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Abstract: In this paper, we study a model that exhibits burst-type features such

as ECG signals. The model was proposed by Sharma and Sircar (2001) and is a

generalization of the fixed amplitude sinusoidal model. The least square method

is used to estimate the unknown parameters and we show that the least squares

estimators are strongly consistent and asymptotically normal. Some numerical

results based on simulations are reported for illustrative purposes.
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1. Introduction

The estimation of the parameters of a parametric model is a central problem.

The present article addresses the estimation of parameters in the model

y(t) =

q
∑

i=1

Ai exp[bi{1− cos(αt + ci)}] cos(θit + φi) + e(t), t = 1, . . . , N, (1.1)

where for i = 1, . . . , q, Ai is the amplitude of the carrier wave, bi and ci are

the gain part and the phase part of the exponential modulation signal, θi is

the carrier angular frequency, α is the modulation angular frequency, and φi

is the phase corresponding to the carrier angular frequency. The number of

components present in the signal is denoted by q. The error random variables

{e(t)} are assumed i.i.d. with mean zero and finite variance. The model (1.1) is a

sinusoidal model with a time-dependent amplitude
∑q

i=1 si(t) cos(θit+φi)+e(t);

here si(t) takes the particular exponential form exp[bi{1−cos(αt+ci)}] multiplied

by a constant Ai. The modulation angular frequency α is assumed to be same

through all components, which ensures the presence of burst-like signal.

The model was proposed by Sharma and Sircar (2001) in complex-valued

form. As we mostly deal with real-valued observations, it was suggested in

Sharma and Sircar (2001) that one estimated the imaginary part of each of them

using the Hilbert transform. Then one has complex-valued data (as observed,

estimated by Hilbert transform) and the techniques for a complex model can be
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implemented. Sharma and Sircar (2001) used this in describing a segment of real

electrocardiograph (ECG) signal. In an earlier article, Mukhopadhyay and Sircar

(1996) proposed a similar kind of model to analyze an ECG signal, actually it

was (1.1) with a different representation of parameters. In both papers the au-

thors analyzed ECG data using ad-hoc estimation procedures. Here we consider

the particular form (1.1) and our aim is to study the least square estimators

(LSEs) of the unknown parameters and to derive their theoretical properties in

a systematic manner.

Many data, for example ECG signals, exhibit burst-type features. Similar

structures have been observed in the plot of data generated by (1.1) for differ-

ent sets of values. For an example, see Figure 6 in Section 4. Model (1.1) was

proposed to employ one or more amplitude modulated sinusoidal signals with

the aim of modelling different features of an ECG output signal separately. Fol-

lowing Sharma and Sircar (2001), we call (1.1) a burst-type signal. For another

type of amplitude modulated sinusoidal model, see Sircar and Syali (1996) and

Nandi, Kundu and Iyer (2004).

We discuss the parameter estimation in the presence of i.i.d. noise and use

the least square method for estimation. It is known that the constant amplitude

multiple sinusoidal model does not satisfy the sufficient conditions of Jennrich

(1969) or Wu (1981) for the LSEs to be consistent. Model (1.1), being a more

complicated general model does not satisfy them. However, the special structure

of the model allows us to establish the strong consistency and the large sample

distribution of the LSEs of the unknown parameters. To apply the model to

data, the main problem is to guess initial estimates, but we do not address

any computational problems in this paper. Rather, we study the theoretical

properties of the LSEs.

The paper is organized as follows. In Section 2, we state the asymptotic

properties of the LSEs for a single burst-type signal (q = 1). The results for

general q are discussed in Section 3. Numerical results are presented in Section

4. All proofs are in Section S1 of the Supplementary Material.

2. Asymptotic Distribution of LSEs for Single Burst-Type Signal

In this section, we consider the case q = 1 and write model (1.1) as

y(t) = A exp[b{1 − cos(αt + c)}] cos(θt + φ) + e(t), t = 1, . . . , N. (2.1)

It is assumed that |b| ≤ J , so eb cos(αt) ≤ e|b| ≤ eJ = K(say) a finite constant,

frequencies α, θ ∈ [0, π], phases c, φ ∈ [−π, π], A ∈ R is a finite constant, and the

e(t) are i.i.d. with mean zero and finite variance σ2. We note that A is a linear

parameter whereas other parameters are non-linear. The condition |b| ≤ J is not
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a serious restriction because A is unbounded. Our problem is to estimate the

unknown parameters A, b, α, c, θ, and φ from a given sample of size N .

Let η = (A, b, α, c, θ, φ) with η0 as the true value of η. The LSE η̂ at (2.1)

minimizes the residual sum of squares

Q(η) =

N
∑

t=1

[

y(t) − A exp[b{1 − cos(αt + c)}] cos(θt + φ)
]2

(2.2)

with respect to η. Since the model is a partial non-linear regression model,

and the parameter space corresponding to the non-linear parameters is compact

(stated in Theorem 2.1), following the approach of Lemma 2 of Jennrich (1969),

the existence of the LSEs can be established. In this the LSE η̂ means the local

minimum in the neighbourhood of the true parameter value η0. First we have

consistency.

Theorem 2.1. Let η0 = (A0, b0, α0, c0, θ0, φ0) be an interior point of the param-

eter space {(−∞,∞) × [− log(K), log(K)] × [0, π] × [−π, π] × [0, π] × [−π, π]},

where K is a large positive number with exp{|b0|} < K. If the error random

variables e(t)s are i.i.d., then the LSE η̂ is a strongly consistent estimator of η0.

For the proof of Theorem 2.1, see the Supplementary Material.

In rest of this section, we develop the joint asymptotic distribution of the

LSEs of the unknown parameters for the single component model. We use the

usual Taylor series expansion and denote the first derivative vector of Q(η) as

Q′(η), of order 1× 6, and the 6× 6 matrix of second order derivatives as Q′′(η).

Expanding Q′(η̂) around η0, we have

Q′(η̂) − Q′(η0) = (η̂ − η0)Q′′(η̄), (2.3)

where η̄ is a point between η̂ and η0. Now define a diagonal matrix of order six

as

D = diag{N−1/2, N−1/2, N−3/2, N−1/2, N−3/2, N−1/2}. (2.4)

As Q′(η̂) = 0, (2.3) can be written as

(η̂ − η0)D−1 = −
[

Q′(η0)D
] [

DQ′′(η̄)D
]−1

, (2.5)

since
[

DQ′′(θ̄)D
]

is an invertible matrix a.e. for large N . From Theorem 2.1,

it follows that η̂ converges a.s. to η0 and, since each element of Q′′(η) is a

continuous function of θ,

lim
N→∞

[

DQ′′(η̄)D
]

= lim
N→∞

[

DQ′′(θ0)D
]

= 2Σ(η0) (say). (2.6)



736 SWAGATA NANDI AND DEBASIS KUNDU

In obtaining the exact form of the limit matrix Σ(η), let us write η = (A, ξ),

where ξ = (b, α, c, θ, φ). Then Σ(η) = e2b0∆(η0), where

∆(η)=

























δ1(0) Aδ5(0) Abδ6(1) Abδ6(0) Aδ7(1) Aδ7(0)

Aδ5(0) A2δ2(0) A2bδ8(1) A2bδ8(0) −A2δ9(1) −A2δ9(0)

Abδ6(1) A2bδ8(1) A2b2δ3(2) A2b2δ3(1) −A2bδ10(2) −A2bδ10(1)

Abδ6(0) A2bδ8(0) A2b2δ3(1) A2b2δ3(0) −A2bδ10(1) −A2bδ10(0)

Abδ7(1) −A2δ9(1) −A2bδ10(2) −A2bδ10(1) A2δ4(2) A2δ4(1)

Aδ7(0) −A2δ9(0) −A2bδ10(1) −A2bδ10(0) A2δ4(1) A2δ4(0)

























,(2.7)

and δk(m) = δk(η,m), m = 0, 1, 2, k = 1, . . . , 10 are defined in Section S2 in the

Supplementary Material.

Q′(η0)D =










































− 2√
N

∑N
t=1 e(t) exp{b0(1 − cos(α0t + c0))} cos(θ0t + φ0)

− 2√
N

A0
∑N

t=1 e(t) exp{b0(1 − cos(α0t + c0))}(1 − cos(α0t + c0)) cos(θ0t + φ0)

− 2
N3/2

A0b0
∑N

t=1 te(t) exp{b0(1 − cos(α0t + c0))} sin(α0t + c0) cos(θ0t + φ0)

− 2√
N

A0b0
∑N

t=1 e(t) exp{b0(1 − cos(α0t + c0))} sin(α0t + c0) cos(θ0t + φ0)

2
N3/2

A0
∑N

t=1 te(t) exp{b0(1 − cos(α0t + c0))} sin(θ0t + φ0)

2√
N

A0
∑N

t=1 e(t) exp{b0(1 − cos(α0t + c0))} sin(θ0t + φ0)











































.

All the elements of Q′(η0)D satisfy the Lindeberg-Feller condition, therefore it

converges to a 6-variate normal distribution. Using the limits given in Section

S2 of the Supplementary Material, it follows that

Q′(η0)D → N6

(

0, 4σ2Σ(η0)
)

. (2.8)

Using (2.6) and (2.8) in (2.5), we have

(η̂ − η0)D−1 → N6

(

0, σ2Σ−1(η0)
)

. (2.9)

Now using the inequality (S2.1) of the Supplementary Material, δk(ξ, p) = 0 for
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k = 6, . . . , 10, and δ5(ξ, p) = δ1(ξ, p), p = 0, 1, . . ., we can write

∆(η) =





∆1(η) 0 0

0 ∆2(η) 0

0 0 ∆3(η)



 ,

∆1(η) =

[

δ1(0) Aδ1(0)

Aδ1(0) A2δ2(0)

]

, ∆2(η) = A2b2

[

δ3(2) δ3(1)

δ3(1) δ3(0)

]

,

(2.10)

∆3(η) = A2

[

δ4(2) δ4(1)

δ4(1) δ4(0)

]

.

Thus, the asymptotic variance-covariance matrix of (η̂ − η0)D−1 is

σ2Σ−1(η0) = σ2e−2b0∆−1(η0) = σ2e−2b0





∆−1
1 (η) 0 0

0 ∆−1
2 (η) 0

0 0 ∆−1
3 (η)



 (2.11)

with

∆−1
1 (η) =

1

δ2(0)−δ1(0)

[

δ2(0)
δ1(0) − 1

A

− 1
A

1
A2

]

,

∆−1
2 (η) =

1

A2b2[δ3(2)δ3(0) − δ3(1)2]

[

δ3(0) − δ3(1)

− δ3(1) δ3(2)

]

,

∆−1
3 (η) =

1

A2[δ4(2)δ4(0) − δ4(1)2]

[

δ4(0) − δ4(1)

− δ4(1) δ4(2)

]

.

From (2.11), it implies that the pairs of parameters (A, b), (α, c) and (θ, φ) are

asymptotically independent of each other, whereas the parameters in each pair

are asymptotically dependent.

Remark 1. The rate of convergence of each of A, b, c and φ is Op(N
−1/2),

whereas for the carrier angular frequency θ and the modulating frequency α, the

rate of convergence is Op(N
−3/2).

3. Theoretical Properties of LSEs for General q

In this section, we provide the asymptotic results for the LSEs for model

(1.1). Write ψk = (Ak, bk, ck, θk, φk), k = 1, . . . , q, and ψ = (ψ1, . . . ,ψq, α) as

the parameter vector. Then the LSE of ψ is obtained by minimizing the residual

sum of squares defined similarly as at (2.2). Let ψ̂ and ψ0 denote the least

squares estimator and the true value of ψ. The consistency of ψ̂ follows similarly

as the consistency of η̂. We state the asymptotic distribution of ψ̂; the proof
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involves routine calculations and the use of multiple Taylor series and a central

limit theorem similar to Section 2.

For the asymptotic distribution of ψ̂, following the notation used in previous

section, we write ξj = (bj , α, cj , θj , φj), j = 1, . . . , q; δk(ξj, p) = δj
k(p), k = 1(1)4,

j = 1(1)q, p = 0, 1, . . . Let Dq be the diagonal matrix of order (5q + 1) given as

Dq =















D1 0 · · · 0 0

0 D1 · · · 0 0
...

...
. . .

...
...

0 0 · · · D1 0

0 0 · · · 0 N−3/2















,

where D1 = diag{N−1/2, N−1/2, N−1/2, N−3/2, N−1/2}. Then as N → ∞,

(ψ̂ −ψ0)D−1
q

d
→ N5q+1

(

0, σ2G−1
q (ψ0)

)

, (2.12)

Gq(ψ) =















e2b1Γ(ψ1) 0 · · · 0 w(ψ1)

0 e2b2Γ(ψ2) · · · 0 w(ψ2)
...

...
. . .

...
...

0 · · · 0 e2bqΓ(ψq) w(ψq)

w′(ψ1) w′(ψ2) · · · w′(ψq) f∗















.

Here f∗ =
∑q

j=1 e2bjA2
jb

2
jδ

j
3(2) and w′(ψj) =

(

0 0 e2bjA2
jb

2
jδ

j
3(1) 0 0

)

. The sub-

matrix Γ(ψj) is obtained by deleting third row and third column of ∆(η) and

replacing (A, b, c, θ, φ) by (Aj , bj , cj , θj, φj). Thus,

Γ(ψj) =















δj
1(0) Ajδ

j
1(0) 0 0 0

Ajδ
j
1(0) A2

jδ
j
2(0) 0 0 0

0 0 A2
jb

2
jδ

j
3(0) 0 0

0 0 0 A2
jδ

j
4(2) A2

jδ
j
4(1)

0 0 0 A2
jδ

j
4(1) A2

jδ
j
4(0)















.

The inverse matrix G−1
q (ψ0) is















e−2b1Γ(ψ1)
−1+F11 F12 · · · F1q e−2b1Γ(ψ1)w(ψ1)

F21 e−2b2Γ(ψ2)
−1+F22 · · · F2q e−2b2Γ(ψ2)w(ψ2)

...
...

. . .
...

...

Fq1 Fq2 · · · e−2bqΓ(ψq)
−1+Fqq e−2bqΓ(ψq)w(ψq)

e−2b1Γ(ψ1)w(ψ1) e−2b2Γ(ψ2)w(ψ2) · · · e−2bqΓ(ψq)w(ψq)
1
d∗















,
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where d∗ =
∑q

j=1 e2bj A2
jb

2
j

[

δj
3(2) − δj

3(1)
2/δj

3(0)
]

and Fjk, j, k = 1, . . . , q, is a

5 × 5 symmetric matrix whose elements are zero except for the (3,3) element

which is (1/d∗)[δj
3(1)δ

k
3 (1)/δj

3(0)δ
k
k(0)].

4. Numerical Experiments

In this section, we present some numerical results of simulations. We consider

the model (1.1) with q = 4. Data were generated using the values

A1 = 5.70166706 × 10−5, A2 = 3.3049426 × 10−25,

A3 = 1.002 × 10−3, A4 = 3.7575 × 10−4,

b1 = 4.989495798, b2 = 28.886554622, b3 = 2.62605042, b4 = 2.62605042,

c1 = 0.1904, c2 = 2.05632, c3 = 5.9024, c4 = 3.2368, (2.13)

θ1 = 0.07616, θ2 = 0.26656, θ3 = 0.03808, θ4 = 0.03808,

φ1 = 1.166198163, φ2 = 18.007071552, φ3 = 10.928948246, φ4 = 6.378392654,

α = 0.03808.

These values were obtained from Mukhopadhyay and Sircar (1996). We con-

sider the case when carrier frequencies are harmonics of the modulation angular

frequency i.e., the θi’s are integer multiples of α. An ECG signal is periodic, θi

has to be some integer multiple of α. We used the sample size N = 100. The

error random variables were independent and identically distributed N (0, σ2).

We report results for σ2 = 0.00001 and 0.0001. The necessary minimization was

carried out by using the downhill simplex method and, for that purpose, rou-

tines given in Press, Teukolsky, Vetterling and Flannery (1993) were used. The

true parameter values were taken as the initial estimates. Though q = 4, the

parameter set contains 21 parameters, and the optimization took place in a high

dimensional space, the final results are quite satisfactory. We replicated the

procedure of data generation and estimation of parameters 1,000 times, then

calculated the average estimate (AVEST) and the mean squared error (MSE)

of each parameter. We summarize results in Figures 1 and 2. In Figure 1, we

present the true values (using circles), and the average estimates (using crosses

and triangles when σ2 = 0.00001 and 0.0001, respectively). There are 25 sub-

plots in Figure 1 and the jth row corresponds to the parameters of the jth

component, j = 1, . . . , 4. In Section 3, we developed the asymptotic distribution

of LSEs when q > 1, and that can be used, in particular, for interval estima-

tion. In particular, we employ the percentile bootstrap (boot-p) method. In

Nandi, Iyer and Kundu (2002) and Kundu and Nandi (2008), similar bootstrap-

ping was used for interval estimation in the case of a sinusoidal frequency model

and real chirp signal model, respectively. In each replication of our experiment,
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Figure 1. True values (circle) and average estimates when σ2 = 0.00001
(cross) and σ2 = 0.0001 (triangle), the ith row corresponding to the ith

component. The results for α are given in Figure 3.

we generated 1,000 bootstrap resamples using the estimated parameters, and

then the bootstrap confidence intervals using the bootstrap quantiles at the 95%

nominal level. Thus, from the replicated experiment, we have 1,000 intervals for

each parameter. Then we estimated the 95% boot-p coverage probability by cal-

culating the proportion covering the true value of the parameter. All were close

to the nominal value, except for c1 and A3, and we do not report them here. We

also obtained the average lengths of the boot-p confidence intervals; these are
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Figure 2. Root mean squared errors of LSEs of parameters when σ2 =
0.00001 and σ2 = 0.0001 (joined with a continuous line) and average lengths
of boot-p confidence intervals (long dashed line). The results corresponding
to the first component in (a)-(e), the second in (f)-(j), the third in (k)-(o),
and the fourth in (p)-(u) are provided.

reported in Figure 2, along with the root mean squared errors (RMSE). In each

sub-figure, for σ2 = 0.00001 and 0.0001, we present the RMSEs (circles connected

by long dashed lines) and average length of the boot-p confidence intervals (∗

connected by continuous line). The results for the modulation frequency α are

provided in Figure 3. We observe that the average estimates were quite good,

which is reflected in Figure 1. The biases were quite small as the estimates (cross
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Figure 3. True value and average estimates of α (left), root mean squared
errors and average length of boot-p confidence interval for α (middle), and
true values, LSEs and 95% confidence intervals.

and triangle) were quite close to the true values (circle). As the error variance

increased, the biases increased. The RMSEs and average lengths of the boot-p

confidence intervals were reasonably small. Their dependence on the magnitude

of the constant amplitude A0 is quite clear. The asymptotic variances of all pa-

rameters, except A, were reciprocally proportional to A02
, which is also visible in

RMSEs to some extent. As the error variance increased the RMSEs and average

lengths increased. The order of the asymptotic variance is reflected in the RMSE

and the length of the interval in each case.
Apart from the replicated experiment, we considered the same model in

data analysis format. For that, we generated the data for sample size N = 500

and error variance σ2 = 0.05. The generated data are plotted when no noise is

present, in Figure 5. The corrupted version of the same data set with σ2 = 0.05
are presented in Figure 6. We estimated the parameters by minimizing the

residual sum of squares and plugging them in the model, to estimate the signal.

It is plotted in Figure 7. If the level of noise is increased to σ2 = 1.0, the original

signal (Figure 5) is totally distorted. We wanted to see whether in this case it

is possible to extract the signal. The signal with completely destroyed form is
plotted in Figure 8. We obtained the LSEs, and the estimated signal is plotted in

Figure 9. In both cases, the LSEs were able to estimate the signal satisfactorily;

the estimated graphs (Figs. 7 and 9) match well with the no-noise signal. In

simulated experiments, we used the percentile bootstrap method for interval
estimation and we used the same method here. Using 1,000 bootstrap resamples,

we estimated the 95% confidence intervals for each parameter when σ2 = 0.05

and σ2 = 1.0. They, as first brackets, are reported in Figure 4, along with their

point estimates (∗) and true values (circle). We see that bias is negligible in most

cases when σ2 = 0.05. The boot-p confidence intervals in each case included the
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Figure 4. True values (circle), LSEs at σ2 = 0.05 and 1.0 (∗), and 95%
percentile bootstrap confidence intervals (brackets) when the sample size
N = 500.

true parameter value and the order of asymptotic variance is reflected in the
length of the interval. We would like to mention that for larger noise levels,
biases are large for some parameters, but the overall fit is quite good; the reason
may lie in the presence of large absolute values of the amplitude function.
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Figure 5. The signal using model (2.13) subjected to no noise.

Figure 6. The same signal as in Figure 5 corrupted by noise (variance=0.05).

Figure 7. Estimated signal from the signal given in Figure 6.
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