, for all p and ξ. In a similar way, we
find that δk(ξ, p) → 0 for all p and ξ for k = 7, . . . , 10 and δ5(ξ, p) = δ1(ξ, p).


